首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the effect of whole body vibration (WBV) training on maximal strength, squat jump, and flexibility of well-trained combat athletes. Twelve female and 8 male combat athletes (age: 22.8 ± 3.1 years, mass: 65.4 ± 10.7 kg, height: 168.8 ± 8.8 cm, training experience: 11.6 ± 4.7 years, training volume: 9.3 ± 2.8 hours/week) participated in this study. The study consisted of three sessions separated by 48 hours. The first session was conducted for familiarization. In the subsequent two sessions, participants performed WBV or sham intervention in a randomized, balanced order. During WBV intervention, four isometric exercises were performed (26 Hz, 4 mm). During the sham intervention, participants performed the same WBV intervention without vibration treatment (0 Hz, 0 mm). Hand grip, squat jump, trunk flexion, and isometric leg strength tests were performed after each intervention. The results of a two-factor (pre-post[2] × intervention[2]) repeated measures ANOVA revealed a significant interaction (p = 0.018) of pre-post × intervention only for the hand grip test, indicating a significant performance increase of moderate effect (net increase of 2.48%, d = 0.61) after WBV intervention. Squat jump, trunk flexion, and isometric leg strength performances were not affected by WBV. In conclusion, the WBV protocol used in this study potentiated hand grip performance, but did not enhance squat jump, trunk flexion, or isometric leg strength in well-trained combat athletes.  相似文献   

2.
The purpose of this study was to examine the effects of regular whole-body vibration (WBV) training on lower body strength and power. National Collegiate Athletic Association Division III softball athletes (n = 9) completed the 9-week protocol as part of their off-season strength and conditioning program. The athletes were randomly assigned to 1 of 2 groups. Week 1, pretesting included 3 repetition maximum (3RM) back squat, standing long jump (SLJ), and vertical countermovement jump (VCMJ). Phase I training (weeks 2-4) consisted of either WBV training (group 1) or conventional strength training (CST, group 2). The primary programmatic difference between WBV and CST was the inclusion of WBV sets after squat sets. Posttesting (3RM squat, SLJ, VCMJ) occurred at week 5. Phase II training (weeks 6-8) consisted of either WBV training (group 2) or CST (group 1). Posttesting was repeated at week 9 after the completion of phase II. Three 2 × 2 mixed factorial analyses of variance were computed. No significant differences (p > 0.05) were found between groups or between groups and testing period for the SLJ, VCMJ, and estimated 1RM back squat. Increases (p < 0.05) were observed in SLJ, VCMJ, and back squat from pretest to posttest 1. Back squat increased (p < 0.05) from posttest 1 to posttest 2. All the athletes experienced significantly greater (p < 0.05) percent changes from pretest to posttest 1 for SLJ and VCMJ. These results indicate that the inclusion of WBV as part of an off-season strength and conditioning program has no apparent benefit over CST methods for collegiate softball players.  相似文献   

3.
The winter sliding sport known as skeleton requires athletes to produce a maximal sprint followed by high speed sliding down a bobsled track. Athletes are required to complete the course twice in 1 hour and total time for the 2 runs determines overall ranking. The purpose of this investigation was to examine the effect of whole-body vibration (WBV) on lower body power to explore the utility of WBV as an ergogenic aid for skeleton competition. Elite skeleton athletes (1 male and 6 females) completed an unloaded squat jump (SQJ) immediately followed by 2 countermovement jumps (CMJs) and a maximal 30-m sprint before and after WBV or no vibration (CON) using a crossover design. The second 30-m sprint was slower following both CON (1.4% decrement; p = 0.05) and WBV (0.7% decrement; p = 0.03). Mean vertical velocity was maintained following WBV in the SQJ but decreased following CON (p = 0.03). There was a trend for athletes to commence the SQJ from a higher starting stance post-WBV compared to CON (p = 0.08). WBV decreased total vertical distance traveled compared to CON in the SQJ (p = 0.006). WBV had little effect on peak velocity, jump height, dip, and peak acceleration or any CMJ parameters. When sprint athletes' warm up and perform maximal jumps and a 30-m sprint with 15-20 minutes of recovery before repeating the sequence, the second series of performances tend to be compromised. However, when WBV is used before the second series of efforts, some aspects of maximal jumping and sprinting appear to be influenced in a beneficial manner. Further research is required to explore whether WBV can improve the second sprint for athletes in actual competition and/or what sort of WBV protocol is optimal for these populations.  相似文献   

4.
Objective:This study aims to investigate the effect of 8-week whole-body vibration (WBV) added to conventional training on muscular architecture, dynamic muscle strength and physical performance compared to controls in young basketball players.Methods:Sixteen young basketball players between the ages of 14-16 years were randomly assigned to whole body vibration group (VG) or control group (CG). Both groups were trained with a conventional program. Pennation angle (PeA), fascicle length and muscle thickness of Rectus Femoris (RF) and Vastus lateralis were measured by ultrasonography. Isokinetic dynamic muscle testing at 180 °/s and 60°/s, squat jump (SJ) and flexibility were evaluated before and after 8 weeks of training programs. Primary outcome measure was the fascicle length.Results:Fascicle length of RF, SJ height and flexibility increased significantly within VG compared to pretraining (p<0.05). SJ height increased in VG compared to CG significantly following training (p<0.05). PeA, fascicle length, muscle thicknesses, strength and flexibility did not differ between groups.Conclusion:Eight weeks of WBV training improved fascicle length of RF, SJ height, and flexibility compared to pre-training. Addition of WBV to conventional training did not cause improvement in muscle architecture, strength and flexibility compared to conventional training alone.  相似文献   

5.
It was hypothesized that both vibration frequency and muscle length modulate the strengthening of muscles that is assumed to result from whole-body vibration (WBV). Length of knee extensor muscles during vibration is affected by the knee joint angle; the lengths of the knee extensors increase with more flexed knee joint angles. In an intervention study 28 volunteers were randomly assigned to 1 of 4 groups. Each group received 4 weeks of WBV at 1 of 3 different frequencies (20, 27, or 34 Hz) or 1 of 2 different lengths of knee extensors. Voluntary, isometric knee extension moment-angle relationship was determined. Initially, stronger subjects reacted differently to WBV than weaker participants. In stronger subjects knee extension moment did not improve; in the weaker subjects considerable improvements were observed ranging from 10 to 50%. Neither vibration frequency nor muscle length during the intervention affected the improvements. In addition to strength, the knee joint angle at which the maximal joint moment was generated (optimal joint angle) was affected. When trained at short muscle lengths, optimal angle shifted to more extend joint position. WBV training at long muscle lengths tended to induce an opposite shift. The amount of this shift tended to be influenced by vibration frequency; the lower the vibration frequency the larger the shift. Shifts of optimal lengths occurred in both weaker and stronger subjects. This study shows that muscle length during training affects the angle of knee joint at which the maximal extension moment was generated. Moreover, in weaker subjects WBV resulted in higher maximal knee joint extension moments. Vibration frequency and muscle length during vibration did not affect this joint moment gain.  相似文献   

6.
Previous studies have suggested that short-term whole-body vibration (WBV) training produces neuromuscular improvement similar to that of power and strength training. However, it is yet to be determined whether short-term WBV exposure produces neurogenic enhancement for power, speed, and agility. The purpose of this study was to investigate the effect short-term WBV training had on vertical jump, sprint, and agility performance in nonelite athletes. Twenty-four sport science students (16 men and 8 women) were randomly assigned to 2 groups: WBV training or control. Each group included 8 men and 4 women. Countermovement jump (CMJ) height, squat jump (SJ) height, sprint speed over 5, 10, and 20 m, and agility (505, up and back) were performed by each participant before and after 9 days of either no training (control) or WBV training. Perceived discomfort of every participant was recorded after daily WBV exposure and nonexposure. There were no significant differences between WBV and control groups for CMJ, SJ, sprints, and agility. Perceived discomfort differed between the first and subsequent days of WBV training (p < 0.05); however, there was no difference between the WBV and control groups. It is concluded that short-term WBV training did not enhance performance in nonelite athletes.  相似文献   

7.
Many studies reported benefits of whole-body vibration (WBV) on muscle force production. Therefore, WBV may be an important technique for muscle re-education. However vibrating platforms are heavy tools that cannot be easily used by all patients. Thus, we propose to apply vibrations directly to the Achilles tendon at rest with a portable vibrator. We investigated whether 14 days of such a vibration program would enhance triceps surae force production in healthy subjects. If successful, such a protocol could be utilized to prevent deleterious effects of hypo-activity. Twenty-nine healthy students participated in this study. The electrical evoked twitch and maximal voluntary contraction (MVC) in plantar-flexion, and electromyograms (EMG) were quantified before and at the end of the program. The vibration program consisted of 14 days of daily vibration applied at rest (duration: 1 h; frequency: 50 Hz). After the program, there was an increase in MVC associated with greater EMG of the TS. No sign of hypertrophy were found on the twitch parameters and the EMG–torque relationships. Repeated vibrations of the Achilles tendon lead to an increase in plantar-flexor activation and thus to greater force developed in voluntary conditions whilst the contractile properties assessed by the twitch are not modified. This program could be beneficial to persons with hypo-activity who are not candidates for WBV.  相似文献   

8.
Whole-body vibration (WBV) has been shown to elicit acute and chronic improvements in neuromuscular function; however, there is little conclusive evidence regarding an optimum protocol for acute WBV. The aim of this study was to compare the effects of acute exposure to different frequencies of WBV on countermovement jump (CMJ) height. Twelve recreationally trained men (age, 31 ± 8 years; height, 177 ± 12 cm; weight, 83.0 ± 6.9 kg) completed maximal CMJs pre- and post-WBV in a half-squat position for 30 seconds. In a blinded design with randomized testing order, participants were exposed on different days to frequencies of 0, 30, 35, and 40 Hz. Significant main effects were found for time (pre-to-post WBV, p < 0.01) and frequency * time interaction (p < 0.01), with post hoc analysis highlighting that there was a significant mean improvement of 6% in CMJ as a result of WBV at 40 Hz but no significant change at other frequencies. This study demonstrates that for recreationally trained men, an acute 30-second bout of vertical WBV at 40 Hz and 8-mm peak-to-peak displacement significantly enhances explosive jumping performance in comparison to other frequencies. Acute vertical WBV for 30 seconds at 40 Hz may be incorporated into strength and conditioning training to enhance explosive power; however, the exact mechanisms for improvements remain to be elucidated and further well-controlled investigations on chronic WBV training and using well-trained athletes are recommended.  相似文献   

9.
Increased muscle activation during whole-body vibration (WBV) is mainly ascribed to a complex spinal and supraspinal neurophysiological mechanism termed the tonic vibration reflex (TVR). However, TVR has not been experimentally demonstrated during low-frequency WBV, therefore this investigation aimed to determine the expression of TVR during WBV.  Whilst seated, eight healthy males were exposed to either vertical WBV applied to the leg via the plantar-surface of the foot, or Achilles tendon vibration (ATV) at 25Hz and 50Hzfor 70s. Ankle plantar-flexion force, tri-axial accelerations at the shank and vibration source, and surface EMG activity of m. soleus (SOL) and m. tibialis anterior (TA) were recorded from the unloaded and passively loaded leg to simulate body mass supported during standing.  Plantar flexion force was similarly augmented by WBV and ATV and increased over time in a load- and frequency dependent fashion. SOL and TA EMG amplitudes increased over time in all conditions independently of vibration mode. 50Hz WBV and ATV resulted in greater muscle activation than 25Hz in SOL when the shank was loaded and in TA when the shank was unloaded despite the greater transmission of vertical acceleration from source to shank with 25Hz and WBV, especially during loading. Low-amplitude WBV of the unloaded and passively loaded leg produced slow tonic muscle contraction and plantar-flexion force increase of similar magnitudes to those induced by Achilles tendon vibration at the same frequencies. This study provides the first experimental evidence supporting the TVR as a plausible mechanism underlying the neuromuscular response to whole-body vibration.  相似文献   

10.
The goal of this study was to compare the acute effects of whole-body vibration (WBV) delivered by 3 devices with different mechanical behavior on jump force (JF) and jump rate of force development (JRFD). Twelve healthy persons (4 women and 8 men; age 30.5 ± 8.8 years; height 178.6 ± 7.3 cm; body mass 74.8 ± 9.7 kg) were exposed to WBV for 15 and 40 seconds using 2 professional devices (power plate [PP; vertical vibration] and Galileo 2000 [GA; oscillatory motion around the horizontal axis in addition to vertical vibration]) and a home-use device [Power Maxx, PM; horizontal vibration]). The JF and JRFD were evaluated before, immediately after, and 5 minutes after WBV. The JF measured immediately after 40 seconds of vibration by the GA device was reduced (3%, p = 0.05), and JRFD measured after 5 minutes of rest after 40 seconds of vibration by the PM device was reduced (12%, p < 0.05) compared with the baseline value. The acute effects of WBV (15 or 40 seconds) on JF and JRFD were not significantly different among the 3 devices. In conclusion, our hypothesis that WBV devices with different mechanical behaviors would result in different acute effects on muscle performance was not confirmed.  相似文献   

11.
Cross-modality matching (CMM) were used for the evaluation of combined effects of sinusoidal whole-body vibration (WBV) in Z-axis with the frequencies 3-7 Hz, 1.5 ms-2, and two noise levels (L1 = 65 dBA; L2 = 85 dBA). CMM's were tested by means of three responses: handgrip force, length, estimation and brightness adjustment. The subjects were instructed to set different modalities to a value corresponding to their perception of vibration. The combination of WBV and L2 caused higher sensation responses than WBV and L1.  相似文献   

12.
The aim of this study was to investigate the effects of two different frequencies of whole-body vibration (WBV) training on knee extensors muscle strength in healthy young volunteers. Twenty-two eligible healthy untrained young women aged 22-31 years were allocated randomly to the 30-Hz (n=11) and 50-Hz (n=11) groups. They participated in a supervised WBV training program that consisted of 24 sessions on a synchronous vertical vibration platform (peak-to-peak displacement: 2-4 mm; type of exercises: semi-squat, one-legged squat, and lunge positions on right leg; set numbers: 2-24) three times per week for 8 weeks. Isometric and dynamic strength of the knee extensors were measured prior to and at the end of the 8-week training. In the 30-Hz group, there was a significant increase in the maximal voluntary isometric contraction (p=0.039) and the concentric peak torque (p=0.018) of knee extensors and these changes were significant (p<0.05) compared with the 50-Hz group. In addition, the eccentric peak torque of knee extensors was increased significantly in both groups (p<0.05); however, there was no significant difference between the two groups (p=0.873). We concluded that 8 weeks WBV training in 30 Hz was more effective than 50 Hz to increase the isometric contraction and dynamic strength of knee extensors as measured using peak concentric torque and equally effective with 50 Hz in improving eccentric torque of knee extensors in healthy young untrained women.  相似文献   

13.
Aerobic high-intensity interval training (HIT) improves cardiovascular capacity but may reduce the finite work capacity above critical power (W′) and lead to atrophy of myosin heavy chain (MyHC)-2 fibers. Since whole-body vibration may enhance indices of anaerobic performance, we examined whether side-alternating whole-body vibration as a replacement for the active rest intervals during a 4x4 min HIT prevents decreases in anaerobic performance and capacity without compromising gains in aerobic function. Thirty-three young recreationally active men were randomly assigned to conduct either conventional 4x4 min HIT, HIT with 3 min of WBV at 18 Hz (HIT+VIB18) or 30 Hz (HIT+VIB30) in lieu of conventional rest intervals, or WBV at 30 Hz (VIB30). Pre and post training, critical power (CP), W′, cellular muscle characteristics, as well as cardiovascular and neuromuscular variables were determined. W′ (−14.3%, P = 0.013), maximal voluntary torque (−8.6%, P = 0.001), rate of force development (−10.5%, P = 0.018), maximal jumping power (−6.3%, P = 0.007) and cross-sectional areas of MyHC-2A fibers (−6.4%, P = 0.044) were reduced only after conventional HIT. CP, V̇O2peak, peak cardiac output, and overall capillary-to-fiber ratio were increased after HIT, HIT+VIB18, and HIT+VIB30 without differences between groups. HIT-specific reductions in anaerobic performance and capacity were prevented by replacing active rest intervals with side-alternating whole-body vibration, notably without compromising aerobic adaptations. Therefore, competitive cyclists (and potentially other endurance-oriented athletes) may benefit from replacing the active rest intervals during aerobic HIT with side-alternating whole-body vibration.

Trial Registration

ClinicalTrials.gov Identifier: NCT01875146  相似文献   

14.
Training to develop superior muscular power has become a key component to most progressive sport conditioning programs. Conventional resistance training, plyometrics, and speed/agility modalities have all been employed in an effort to realize superlative combinations of training stimuli. New training devices such as the VertiMax resisted jump trainer are marketed as a means of improving lower body reactive power. The purpose of this study was to evaluate the effectiveness of the VertiMax, in combination with traditional training modalities, for improvements in lower body power among highly trained athletes. Forty men and women Division I collegiate athletes representing the sports of baseball, basketball, soccer, gymnastics, and track completed a 12-week mixed-methods training program. Two groups were constructed with both groups performing the same conventional resistance training and strength training exercises. The training control group performed traditional plyometric exercises while the experimental group performed similar loaded jump training on the VertiMax. Lower body power was measured before and after the training program by the TENDO FiTROdyne Powerlizer and statistically compared for differences between groups. Data analyses identified a significant (p < 0.05) and meaningful difference between power development among the 2 groups, with the VertiMax eliciting a greater treatment effect (effect size = 0.54) over conventional resistance and plyometric training alone (effect size = 0.09). These data convincingly demonstrate that the VertiMax represents an effective strategy for developing lower body power among trained college athletes, when combined with traditional strength and conditioning approaches.  相似文献   

15.
Muscle strain is one of the most common injuries, resulting in a decreased range of motion (ROM) in this group of muscles. Systematic stretching over a period of time is needed to increase the ROM. The purpose of this study was to determine if whole-body vibration (WBV) training would have a positive effect on flexibility training (contract-release method) and thereby on the ROM of the hamstring musculature. In this study, 19 undergraduate students in physical education (12 women and 7 men, age 21.5 +/- 2.0 years) served as subjects and were randomly assigned to either a WBV group or a control group. Both groups stretched systematically 3 times per week for 4 weeks according to the contract-release method, which consists of a 5-second isometric contraction with each leg 3 times followed by 30 seconds of static stretching. Before each stretching exercise, the WBV group completed a WBV program consisting of standing in a squat position on the vibration platform with the knees bent 90 degrees on the Nemes Bosco system vibration platform (30 seconds at 28 Hz, 10-mm amplitude, 6 times per training session). The results show that both groups had a significant increase in hamstring flexibility. However, the WBV group showed a significantly larger increase (30%) in ROM than did the control group (14%). These results indicate that WBV training may have an extra positive effect on flexibility of the hamstrings when combined with the contract-release stretching method.  相似文献   

16.
The purpose of this study was to determine if a sports-specific training program could improve neuromuscular indices in female high school volleyball players. We combined components from a previously published knee ligament injury prevention intervention program for jump and strength training with additional exercises and drills to improve speed, agility, overall strength, and aerobic conditioning. We hypothesized that this sports-specific training program would lead to significant improvements in neuromuscular indices in high school female volleyball players. Thirty-four athletes (age 14.5 years ± 1.0) participated in the supervised 6-week program, 3 d·wk(-1) for approximately 90-120 minutes per session. The program was conducted on the school's volleyball court and weight room facilities. The athletes underwent a video drop-jump test, multistage fitness test, vertical jump test, and sit-up test before and after training. A significant increase was found in the mean VO2max score (p < 0.001), where 73% of the athletes improved this score. A significant improvement was found in the sit-up test (p = 0.03) and in the vertical jump test (p = 0.05), where 68% of the athletes increased their scores. In the drop-jump video test, significant increases were found in both the mean absolute knee separation distance (p = 0.002) and in the mean normalized knee separation distance (p = 0.04), indicating improved lower limb alignment on landing. No athlete sustained an injury or developed an overuse syndrome during training. This program significantly improved lower limb alignment on a drop-jump test, abdominal strength, estimated maximal aerobic power, and vertical jump height and may be implemented in high school female volleyball programs.  相似文献   

17.
This study analyzed leg muscle activity during whole-body vibration (WBV) training. Subjects performed standard unloaded isometric exercises on a vibrating platform (Power Plate): high squat (HS), low squat (LS), and 1-legged squat (OL). Muscle activity of the rectus femoris, vastus lateralis, vastus medialis, and gastrocnemius was recorded in 15 men (age 21.2 +/- 0.8 years) through use of surface electromyography (EMG). The exercises were performed in 2 conditions: with WBV and without (control [CO]) a vibratory stimulus of 35 Hz. Muscle activation during WBV was compared with CO and with muscle activation during isolated maximal voluntary contractions (MVCs). Whole-body vibration resulted in a significantly higher (p < 0.05) EMG root-mean-square compared with CO in all muscle groups and all exercises (between +39.9 +/- 17.5% and +360.6 +/- 57.5%). The increase in muscle activity caused by WBV was significantly higher (p < 0.05) in OL compared with HS and LS. In conclusion, WBV resulted in an increased activation of the leg muscles. During WBV, leg muscle activity varied between 12.6 and 82.4% of MVC values.  相似文献   

18.
The purpose of this study was to determine whether there are kinematic and electromyographic (EMG) differences between men and women in how the knee is controlled during a single-legged drop landing in response to whole-body vibration (WBV). Forty-five healthy volunteers, 30 men (age 22 ± 3 years; weight 76.8 ± 8.8 kg; height 179.0 ± 6.8 cm) and 15 women (age 22 ± 3 years; weight 61.0 ± 7.7 kg; height 161.9 ± 7.2 cm) were recruited for this study. Knee angles, vertical ground reaction forces, and the time to stabilize the knee were assessed after single-legged drop landings from a 30-cm platform. Surface EMG data in rectus femoris (RF) and hamstrings (H) and knee and ankle accelerometry signals were also acquired. The participants performed 3 pretest landings, followed by a 3-minute recovery and then completed 1 minute of WBV (30 Hz to 4 mm). Before vibration, the female subjects had a significantly higher peak vertical force value, knee flexion angles, and greater H preactivity (EMG(RMS) 50 milliseconds before activation) than did the male subjects. In addition, although not significant, the medial-lateral (ML) acceleration in both knee and ankle was also higher in women. After WBV, no significant differences were found for any of the other variables. However, there was a decrease in the RF to H activation ratio during the precontact phase and an increase in the ratio during the postcontact phase just in women, which leads to a decrement in ML acceleration. The gender differences reported in knee stability in response to WBV underline the necessity to perform specific neuromuscular training programs based on WBV together with instruction of the proper technique, which can assist the clinician in the knee injury prevention.  相似文献   

19.
The purpose of this study was to determine if a sports-specific training program could improve neuromuscular and performance indices in female high school basketball players. We combined components from a published anterior cruciate ligament injury prevention program for jump and strength training with other exercises and drills to improve speed, agility, overall strength, and aerobic conditioning. We hypothesized that this sports-specific training program would lead to significant improvements in neuromuscular and performance indices in high school female basketball players. Fifty-seven female athletes aged 14-17 years participated in the supervised 6-week program, 3 d·wk(-1) for approximately 90-120 minutes per session. The program was conducted on the basketball court and in weight room facilities in high schools. The athletes underwent a video drop-jump test, multistage fitness test, vertical jump test, and an 18-m sprint test before and upon completion of the training program. All the subjects attended at least 14 training sessions. After training, a significant increase was found in the mean estimated VO2max (p < 0.001), with 89% of the athletes improving this score. In the drop-jump video test, significant increases were found in the mean absolute knee separation distance (p < 0.0001) and in the mean normalized knee separation distance (p < 0.0001), indicating a more neutral lower limb alignment on landing. A significant improvement was found in the vertical jump test (p < 0.0001); however, the effect size was small (0.09). No improvement was noted in the sprint test. This program significantly improved lower limb alignment on a drop-jump test and estimated maximal aerobic power and may be implemented preseason or off-season in high school female basketball players.  相似文献   

20.
Neuromuscular training protocols that include both plyometrics and dynamic balance exercises can significantly improve biomechanics and neuromuscular performance and reduce anterior cruciate ligament injury risk in female athletes. The purpose of this study was to compare the effects of plyometrics (PLYO) versus dynamic stabilization and balance training (BAL) on power, balance, strength, and landing force in female athletes. Either PLYO or BAL were included as a component of a dynamic neuromuscular training regimen that reduced measures related to ACL injury and increased measures of performance. Nineteen high school female athletes participated in training 3 times a week for 7 weeks. The PLYO (n = 8) group did not receive any dynamic balance exercises and the BAL (n = 11) group did not receive any maximum effort jumps during training. Pretraining vs. posttraining measures of impact force and standard deviation of center of pressure (COP) were recorded during a single leg hop and hold. Subjects were also tested for training effects in strength (isokinetic and isoinertial) and power (vertical jump). The percent change from pretest to posttest in vertical ground reaction force was significantly different between the BAL and PLYO groups on the dominant side (p < 0.05). Both groups decreased their standard deviation of center of pressure (COP) during hop landings in the medial/lateral direction on their dominant side, which equalized pretested side to side differences. Both groups increased hamstrings strength and vertical jump. The results of this study suggest that both PLYO and BAL training are effective at increasing measures of neuromuscular power and control. A combination of PLYO and BAL training may further maximize the effectiveness of preseason training for female athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号