首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S J Frost  R H Raja  P H Weigel 《Biochemistry》1990,29(45):10425-10432
125I-HA, prepared by chemical modification at the reducing sugar, specifically binds to rat hepatocytes in suspension or culture. Intact hepatocytes have relatively few surface 125I-HA binding sites and show low specific binding. However, permeabilization of hepatocytes with the nonionic detergent digitonin results in increased specific 125I-HA binding (45-65%) and a very large increase in the number of specific 125I-HA binding sites. Scatchard analysis of equilibrium 125I-HA binding to permeabilized hepatocytes in suspension at 4 degrees C indicates a Kd = 1.8 x 10(-7) M and 1.3 x 10(6) molecules of HA (Mr approximately 30,000) bound per cell at saturation. Hepatocytes in primary culture for 24 h show the same affinity but the total number of HA molecules bound per cell at saturation decreases to approximately 6.2 x 10(5). Increasing the ionic strength above physiologic concentrations decreases 125I-HA binding to permeable cells, whereas decreasing the ionic strength above causes an approximately 4-fold increase. The divalent cation chelator EGTA does not prevent binding nor does it release 125I-HA bound in the presence of 2 mM CaCl2, although higher divalent cation concentrations stimulate 125I-HA binding. Ten millimolar CaCl2 or MnCl2 increases HA binding 3-6-fold compared to EGTA-treated cells. Ten millimolar MgCl2, SrCl2, or BaCl2 increased HA binding by 2-fold. The specific binding of 125I-HA to digitonin-treated hepatocytes at 4 degrees C increased greater than 10-fold at pH 5.0 as compared to pH 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Intact isolated rat hepatocytes show a small amount of specific 125I-labeled hyaluronic acid (HA) binding. However, in the presence of digitonin, a very large increase in the specific binding of 125I-HA is observed. Chondroitin sulfate, heparin and dextran sulfate were as effective as unlabeled HA in competing for 125I-HA binding to permeabilized hepatocytes, indicating that the binding sites may have a general specificity for glycosaminoglycans. After rat hepatocytes had been homogenized in a hypotonic buffer, more than 98% of the 125I-HA binding activity could be pelleted by centrifugation at 100,000 x g for 1 h. Mild alkaline treatment of hepatocyte membranes did not release 125I-HA binding activity, suggesting that the HA binding site is an integral membrane molecule. Furthermore, trypsin treatment of deoxycholate-extracted membranes destroyed the binding activity, as assessed by a dot-blot assay. This suggests that a protein component in the membrane is necessary for 125I-HA binding activity. Rat fibrinogen could be a possible candidate for the HA binding activity because HA binds specifically to human fibrinogen (LeBoeuf et al. (1986) J. Biol. Chem. 261, 12 586). Also, fibrinogen can be found in a quasi-crystalline form in rat hepatocytes and could be pelleted with the membranes. Rat fibrinogen was not responsible for the 125I-HA binding activity, since (1) purified rat fibrinogen did not bind to 125I-HA, and (2) immunoprecipitation of rat fibrinogen from hepatocyte extracts did not decrease the 125I-HA binding of these extracts. We conclude that the internal HA binding sites are membrane- or cytoskeleton-associated proteins and are neither cytosolic proteins nor fibrinogen.  相似文献   

3.
Isolated and cultured rat liver sinusoidal endothelial cells (LECs) retain the ability to specifically bind 125I-hyaluronan (HA) and internalize it using a coated pit pathway [Biochem J, 257:875-884, 1989]. Here we have determined the effect of Ca+2 on the binding and endocytosis of HA by LECs. 125I-HA binding to intact LECs at 4 degrees C occurred both in the absence (10 mM EGTA) or the presence of physiologic concentrations of Ca+2 (1.8 mM). However, the specific binding of 125I-HA to LECs increased linearly with increasing Ca+2 concentrations. After permeabilization with the nonionic detergent digitonin, the Ca(+2)-independent HA binding activity increased approximately 743%, while the Ca(+2)-dependent binding activity was enhanced only approximately 46%. Therefore, the Ca(+2)-dependent HA binding activity appears not to be intracellular, whereas the Ca(+2)-independent HA receptor is found both inside LECs and on the cell surface. When LECs were allowed to endocytose 125I-HA at 37 degrees C in 10 mM EGTA or in 1.8 mM Ca+2, no differences were seen in the extent or rate of endocytosis. When LECs were allowed to endocytose 125I-HA in the presence of 10 mM Ca+2, the amount of cell-associated radioactivity increased approximately 20-50-fold. However, this additional cell-associated 125I-HA was not sensitive to hyperosmolarity and was removed by washing the cells in 10 mM EGTA at 4 degrees C. Therefore, the Ca(+2)-dependent cell-associated 125I-HA had accumulated on the cell surface and had not been internalized. From these studies we conclude that LECs have at least two types of specific HA binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Hyaluronic acid (HA) is cleared from the blood by liver endothelial cells through receptor-mediated endocytosis [Eriksson, Fraser, Laurent, Pertoft & Smedsrod (1983) Exp. Cell Res. 144, 223-238]. We have measured the capacity of cultured rat liver endothelial cells to endocytose and degrade 125I-HA (Mr approximately 44,000) at 37 degrees C. Endocytosis was linear for 3 h and then reached a plateau. The rate of endocytosis was concentration-dependent and reached a maximum of 250 molecules/s per cell. Endocytosis of 125I-HA was inhibited more than 92% by a 150-fold excess of non-radiolabelled HA. HA, chondroitin sulphate and heparin effectively competed for endocytosis of 125I-HA, whereas glucuronic acid, N-acetylglucosamine, DNA, RNA, polygalacturonic acid and dextran did not compete. In the absence of cycloheximide, endothelial cells processed 13 times more 125I-HA in 6 h than their total (cell-surface and intracellular) specific HA-binding capacity. This result was not due to degradation and rapid replacement of receptors, because, even in the presence of cycloheximide, these cells processed 6 times more HA than their total receptor content in 6 h. Also, in the presence of cycloheximide, no decrease in 125I-HA-binding capacity was seen in cells processing or not processing HA for 6 h, indicating that receptors are not degraded after the endocytosis of HA. During endocytosis of HA at 37 degrees C, at least 65% of the intracellular HA receptors became occupied with HA within 30 min. This indicates that the intracellular HA receptors (75% of the total) function during continuous endocytosis. Hyperosmolarity inhibits endocytosis and receptor recycling in the asialoglycoprotein and low-density-lipoprotein receptor systems by disrupting the coated-pit pathway [Heuser & Anderson (1987) J. Cell Biol. 105, 230a; Oka & Weigel (1988) J. Cell. Biochem. 36, 169-183]. Hyperosmolarity inhibited 125I-HA endocytosis in liver endothelial cells by more than 90%, suggesting use of a coated-pit pathway by this HA receptor. We conclude that liver endothelial cell HA receptors are recycled during the continuous endocytosis and processing of HA.  相似文献   

5.
125I-Hyaluronic acid (HA) uniquely modified only at the reducing end (Raja, R.H., LeBoeuf, R. D., Stone, G.W., and Weigel, P.H. (1984) Anal. Biochem. 139, 168-177) binds specifically to rat liver endothelial cells in suspension or in culture. About 67-85% of the HA binding sites in isolated cells in suspension and 50% in cultured cells were intracellular, since they were exposed after permeabilizing cells with digitonin. Specific 125I-HA binding at 4 degrees C varied from 60 to 80% for intact cells and from 70 to 90% for permeabilized cells. Freshly isolated permeabilized cells bound about 500,000 HA molecules/cell at saturation. Within 5 h of culture, however, total HA binding decreased to 250,000 molecules/cells and then remained constant for at least 36 h. Surface HA receptor activity was essentially the same on cultured cells or cells in suspension (approximately 10(5)/cell). Cultured cells had 1.8 x 10(5) fewer intracellular receptors/cell. The affinities of surface and intracellular receptors of cells in culture and in suspension were essentially the same. The average Kd, determined by equilibrium binding studies, was 5.8 +/- 2.8 x 10(-8) M (n = 12). Dissociation of bound 125I-HA from permeable cultured cells was rapid (t1/2 = 30.9 min;kappa off = 3.7 x 10(-4) s-1). A variety of carbohydrates had essentially identical effects on 125I-HA binding to surface or total cellular receptors in cells in culture or in suspension. Chondroitin sulfate and heparin competed almost as effectively as unlabeled HA for 125I-HA binding at 4 degrees C. Other saccharides including polygalacturonic acid, dextran, glucuronic acid, and N-acetylglucosamine competed poorly or not at all. We conclude that (i) the 125I-HA binding sites within liver endothelial cells are HA receptors, identical in affinity and specificity to those on the cell surface; (ii) the distribution of cellular HA receptors is similar to other receptor systems with about 50-80% being intracellular; (iii) the liver endothelial cell HA receptor recognizes several glycosaminoglycans; and (iv) the liver endothelial receptor is different in function and characteristics than the fibroblast HA receptor.  相似文献   

6.
Binding of hyaluronic acid to mammalian fibrinogens   总被引:2,自引:0,他引:2  
We have postulated that the interaction of hyaluronic acid (HA), an extracellular matrix glycosaminoglycan, with fibrin is important during the early stages of wound healing and inflammation (J. Theor. Biol. 119:219; 1986), and have demonstrated the specific binding of 125I-labeled HA to human fibrinogen (J. Biol. Chem. 261:12 586; 1986). To determine whether HA binding is limited to human fibrinogen, we tested the ability of fibrinogens from various mammalian species to bind 125I-HA using a dot-blot assay. Increasing amounts of fibrinogen were adsorbed to nitrocellulose, and incubated with 125I-HA in the presence or absence of a 100-fold excess of nonradiolabeled HA to assess specific binding. In three independent experiments, the amount of 125I-HA bound/mg fibrinogen was determined from the slope derived by linear regression analysis of specifically bound 125I-HA versus protein concentration. A Student's t-test was performed to determine whether the slopes were statistically greater than zero. HA binding was considered statistically significant when P less than 0.05 was obtained by this analysis. Rabbit and dog fibrinogens significantly bound HA in all three trials. Baboon fibrinogen demonstrated significant HA binding in two of three trials. Pig, sheep and goat fibrinogens bound HA significantly in only one of three trials, whereas horse, rat and cow fibrinogens did not bind HA significantly at all. We conclude that fibrinogen from mammalian species other than human can specifically bind HA. The ability of fibrinogen to bind HA appears to correlate with an evolutionary divergence that separated human, baboon, dog, rabbit and rat from cow, pig, horse, goat and sheep.  相似文献   

7.
The human hyaluronan receptor for endocytosis (hHARE) mediates the endocytic clearance of hyaluronan (HA) and chondroitin sulfate from lymph fluid and blood. Two hHARE isoforms (190 and 315 kDa) are present in sinusoidal endothelial cells of liver, spleen, and lymph nodes (Zhou, B., McGary, C. T., Weigel, J. A., Saxena, A., and Weigel, P. H. (2003) Glycobiology 13, 339-349). Here we report the specificity and function of the 190-kDa HARE, expressed without the larger isoform, in Flp-In 293 cell lines (190hHARE cells). Like the native protein, recombinant hHARE contains approximately 25 kDa of N-linked oligosaccharides, binds HA in a ligand blot assay, cross-reacts with three anti-rat HARE monoclonal antibodies, and is inactivated by reduction. The 190hHARE cell lines mediated rapid, continuous (125)I-HA endocytosis and degradation for >1 day. About 30-50% of the total cellular receptors were on the cell surface, and their recycling time for reutilization was approximately 8.5 min. The average K(d) for the binding of HA to the 190-kDa hHARE at 4 degrees C was 7 nm with 118,000 total HA binding sites per cell. Competition studies at 37 degrees C indicated that the 190-kDa hHARE binds HA and chondroitin better than dermatan sulfate and chondroitin sulfates A, C, D, and E, but it does not bind to heparin, heparan sulfate, or keratan sulfate. Although competition was observed at 37 degrees C, none of the glycosaminoglycans tested, except HA, competed for (125)I-HA binding by 190hHARE cells at 4 degrees C. Anti-HARE monoclonal antibodies #30 and #154, which do not inhibit (125)I-HA uptake mediated by the 175-kDa rat HARE, partially blocked HA endocytosis by the 190-kDa hHARE. We conclude that the 190-kDa hHARE can function independently of other hHARE isoforms to mediate the endocytosis of multiple glycosaminoglycans. Furthermore, the rat and human small HARE isoforms have different glycosaminoglycan specificities and sensitivities to inhibition by cross-reacting antibodies.  相似文献   

8.
Hyaluronan (HA) and chondroitin sulfate clearance from lymph and blood is mediated by the hyaluronan receptor for endocytosis (HARE). The purification and molecular cloning (Zhou, B., Weigel, J. A., Saxena, A., and Weigel, P. H. (2002) Mol. Biol. Cell 13, 2853-2868) of this cell surface receptor were finally achieved after we developed monoclonal antibodies (mAbs) against HARE. There are actually two independent isoreceptors for HA, which in rat are designated the 175-kDa HARE and 300-kDa HARE. Only one mAb (number 174) effectively and completely blocked the specific uptake of 125I-HA at 37 degrees C by rat liver sinusoidal endothelial cells. 125I-HA binding to both the 175-kDa and 300-kDa HARE proteins in a ligand blot assay was almost completely inhibited by <1 microg/ml mAb-174, whereas mouse IgG had little or no effect. MAb-174 also performed very well in Western analysis, indirect fluorescence microscopy, and a variety of immuno-procedures. Immunohistochemistry using mAb-174 localized HARE to the sinusoidal cells of rat liver, spleen, and lymph node. Western analysis using mAb-174 revealed that the sizes of both HARE glycoproteins were the same in these three tissues. 125I-HA was taken up and degraded by excised rat livers that were continuously perfused ex vivo with a recirculating medium. This HA clearance and metabolism by liver, which is a physiological function of HARE, was very effectively blocked by mAb-174 but not by mouse IgG. The results indicate that mAb-174 will be a useful tool to study the functions of HARE and the physiological significance of HA clearance.  相似文献   

9.
Hyaluronan (HA) and chondroitin sulfate (CS) clearance from lymph and blood in mammals is mediated by the HA receptor for endocytosis (HARE), which is present as two isoforms in rat and human (175/300 kDa and 190/315 kDa, respectively) in the sinusoidal endothelial cells of liver, spleen, and lymph nodes (Zhou, B., McGary, C. T., Weigel, J. A., Saxena, A., and Weigel, P. H. (2003) Glycobiology 13, 339-349). The small rat and human HARE proteins are not encoded directly by mRNA but are derived from larger precursors. Here we characterize the specificity and function of the 175-kDa HARE, expressed in the absence of the 300-kDa species, in stably transfected SK-Hep-1 cells. The HARE cDNA was fused with a leader sequence to allow correct orientation of the membrane protein. The recombinant rHARE contained approximately 25 kDa of N-linked oligosaccharides and, like the native protein, was able to bind HA in a ligand blot assay, even after de-N-glycosylation. SK-HARE cell lines demonstrated specific 125I-HA endocytosis, receptor recycling, and delivery of HA to lysosomes for degradation. The Kd for the binding of HA (number-average molecular mass approximately 133 kDa) to the 175-kDa HARE at 4 degrees C was 4.1 nm with 160,000 to 220,000 HA-binding sites per cell. The 175-kDa rHARE binds HA, dermatan sulfate, and chondroitin sulfates A, C, D, and E, but not chondroitin, heparin, heparan sulfate, or keratan sulfate. Surprisingly, recognition of glycosaminoglycans (GAGs) other than HA by native or recombinant HARE was temperature-dependent. Although competition was observed at 37 degrees C, none of the other GAGs competed for 125I-HA binding to SK-HARE cells at 4 degrees C. Anti-HARE monoclonal antibody-174 showed a similar temperature-dependence in its ability to block HA endocytosis. These data suggest that temperature-induced conformational changes may alter the GAG specificity of HARE. The results confirm that the 175-kDa rHARE does not require the larger HARE isoform to mediate endocytosis of multiple GAGs.  相似文献   

10.
The hyaluronic acid (HA) receptor for endocytosis (HARE; also designated stabilin-2 and FEEL-2) mediates systemic clearance of glycosaminoglycans from the circulatory and lymphatic systems via coated pit-mediated uptake. HARE is primarily found as two isoforms (315- and 190-kDa) in sinusoidal endothelial cells of the liver, lymph node, and spleen. Here we characterize the ligand specificity and function of the large stably expressed 315-HARE isoform in Flp-In 293 cell lines. Like human spleen sinusoidal endothelial cells, Flp-In 293 cell lines transfected with a single cDNA encoding the full-length 315-HARE express both the 315-kDa and the proteolytically truncated 190-kDa isoforms in a ratio of approximately 3-4:1. The 190-kDa HARE isoform generated from the 315-kDa HARE and the 315-kDa HARE specifically bound 125I-HA. Like the 190-kDa HARE expressed alone (Harris, E. N., Weigel, J. A., and Weigel, P. H. (2004) J. Biol. Chem. 279, 36201-36209), the 190- and 315-kDa HARE isoforms expressed in 315-HARE cell lines were recognized by anti-HARE monoclonal antibodies 30, 154, and 159. All 315-HARE cell lines could endocytose and degrade 125I-HA. Competition studies with live cells indicate that 190-HARE and 315-HARE bind HA with higher apparent affinity (Kd approximately 10-20 nM) than chondroitin sulfate (CS) types A, C, D, or E. Only slight competition of HA endocytosis was observed with CS-B (dermatan sulfate) and chondroitin. Direct binding assays with the 315-HARE ectodomain revealed high affinity HA binding, and lower binding affinities for CS-C, CS-D, and CS-E. A majority of each HARE isoform was intracellular, within the endocytic system, suggesting transient surface residency typical of an active endocytic recycling receptor.  相似文献   

11.
Human fibrinogen specifically binds hyaluronic acid   总被引:11,自引:0,他引:11  
Fibrin and hyaluronic acid (HA) are macromolecules whose concentrations are elevated at the same time in the extracellular space of damaged tissues. We have investigated whether HA can bind to fibrinogen using solid phase and soluble assays. Purified human fibrinogen specifically bound to HA-Sepharose to a greater extent (greater than 5-fold) than did alpha 1-acid glycoprotein, DNaseI, ovalbumin, haptoglobin, or lysozyme. Fibrinogen did not bind to ethanolamine-Sepharose, a control chromatographic support. Treatment of HA-Sepharose containing bound 125I-fibrinogen with ovine testicular hyaluronidase released 44% of the 125I radioactivity, indicating that fibrinogen was specifically bound to HA. Moreover, 125I-fibrinogen bound to HA-Sepharose could be displaced by free HA but not by either of the monosaccharide components of this polymer, glucuronic acid, or N-acetylglucosamine. Chondroitin sulfate and polygalacturonic acid competed only weakly for bound 125I-fibrinogen. Bound 125I-fibrinogen was also not released by high concentrations of NaCl (up to 4 M), indicating that the interaction is not simply ionic. The apparent affinity of fibrinogen for HA covaried with the molecular weight of the HA. Small HA oligosaccharides (Mr = 3900) were only 50% as effective as larger HA (Mr = 8 X 10(5)) in eluting bound 125I-fibrinogen from HA-Sepharose. The optimal oligosaccharide size for displacement of bound 125I-fibrinogen was greater than or equal to 200 monosaccharides. Additionally, the amount of 125I-fibrinogen bound to HA-Sepharose was directly related to the size of the HA-amine linked to the affinity support. The affinity constant for fibrinogen binding to 125I-HA (approximately 150 monosaccharides) is estimated to be at least 2 X 10(7) M-1. These results demonstrate for the first time a specific, reversible binding between HA and fibrinogen.  相似文献   

12.
Rat liver endothelial cells (LECs) express a membrane-associatedCa2+-dependent hyaluronan-binding activity (CaHA-BP) which isdistinct from the Ca2+-dependent, endocytic LEC HA receptor(Yannariello-Brown et al., J. Cell Biochem., 48, 73–80,1992). The CaHA-BP is specific for a subset of glycosaminoglycans,since Ca2+-dependent binding of 125I-HA ({small tilde}80kDa)to LECs was competed with a 100-fold excess (w/w) of HA, chondroitinsulfate, and heparin, but not with chondroitin. The CaHA-BPactivity on intact LECs was pH-dependent. Optimal binding occurredat pH 6.0; no binding was detected at pH values 5 or 9. 125I-HA,pre-bound in the presence of Ca2+ could also be dissociatedwith an acidic buffer (pH 5.0), as well as the divalent cationchelators EDTA and EGTA. 125I-HA binding was stimulated by divalentcations other than Ca2+ such as Mg2+, Mn2+ and Ba2+; with theexception of Zn2+. A photoaffinity crosslinking reagent (125I-ASD-HA)was used to identify specifically crosslinked polypeptides onLECs. In the absence of Ca2+ and in the presence of EGTA, onlybands at 175/166 kDa were consistently crosslinked. These bandshave been previously identified as the LEC Ca2+-independentendocytic HA receptor (Yannariello-Brown et al., J. Biol. Chem.,267, 20451/20455, 1992). In the presence of Ca2+, crosslinkingwas consistently seen to a 68 kDa polypeptide. Crosslinkingwas competed with a 100-fold excess (w/w) of HA. These and otherdata suggest that a 68 kDa protein is the most likely candidatefor the CaHA-BP in LECs. photoaffinity crosslinking hyaluronan calcium lectin  相似文献   

13.
Partially acetylated generation five polyamidoamine (PAMAM) dendrimer (G5-Ac) was reacted with biotin and 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetria minepentaacetic acid (1B4M-DTPA), respectively to form the complex Bt-G5-Ac-1B4M which was further conjugated with avidin to give the conjugate Av-G5-Ac-1B4M. Then both of the conjugates were radiolabeled with technetium-99m ((99m)Tc), respectively. Their in vitro cellular uptake study shows that the conjugate of Av-G5-Ac-1B4M-(99m)Tc exhibits much higher cellular uptake in HeLa cells than that of Bt-G5-Ac-1B4M-(99m)Tc. Accordingly the following evaluation such as in vitro/in vivo stability, biodistribution and micro-SPECT imaging was observed only for the conjugate of Av-G5-Ac-1B4M-(99m)Tc.  相似文献   

14.
Identification of the hyaluronan receptor for endocytosis (HARE)   总被引:5,自引:0,他引:5  
Rat liver sinusoidal endothelial cells (LECs) express two hyaluronan (HA) receptors, of 175 and 300 kDa, responsible for the endocytic clearance of HA. We have characterized eight monoclonal antibodies (mAbs) raised against the 175-kDa HA receptor partially purified from rat LECs. These mAbs also cross-react with the 300-kDa HA receptor. The 175-kDa HA receptor is a single protein, whereas the 300-kDa species contains three subunits, alpha, beta, and gamma at 260, 230, and 97 kDa, respectively (Zhou, B., Oka, J. A., and Weigel, P. H. (1999) J. Biol. Chem. 274, 33831-33834). The 97-kDa subunit was not recognized by any of the mAbs in Western blots. Based on their cross-reactivity with these mAbs, the 175-, 230-, and 260-kDa proteins appear to be related. Two of the mAbs inhibit (125)I-HA binding and endocytosis by LECs at 37 degrees C. All of these results confirm that the mAbs recognize the bone fide LEC HA receptor. Indirect immunofluoresence shows high protein expression in liver sinusoids, the venous sinuses of the red pulp in spleen, and the medullary sinuses of lymph nodes. Because the tissue distribution for this endocytic HA receptor is not unique to liver, we propose the name HARE (HA receptor for endocytosis).  相似文献   

15.
Hyaluronan (HA), in the bone marrow stroma, is the major non-protein glycosaminoglycan component of extracellular matrix (ECM) involved in cell positioning, proliferation, differentiation as well as in receptor-mediated changes in gene expression. Repair of bone and regeneration of bone marrow is dependent on ECM, inflammatory factors, like chemokines and degradative factors, like metalloproteinases. We analyzed the interaction between human mesenchymal stem cells (h-MSCs) and a three-dimensional (3-D) HA-based scaffold in vitro. The expression of CXC chemokines/receptors, CXCL8 (IL-8)/CXCR1-2, CXCL10 (IP-10)/CXCR3, CXCL12 (SDF-1)/CXCR4, and CXCL13 (BCA-1)/CXCR5, and metalloproteinases/inhibitors MMP-1, MMP-3, MMP-13/TIMP-1 were evaluated in h-MSCs grown on plastic or on HA-based scaffold by Real-time PCR, ELISA, and immunocytochemical techniques. Moreover, the expression of two HA receptors, CD44 and CD54, was analyzed. We found both at mRNA and protein levels that HA-based scaffold induced the expression of CXCR4, CXCL13, and MMP-3 and downmodulated the expression of CXCL12, CXCR5, MMP-13, and TIMP-1 while HA-based scaffold induced CD54 expression but not CD44. We found that these two HA receptors were directly involved in the modulation of CXCL12, CXCL13, and CXCR5. This study demonstrates a direct action of a 3-D HA-based scaffold, widely used for cartilage and bone repair, in modulating both h-MSCs inflammatory and degradative factors directly involved in the engraftment of specific cell types in a damaged area. Our data clearly demonstrate that HA in this 3-D conformation acts as a signaling molecule for h-MSCs.  相似文献   

16.
The hyaluronic acid (HA) receptor for endocytosis (HARE) is the primary scavenger receptor for HA and chondroitin sulfates in mammals. The two human isoforms of HARE (full-length 315-kDa and a 190-kDa proteolytic cleavage product), which are type I single-pass membrane proteins, are highly expressed in sinusoidal endothelial cells of lymph nodes, liver, and spleen. Their identical HARE cytoplasmic domains contain four candidate AP-2/clathrin-mediated endocytic signaling motifs as follows: YSYFRI(2485), FQHF(2495), NPLY(2519), and DPF(2534) (315-HARE numbering). Stably transfected cells expressing 190-HARE(DeltaYSYFRI), 190-HARE(DeltaFQHF), or 190-HARE(DeltaNPLY) (lacking Motifs 1, 2, or 3) had decreased (125)I-HA endocytosis rates of approximately 49, approximately 39, and approximately 56%, respectively (relative to wild type). In contrast, 190-HARE(DeltaDPF) cells (lacking Motif 4) showed no change in HA endocytic rate. Deletions of motifs 1 and 2 or of 1, 2, and 4 decreased the rate of HA endocytosis by only approximately 41%. Endocytosis was approximately 95% decreased in mutants lacking all four motifs. Cells expressing a 190-HARE(Y2519A) mutant of the NPLY motif retained 85-90% of wild type endocytosis, whereas this mutation in the triple motif deletant decreased endocytosis to approximately 7% of wild type. Tyr in NPLY(2519) is thus important for endocytosis. All HARE mutants showed similar HA binding and degradation of the internalized HA, indicating that altering endocytic motifs did not affect ectodomain binding of HA or targeting of internalized HA to lysosomes. We conclude that, although NPLY may be the most important motif, it functions together with two other endocytic motifs; thus three signal sequences (YSYFRI, FQHF, and NPLY) provide redundancy to mediate coated pit targeting and endocytosis of HARE.  相似文献   

17.
Shi J  Jia B  Liu Z  Yang Z  Yu Z  Chen K  Chen X  Liu S  Wang F 《Bioconjugate chemistry》2008,19(6):1170-1178
In this report, we present the synthesis and evaluation of the (99m)Tc-labeled beta-Ala-BN(7-14)NH2 (ABN = beta-Ala-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2) as a new radiotracer for tumor imaging in the BALB/c nude mice bearing HT-29 human colon cancer xenografts. The gastrin releasing peptide receptor binding affinity of ABN and HYNIC-ABN (6-hydrazinonicotinamide) was assessed via a competitive displacement of (125)I-[Tyr4]BBN bound to the PC-3 human prostate carcinoma cells. The IC 50 values were calculated to be 24 +/- 2 nM and 38 +/- 1 nM for ABN and HYNIC-ABN, respectively. HYNIC is the bifunctional coupling agent for (99m)Tc-labeling, while tricine and TPPTS (trisodium triphenylphosphine-3,3',3'-trisulfonate) are used as coligands to prepare the ternary ligand complex [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] in very high yield and high specific activity. Because of its high hydrophilicity (log P = -2.39 +/- 0.06), [(99m)Tc(HYNIC-ABN)(tricine)(TPPS)] was excreted mainly through the renal route with little radioactivity accumulation in the liver, lungs, stomach, and gastrointestinal tract. The tumor uptake at 30 min postinjection (p.i.) was 1.59 +/- 0.23%ID/g with a steady tumor washout over the 4 h study period. As a result, it had the best T/ B ratios in the blood (2.37 +/- 0.68), liver (1.69 +/- 0.41), and muscle (11.17 +/- 3.32) at 1 h p.i. Most of the injected radioactivity was found in the urine sample at 1 h p.i., and there was no intact [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] detectable in the urine, kidney, and liver samples. Its metabolic instability may contribute to its rapid clearance from the liver, lungs, and stomach. Despite the steady radioactivity washout, the tumors could be clearly visualized in planar images of the BALB/c nude mice bearing the HT-29 human colon xenografts at 1 and 4 h p.i. The favorable excretion kinetics from the liver, lungs, stomach, and gastrointestinal tract makes [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] a promising SPECT radiotracer for imaging colon cancer.  相似文献   

18.
Two uncharged (99m)Tc-labeled phenylbenzoxazole derivatives were biologically evaluated as potential imaging probes for β-amyloid plaques. The (99m)Tc and corresponding rhenium complexes were synthesized by coupling monoamine-monoamide dithiol (MAMA) and bis(aminoethanethiol) (BAT) chelating ligand via a pentyloxy spacer to phenylbenzoxazole. The fluorescent rhenium complexes 6 and 9 selectively stainined the β-amyloid plaques on the sections of transgenic mouse, and showed high affinity for Aβ((1-42)) aggregates (K(i)=11.1 nM and 14.3 nM, respectively). Autoradiography in vitro indicated that [(99m)Tc]6 clearly labeled β-amyloid plaques on the sections of transgenic mouse. Biodistribution experiments in normal mice revealed that [(99m)Tc]6 displayed moderate initial brain uptake (0.81% ID/g at 2 min), and quickly washed out from the brain (0.25% ID/g at 60 min). The preliminary results indicate that the properties of [(99m)Tc]6 are promising, although additional refinements are needed to improve the ability to cross the blood-brain barrier.  相似文献   

19.

Background  

Despite enormous progress in gene therapy for breast cancer, an optimal systemic vehicle for delivering gene products to the target tissue is still lacking. The purpose of this study was to determine whether AC133+ progenitor cells (APC) can be used as both gene delivery vehicles and cellular probes for magnetic resonance imaging (MRI). In this study, we used superparamagentic iron oxide (SPIO)-labeled APCs to carry the human sodium iodide symporter (hNIS) gene to the sites of implanted breast cancer in mouse model. In vivo real time tracking of these cells was performed by MRI and expression of hNIS was determined by Tc-99m pertechnetate (Tc-99m) scan.  相似文献   

20.
Although acute lung injury (ALI) is associated with inflammation and surfactant dysfunction, the precise sequence of these changes remains poorly described. We used oleic acid to study the pathogenesis of ALI in spontaneously breathing anesthetized rats. We found that lung pathology can occur far more rapidly than previously appreciated. Lung neutrophils were increased approximately threefold within 5 min, and surfactant composition was dramatically altered within 15 min. Alveolar cholesterol increased by approximately 200%, and even though disaturated phospholipids increased by approximately 30% over 4 h, the disaturated phospholipid-to-total phospholipid ratio fell. Although the alveolocapillary barrier was profoundly disrupted after just 15 min, with marked elevations in lung fluid ((99m)Tc-labeled diethylenetriamine pentaacetic acid) and (125)I-labeled albumin flux, the lung rapidly began to regain its sieving properties. Despite the restoration in lung permeability, the animals remained hypoxic even though minute ventilation was increased approximately twofold and static compliance progressively deteriorated. This study highlights that ALI can set in motion a sequence of events continuing the respiratory failure irrespective of the alveolar surfactant pool size and the status of the alveolocapillary barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号