共查询到15条相似文献,搜索用时 15 毫秒
1.
2.
The characteristics of the flow of culture medium significantly affects the photosynthetic productivity of bioreactors incorporating microalgae. Therefore, in order to optimize the performance of a conical helical tubular photobioreactor (CHTP) designed to be useful in practical applications, we characterized the flow pattern of the culture medium through the reactor. The effects of medium flow conditions on the photosynthetic productivity of Chlorella sp. were investigated using several different CHTP units with 0.50-m2 installation areas which were designed to vary the direction and rate of flow driven by airlift. In addition, the performance of two- and four-unit systems constructed by combining individual CHTP units was evaluated. We found that when medium flowed from the bottom to the top of the photostage, it exhibited smoother flow of culture medium than when flowing from top to bottom, which led to higher photosynthetic productivity by the former. Consistent with theoretical calculations, varying the lengths of vertical flow passages caused flow rates to vary, and higher flow rates meant smoother circulation of medium and better photosynthetic performance. Flow of medium through a four-unit CHTP system was similar to that in single units, enabling a photosynthetic productivity of 31.0 g-dry biomass per m2-installation area per day to be achieved, which corresponded to a photosynthetic efficiency of 7.50% (photosynthetically active radiation (PAR; 400-700 nm)). This high photosynthetic performance was possible because smoother medium flow attained in single units was also attained in the four-unit system. 相似文献
3.
ABSTRACTThere is a dearth of surveys examining the direct effects of temperature on red algal galactolipids, and none which examine regiochemistry modulation with respect to growth temperature. Therefore, forms of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), the two most commonly found galactolipids in chloroplast membranes, were determined in two model red algae, Polysiphonia sp. and Porphyridium sp., via positive-ion electrospray ionization/mass spectrometry (ESI/MS) and ESI/MS/MS. We sought to compare modulation of galactolipid forms in response to growth temperature between these two red algae and selected descendants with red algal plastid ancestry, and have proposed the following hypothesis: Polysiphonia sp. and Porphyridium sp. would modulate desaturations in the sn-2 position in accordance with previously examined descendant organisms. It was observed that both red algae produced C20/C16 (sn-1/sn-2 regiochemistry) and C20/C20 forms of MGDG and DGDG as their most abundant galactolipids under two growth temperatures, 20°C and 30°C. Furthermore, temperature-induced modulation of the major forms of MGDG and DGDG was more complex than what has been observed previously in selected representatives of red algal plastid ancestry. Porphyridium sp. modulated levels of desaturation in the sn-1 position of C20/C16 forms of MGDG and DGDG and in the sn-1 and sn-2 positions of C20/C20 forms of MGDG and DGDG. Polysiphonia sp. displayed trends suggesting it modulates levels of desaturation in the sn-1 and sn-2 positions of C20/C20 forms of MGDG and DGDG, thus indicating a different approach to regulating plastid membrane fluidity from that which has been observed in algae with secondary, red algae-derived plastids. 相似文献
4.
The kinetics of enzymatic cellulose hydrolysis in a plug-flow column reactor catalysed by cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma longibrachiatum adsorbed on cellulose surface have been studied. The maximum substrate conversion achieved was 90–94%. The possibility of enzyme recovery for a reactor of this type is discussed. A mathematical model for enzymatic cellulose hydrolysis in a plug-flow column reactor has been developed. The model allows for the component composition of the cellulase complex, adsorption of cellulases on the substrate surface, inhibition by reaction products, changes in cellulose reactivity and the inactivation of enzymes in the course of hydrolysis. The model affords a reliable prediction of the kinetics of d-glucose and cellobiose formation from cellulose in a column reactor as well as the degree of substrate conversion and reactor productivity with various amounts of adsorbed enzymes and at various flow rates. 相似文献
5.
Jonas Bisgaard James A Zahn Tannaz Tajsoleiman Tue Rasmussen Jakob K Huusom Krist V Gernaey 《Journal of industrial microbiology & biotechnology》2022,49(5)
Mathematical modeling is a powerful and inexpensive approach to provide a quantitative basis for improvements that minimize the negative effects of bioreactor heterogeneity. For a model to accurately represent a heterogeneous system, a flow model that describes how mass is channeled between different zones of the bioreactor volume is necessary. In this study, a previously developed compartment model approach based on data from flow-following sensor devices was further developed to account for dynamic changes in volume and flow rates and thus enabling simulation of the widely used fed-batch process. The application of the dynamic compartment model was demonstrated in a study of an industrial fermentation process in a 600 m3 bubble column bioreactor. The flow model was used to evaluate the mixing performance by means of tracer simulations and was coupled with reaction kinetics to simulate concentration gradients in the process. The simulations showed that despite the presence of long mixing times and significant substrate gradients early in the process, improving the heterogeneity did not lead to overall improvements in the process. Improvements could, however, be achieved by modifying the dextrose feeding profile. 相似文献
6.
A mathematical model to describe the simultaneous storage and growth activities of denitrifiers in aerobic granules under anoxic conditions has been developed in an accompanying article. The sensitivity of the nitrate uptake rate (NUR) toward the stoichiometric and kinetic coefficients is analyzed in this article. The model parameter values are estimated by minimizing the sum of squares of the deviations between the measured and model-predicted values. The model is successfully calibrated and a set of stoichiometric and kinetic parameters for the anoxic storage and growth of the denitrifiers are obtained. Thereafter, the model established is verified with three set of experimental data. The comparison between the model established with the ASM1 model and ASM3 shows that the present model is appropriate to simulate and predict the performance of a granule-based denitrification system. 相似文献
7.
The study of the interactions between physical limitation by light and biological limitations in photobioreactors leads to very complex partial differential equations. Modeling of light transfer and kinetics and the assessment of radiant energy absorded in photoreactors require an equation including two parameters for light absorption and scattering in the culture medium. In this article, a simple model based on the simplified, monodimensional equation of Schuster for radiative transfer is discussed. This approach provides a simple way to determine a working illuminated volume in which growth occurs, therefore allowing indentification of kinetic parameters. These parameters might then be extended to the analysis of more complex geometries such as cylindrical reactors. Moreover, this model allows the behavior of batch or continuous cultures of cyanobacteria under light and mineral limitations to be predicted. (c) 1992 John Wiley & Sons, Inc. 相似文献
8.
We previously developed an integrated model of the brain within a single cortical area for functional Magnetic Resonance Imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) using an extended neural mass model (ENMM). We then extended ENMM from a single-area to a multi-area model to develop a neural mass model of the entire brain. To this end, we derived a nonlinear state-space representation of the multi-area model. In Parts I and II of these two companion papers (henceforth called Part I and Part II), we develop and evaluate a variational Bayesian expectation maximization (VBEM) method to estimate parameters of multi-area ENMM (MEN) using E/MEG data. In Part I, we derive a state-space representation of MEN and use VBEM method for model inversion (parameter estimation). We evaluate and validate performance of VBEM method for model inversion of MEN using simulation studies in various signal-to-noise ratios. Details of VBEM method are presented in Part II. The proposed approach provides a useful technique for analyzing effective connectivity using non-invasive EEG and MEG methods. 相似文献
9.
In Part I and Part II of these two companion papers (henceforth called Part I and Part II), we develop and evaluate a variational Bayesian expectation maximization (VBEM) method for model inversion of our multi-area extended neural mass model (MEN). In this paper, we develop the VBEM method to estimate posterior distributions of parameters of MEN. We choose suitable prior distributions for the model parameters in order to use properties of a conjugate-exponential model in implementing VBEM. Consequently, VBEM leads to analytically tractable forms. The proposed VBEM algorithm starts with initialization and consists of repeated iterations of a variational Bayesian expectation step (VB E-step) and a variational Bayesian maximization step (VB M-step). Posterior distributions of the model parameters are updated in the VB M-step. Distribution of the hidden state is updated in the VB E-step. We develop a variational extended Kalman smoother (VEKS) to infer the distribution of the hidden state in the VB E-step and derive the forward and backward passes of VEKS, analogous to the Kalman smoother. In Part I, we evaluate and validate the VBEM method using simulation studies. 相似文献
10.
A structured model for the culture of cyanobacteria in photobioreactors is developed on the basis of Schuster's approximations for radiative light transfer. This model is therefore limited to monodimensional geometries and kinetic aspects.Light-harvesting pigments play a crucial role in defining the profile of radiative transfer inside the culture medium and in controlling the metabolism, particularly the metabolic deviations induced by mineral limitations. Modeling therefore requires the biomass to be divided into several compartments, among which the light-harvesting compartment allows a working illuminated volume to be defined within the photobioreactor. This volume may change during batch cultures, largely decreasing as pigment concentration increases during growth but increasing as pigments are consumed during mineral limitation. This approach enables, in photobioreactors of simple parallelepipedic, geometries, kinetic parameters to be determined with high accuracy; this may then be extended to vessels of more complex geometries, such as cylindrical photobioreactors.The model is applied to controlled batch cultures of the cyanobacterium Spirulina platensis in parallelepipedic photobioreactors to assess its ability to predict the behavior of these microorganisms in conditions of light and mineral limitations. Results allowed the study of optimal operating condition for continuous cultures to be approached (c) 1992 John Wiley & Sons, Inc. 相似文献
11.
Sarawut Monkoondee Ampin Kuntiya Thanongsak Chaiyaso Noppol Leksawasdi Charin Techapun Arthitaya Kawee-ai 《Preparative biochemistry & biotechnology》2016,46(5):434-439
This study aimed to investigate the efficiency of an aerobic sequencing batch reactor (aerobic SBR) in a nonsterile system using the application of an experimental design via central composite design (CCD). The acidic whey obtained from lactic acid fermentation by immobilized Lactobacillus plantarum sp. TISTR 2265 was fed into the bioreactor of the aerobic SBR in an appropriate ratio between acidic whey and cheese whey to produce an acidic environment below 4.5 and then was used to support the growth of Dioszegia sp. TISTR 5792 by inhibiting bacterial contamination. At the optimal condition for a high yield of biomass production, the system was run with a hydraulic retention time (HRT) of 4 days, a solid retention time (SRT) of 8.22 days, and an acidic whey concentration of 80% feeding. The chemical oxygen demand (COD) decreased from 25,230 mg/L to 6,928 mg/L, which represented a COD removal of 72.15%. The yield of biomass production and lactose utilization by Dioszegia sp. TISTR 5792 were 13.14 g/L and 33.36%, respectively, with a long run of up to 180 cycles and the pH values of effluent were rose up to 8.32 without any pH adjustment. 相似文献
12.
Transport of bacteria in porous media: II. A model for convective Transport and growth 总被引:1,自引:0,他引:1
A model is presented for the coupled processes of bacterial growth and convective transport of bacteria has been modeled using a fractional flow approach. The various mechanisms of bacteria retention can be incorporated into the model through selection of an appropriate shape of the fractional flow curve. Permeability reduction due to pore plugging by bacteria was simulated using the effective medium theory. In porous media, the rates of transport and growth of bacteria, the generation of metabolic products, and the consumption of nutrients are strongly coupled processes. Consequently, the set of governing conservation equations form a set of coupled, nonlinear partial differential equations that were solved numerically. Reasonably good agreement between the model and experimental data has been obtained indicating that the physical processes incorporated in the model are adequate. The model has been used to predict the in situ transport and growth of bacteria, nutrient consumption, and metabolite production. It can be particularly useful in simulating laboratory experiments and in scaling microbial-enhanced oil recovery or bioremediation processes to the field. (c) 1994 John Wiley & Sons, Inc. 相似文献
13.
A regulated genome-scale model for Clostridium acetobutylicum ATCC 824 was developed based on its metabolic network reconstruction. To aid model convergence and limit the number of flux-vector possible solutions (the size of the phenotypic solution space), modeling strategies were developed to impose a new type of constraint at the endo-exo-metabolome interface. This constraint is termed the specific proton flux state, and its use enabled accurate prediction of the extracellular medium pH during vegetative growth of batch cultures. The specific proton flux refers to the influx or efflux of free protons (per unit biomass) across the cell membrane. A specific proton flux state encompasses a defined range of specific proton fluxes and includes all metabolic flux distributions resulting in a specific proton flux within this range. Effective simulation of time-course batch fermentation required the use of independent flux balance solutions from an optimum set of specific proton flux states. Using a real-coded genetic algorithm to optimize temporal bounds of specific proton flux states, we show that six separate specific proton flux states are required to model vegetative-growth metabolism and accurately predict the extracellular medium pH. Further, we define the apparent proton flux stoichiometry per weak acids efflux and show that this value decreases from approximately 3.5 mol of protons secreted per mole of weak acids at the start of the culture to approximately 0 at the end of vegetative growth. Calculations revealed that when specific weak acids production is maximized in vegetative growth, the net proton exchange between the cell and environment occurs primarily through weak acids efflux (apparent proton flux stoichiometry is 1). However, proton efflux through cation channels during the early stages of acidogenesis was found to be significant. We have also developed the concept of numerically determined sub-systems of genome-scale metabolic networks here as a sub-network with a one-dimensional null space basis set. A numerically determined sub-system was constructed in the genome-scale metabolic network to study the flux magnitudes and directions of acetylornithine transaminase, alanine racemase, and D-alanine transaminase. These results were then used to establish additional constraints for the genome-scale model. 相似文献
14.
In soil micromorphology fissures are considered in vertical sections. To get information about the properties of the soil the joint distribution of spatial direction and width of these fissures is of interest. The fissures are mathematically generalized to flat bodies which are defined as stationary weighted surface processes with the weight “thickness”. In a typical point of the surface process suitable, joint parametric distributions of direction and thickness are assumed. The parameters have to be estimated from measurements on vertical sections which are taken from the soil. On these sections only a visible thickness and a visible angle can be observed. The joint distribution of these variables can be expressed by the joint distribution of spatial direction and thickness with the same parameters and in this indirect way the parameters can be estimated. The paper describes how to randomize the vertical section and how to measure the visible variables on the sections. The Chi-Square method is proposed for the parameter estimation. Further it is discussed how to derive good starting values for the numerical procedure. All this is demonstrated in a simulation study using the Bingham-Mardia distribution for the direction and the lognormal distribution for the thickness including a way to correlate the mean thickness and the direction. Finally an application in soil micromorphology is demonstrated for one soil horizon. 相似文献
15.
AbstractThe semi-empirical thermodynamic model reported in an earlier paper (Hall et al., 1991) is further developed to describe the zeta potential behaviour of an intravenous fat emulsion in the presence of magnesium and zinc cations. The effect of interfacial protonation is also explored. We have now established that a previously reported formation constant for the calcium interaction is actually a conditional value and together with the new data for zinc and magnesium, overall formation constants are calculated. 相似文献