首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many bacteria pathogenic for plants or animals, including Shigella spp., which is responsible for shigellosis in humans, use a type III secretion apparatus to inject effector proteins into host cells. Effectors alter cell signaling and host responses induced upon infection; however, their precise biochemical activities have been elucidated in very few cases. Utilizing Saccharomyces cerevisiae as a surrogate host, we show that the Shigella effector IpaH9.8 interrupts pheromone response signaling by promoting the proteasome-dependent destruction of the MAPKK Ste7. In vitro, IpaH9.8 displayed ubiquitin ligase activity toward ubiquitin and Ste7. Replacement of a Cys residue that is invariant among IpaH homologs of plant and animal pathogens abolished the ubiquitin ligase activity of IpaH9.8. We also present evidence that the IpaH homolog SspH1 from Salmonella enterica can ubiquitinate ubiquitin and PKN1, a previously identified SspH1 interaction partner. This study assigns a function for IpaH family members as E3 ubiquitin ligases.  相似文献   

3.
Shigella deploys a unique mechanism to manipulate macrophage pyroptosis by delivering the IpaH7.8 E3 ubiquitin ligase via its type III secretion system. IpaH7.8 ubiquitinates glomulin (GLMN) and elicits its degradation, thereby inducing inflammasome activation and pyroptotic cell death of macrophages. Here, we show that GLMN specifically binds cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1 and cIAP2), members of the inhibitor of apoptosis (IAP) family of RING‐E3 ligases, which results in reduced E3 ligase activity, and consequently inflammasome‐mediated death of macrophages. Importantly, reducing the levels of GLMN in macrophages via IpaH7.8, or siRNA‐mediated knockdown, enhances inflammasome activation in response to infection by Shigella, Salmonella, or Pseudomonas, stimulation with NLRP3 inflammasome activators (including SiO2, alum, or MSU), or stimulation of the AIM2 inflammasome by poly dA:dT. GLMN binds specifically to the RING domain of both cIAPs, which inhibits their self‐ubiquitination activity. These findings suggest that GLMN is a negative regulator of cIAP‐mediated inflammasome activation, and highlight a unique Shigella stratagem to kill macrophages, promoting severe inflammation.  相似文献   

4.
The human pathogen Shigella flexneri subverts host function and defenses by deploying a cohort of effector proteins via a type III secretion system. The IpaH family of 10 such effectors mimics ubiquitin ligases but bears no sequence or structural homology to their eukaryotic counterpoints. Using rates of 125I-polyubiquitin chain formation as a functional read out, IpaH9.8 displays V-type positive cooperativity with respect to varying concentrations of its Ubc5B∼125I-ubiquitin thioester co-substrate in the nanomolar range ([S]½ = 140 ± 32 nm; n = 1.8 ± 0.1) and cooperative substrate inhibition at micromolar concentrations ([S]½ = 740 ± 240 nm; n = 1.7 ± 0.2), requiring ordered binding to two functionally distinct sites per subunit. The isosteric substrate analog Ubc5BC85S-ubiquitin oxyester acts as a competitive inhibitor of wild-type Ubc5B∼125I-ubiquitin thioester (Ki = 117 ± 29 nm), whereas a Ubc5BC85A product analog shows noncompetitive inhibition (Ki = 2.2 ± 0.5 μm), consistent with the two-site model. Re-evaluation of a related IpaH3 crystal structure (PDB entry 3CVR) identifies a symmetric dimer consistent with the observed cooperativity. Genetic disruption of the predicted IpaH9.8 dimer interface reduces the solution molecular weight and significantly ablates the kcat but not [S]½ for polyubiquitin chain formation. Other studies demonstrate that cooperativity requires the N-terminal leucine-rich repeat-targeting domain and is transduced through Phe395. Additionally, these mechanistic features are conserved in a distantly related SspH2 Salmonella enterica ligase. Kinetic parallels between IpaH9.8 and the recently revised mechanism for E6AP/UBE3A (Ronchi, V. P., Klein, J. M., and Haas, A. L. (2013) E6AP/UBE3A ubiquitin ligase harbors two E2∼ubiquitin binding sites. J. Biol. Chem. 288, 10349–10360) suggest convergent evolution of the catalytic mechanisms for prokaryotic and eukaryotic ligases.  相似文献   

5.
Ubiquitination is an essential post-translational modification that mediates diverse cellular functions. SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1) belongs to the Nedd4 family of HECT ubiquitin ligases that directly catalyzes ubiquitin conjugation onto diverse substrates. As a result, SMURF1 regulates a great variety of cellular physiologies including bone morphogenetic protein (BMP) signaling, cell migration, and planar cell polarity. Structurally, SMURF1 consists of a C2 domain, two WW domain repeats, and a catalytic HECT domain essential for its E3 ubiquitin ligase activity. This modular architecture allows for interactions with other proteins, which are either substrates or adaptors of SMURF1. Despite the increasing number of SMURF1 substrates identified, current knowledge regarding regulatory proteins and their modes of action on controlling SMURF1 activity is still limited. In this study, we employed quantitative mass spectrometry to analyze SMURF1-associated cellular complexes, and identified the deubiquitinase FAM/USP9X as a novel interacting protein for SMURF1. Through domain mapping study, we found the second WW domain of SMURF1 and the carboxyl terminus of USP9X critical for this interaction. SMURF1 is autoubiquitinated through its intrinsic HECT E3 ligase activity, and is degraded by the proteasome. USP9X association antagonizes this activity, resulting in deubiquitination and stabilization of SMURF1. In MDA-MB-231 breast cancer cells, SMURF1 expression is elevated and is required for cellular motility. USP9X stabilizes endogenous SMURF1 in MDA-MB-231 cells. Depletion of USP9X led to down-regulation of SMURF1 and significantly impaired cellular migration. Taken together, our data reveal USP9X as an important regulatory protein of SMURF1 and suggest that the association between deubiquitinase and E3 ligase may serve as a common strategy to control the cellular protein dynamics through modulating E3 ligase stability.  相似文献   

6.
Ubiquitin enzymes in the regulation of immune responses   总被引:1,自引:0,他引:1  
Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.  相似文献   

7.
The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes.  相似文献   

8.
The ubiquitin system represents a selective mechanism for intracellular proteolysis in eukaryotic cells that involves the sequential activity of three enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-protein ligase (E3). The identification of these proteins and their cellular targets, as well as structural data, are essential to understanding how this system operates in the eukaryotic cell. In the present study, the open reading frame of the human ubiquitin-conjugating enzyme UBE2G2 was isolated from a human brain cDNA panel, cloned into pET28a vector and expressed in Escherichia coli. The His-tagged protein was then purified through nickel-affinity chromatography and subjected to structural and functional studies using circular dichroism (CD) and an in vitro ubiquitin-binding assay, respectively. Our results showed that the production of the HISUBE2G2 protein in bacteria, carried out with 0.1 mM of IPTG at 30 degrees C, was successfully achieved, rendering high concentrations of soluble, pure and stable enzyme after a single purification step. The recombinant protein was able to bind ubiquitin molecules when exposed to a HeLa cell extract during the ubiquitin assay. Moreover, the fact that HISUBE2G2 was expressed in its active form is supported by the typical alpha/beta secondary structure specific to other class I E2 enzymes displayed during the CD assay.  相似文献   

9.
泛素激活酶(E1)、泛素耦联酶(E2)和泛素连接酶(E3)是蛋白质泛素化修饰的关键酶。在真核基因组上有大量基因编码这些泛素化相关的酶类或蛋白。检测这些泛素化修饰酶及其底物蛋白的生化特性和特异性是分析其生物学功能的重要内容。该文提供了一种简便快速检测体外泛素化反应的方法, 不仅可通过检测对DTT敏感的硫酯键的形成来判断E2的活性、检测E3的体外泛素化活性, 而且可以检测E2-E3和E3-底物的特异性。所用蛋白主要来源于拟南芥(Arabidopsis thaliana), 包括分属于绝大多数E2亚家族的成员, 可用于不同RING类型E3的活性检测。该方法不仅可以采用多种E2进行E3活性分析, 而且可以分析不同组合的E2-RING E3、RING E3-底物的泛素化活性等, 亦可应用于真核生物蛋白质尤其是植物蛋白的体外泛素化活性分析。  相似文献   

10.
泛素激活酶(E1)、泛素耦联酶(E2)和泛素连接酶(E3)是蛋白质泛素化修饰的关键酶。在真核基因组上有大量基因编码这些泛素化相关的酶类或蛋白。检测这些泛素化修饰酶及其底物蛋白的生化特性和特异性是分析其生物学功能的重要内容。该文提供了一种简便快速检测体外泛素化反应的方法, 不仅可通过检测对DTT敏感的硫酯键的形成来判断E2的活性、检测E3的体外泛素化活性, 而且可以检测E2-E3和E3-底物的特异性。所用蛋白主要来源于拟南芥(Arabidopsis thaliana), 包括分属于绝大多数E2亚家族的成员, 可用于不同RING类型E3的活性检测。该方法不仅可以采用多种E2进行E3活性分析, 而且可以分析不同组合的E2-RING E3、RING E3-底物的泛素化活性等, 亦可应用于真核生物蛋白质尤其是植物蛋白的体外泛素化活性分析。  相似文献   

11.
Small ubiquitin-like modifier (SUMO), a member of the ubiquitin-related protein family, is covalently conjugated to lysine residues of its substrates in a process referred to as SUMOylation. SUMOylation occurs through a series of enzymatic reactions analogous to that of the ubiquitination pathway, resulting in modification of the biochemical and functional properties of substrates. To date, four mammalian SUMO isoforms, a single heterodimeric SUMO-activating E1 enzyme SAE1/SAE2, a single SUMO-conjugating E2 enzyme ubiquitin-conjugating enzyme E2I (UBC9), and a few subgroups of SUMO E3 ligases have been identified. Several SUMO E3 ligases such as topoisomerase I binding, arginine/serine-rich (TOPORS), TNF receptor-associated factor 7 (TRAF7), and tripartite motif containing 27 (TRIM27) have dual functions as ubiquitin E3 ligases. Here, we demonstrate that the ubiquitin E3 ligase UHRF2 also acts as a SUMO E3 ligase. UHRF2 effectively enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. In addition, the SUMO E3 activity of UHRF2 on ZNF131 depends on the presence of SET and RING finger-associated and nuclear localization signal-containing region domains, whereas the critical ubiquitin E3 activity RING domain is dispensable. Our findings suggest that UHRF2 has independent functional domains and regulatory mechanisms for these two distinct enzymatic activities.  相似文献   

12.
13.
14.
Protein ubiquitination requires the concerted action of three enzymes: ubiquitin‐activating enzyme (E1), ubiquitin‐conjugating enzyme (E2) and ubiquitin ligase (E3). These ubiquitination enzymes belong to an abundant protein family that is encoded in all eukaryotic genomes. Describing their biochemical characteristics is an important part of their functional analysis. It has been recognized that various E2/E3 specificities exist, and that detection of E3 ubiquitination activity in vitro may depend on the recruitment of E2s. Here, we describe the development of an in vitro ubiquitination system based on proteins encoded by genes from Arabidopsis. It includes most varieties of Arabidopsis E2 proteins, which are tested with several RING‐finger type E3 ligases. This system permits determination of E3 activity in combination with most of the E2 sub‐groups that have been identified in the Arabidopsis genome. At the same time, E2/E3 specificities have also been explored. The components used in this system are all from plants, particularly Arabidopsis, making it very suitable for ubiquitination assays of plant proteins. Some E2 proteins that are not easily expressed in Escherichia coli were transiently expressed and purified from plants before use in ubiquitination assays. This system is also adaptable to proteins of species other than plants. In this system, we also analyzed two mutated forms of ubiquitin, K48R and K63R, to detect various types of ubiquitin conjugation.  相似文献   

15.
ISG15, a protein containing two ubiquitin-like domains, is an interferon-stimulated gene product that functions in antiviral response and is conjugated to various cellular proteins (ISGylation) upon interferon stimulation. ISGylation occurs via a pathway similar to the pathway for ubiquitination that requires the sequential action of E1/E2/E3: the E1 (UBE1L), E2 (UbcH8), and E3 (Efp/Herc5) enzymes for ISGylation have been hitherto identified. In this study, we identified six novel candidate target proteins for ISGylation by a proteomic approach. Four candidate target proteins were demonstrated to be ISGylated in UBE1L- and UbcH8-dependent manners, and ISGylation of the respective target proteins was stimulated by Herc5. In addition, Herc5 was capable of binding with the respective target proteins. Thus, these results suggest that Herc5 functions as a general E3 ligase for protein ISGylation.  相似文献   

16.
U box proteins as a new family of ubiquitin-protein ligases.   总被引:27,自引:0,他引:27  
The U box is a domain of approximately 70 amino acids that is present in proteins from yeast to humans. The prototype U box protein, yeast Ufd2, was identified as a ubiquitin chain assembly factor that cooperates with a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin-protein ligase (E3) to catalyze ubiquitin chain formation on artificial substrates. E3 enzymes are thought to determine the substrate specificity of ubiquitination and have been classified into two families, the HECT and RING finger families. Six mammalian U box proteins have now been shown to mediate polyubiquitination in the presence of E1 and E2 and in the absence of E3. These U box proteins exhibited different specificities for E2 enzymes in this reaction. Deletion of the U box or mutation of conserved amino acids within it abolished ubiquitination activity. Some U box proteins catalyzed polyubiquitination by targeting lysine residues of ubiquitin other than lysine 48, which is utilized by HECT and RING finger E3 enzymes for polyubiquitination that serves as a signal for proteolysis by the 26 S proteasome. These data suggest that U box proteins constitute a third family of E3 enzymes and that E4 activity may reflect a specialized type of E3 activity.  相似文献   

17.
Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis anddegradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainlycontrolled by the ubiquitineproteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26Sproteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsiblefor the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such ascancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promotingrole of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimategoal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore,altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.  相似文献   

18.
Deregulation of the ubiquitin-protein ligase E6AP contributes to the development of the Angelman syndrome and to cervical carcinogenesis suggesting that the activity of E6AP needs to be under tight control. However, how E6AP activity is regulated at the post-translational level under non-pathologic conditions is poorly understood. In this study, we report that the giant protein HERC2, which is like E6AP a member of the HECT family of ubiquitin-protein ligases, binds to E6AP. The interaction is mediated by the RCC1-like domain 2 of HERC2 and a region spanning amino acid residues 150-200 of E6AP. Furthermore, we provide evidence that HERC2 stimulates the ubiquitin-protein ligase activity of E6AP in vitro and within cells and that this stimulatory effect does not depend on the ubiquitin-protein ligase activity of HERC2. Thus, the data obtained indicate that HERC2 acts as a regulator of E6AP.  相似文献   

19.
Eukaryotic cells monitor and maintain protein quality through a set of protein quality control (PQC) systems whose role is to minimize the harmful effects of the accumulation of aberrant proteins. Although these PQC systems have been extensively studied in the cytoplasm, nuclear PQC systems are not well understood. The present work shows the existence of a nuclear PQC system mediated by the ubiquitin-proteasome system in the fission yeast Schizosaccharomyces pombe. Asf1-30, a mutant form of the histone chaperone Asf1, was used as a model substrate for the study of the nuclear PQC. A temperature-sensitive Asf1-30 protein localized to the nucleus was selectively degraded by the ubiquitin-proteasome system. The Asf1-30 mutant protein was highly ubiquitinated at higher temperatures, and it remained stable in an mts2-1 mutant, which lacks proteasome activity. The E2 enzyme Ubc4 was identified among 11 candidate proteins as the ubiquitin-conjugating enzyme in this system, and San1 was selected among 100 candidates as the ubiquitin ligase (E3) targeting Asf1-30 for degradation. San1, but not other nuclear E3s, showed specificity for the mutant nuclear Asf1-30, but did not show activity against wild-type Asf1. These data clearly showed that the aberrant nuclear protein was degraded by a defined set of E1-E2-E3 enzymes through the ubiquitin-proteasome system. The data also show, for the first time, the presence of a nuclear PQC system in fission yeast.  相似文献   

20.
Selective protein degradation by the 26S proteasome requires the covalent attachment of several ubiquitin molecules in the form of a multiubiquitin chain. Ubiquitylation usually involves three classes of enzymes: a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2) and a ubiquitin ligase (E3). However, in some cases, multiubiquitylation requires the additional activity of certain ubiquitin-chain elongation factors. Yeast UFD2 (ubiquitin fusion degradation), for example, binds to oligoubiquitylated substrates (proteins modified by only a few ubiquitin molecules) and catalyses multiubiquitin-chain assembly in collaboration with E1, E2 and E3. Enzymes possessing this specific activity have been proposed to be termed 'E4 enzymes'. Recent studies have provided accumulating evidence that has led some researchers in the field to conclude that E4, indeed, represents a distinct and novel class of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号