首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One of the key features of major histocompatibility complex (MHC) genes is the frequent occurrence of trans-species polymorphism, that is 'the passage of allelic lineages from ancestral to descendant species' (Klein et al. 2007). Selectively maintained ancestral polymorphism may, however, be hard to distinguish from introgression of MHC alleles between hybridizing species (Fig. 1). In this issue of Molecular Ecology, Nadachowska-Brzyska et al. (2012) present data that suggest that the latter can be observed in two closely related species of newts, Lissotriton vulgaris (Lv) and L. montandoni (Lm) from south-east Europe. Strikingly, allelic MHC variation displayed more structure between geographically separated populations of L. vulgaris than across species in the hybrid zone. This suggests that high MHC variation in L. montadoni may result from mainly unidirectional gene flow between species, while differentiation between northern and southern populations of L. vulgaris might reflect local adaptation.  相似文献   

2.
Information about demographic history is essential for the understanding of the processes of divergence and speciation. Patterns of genetic variation within and between closely related species provide insights into the history of their interactions. Here, we investigated historical demography and genetic exchange between the Carpathian (Lissotriton montandoni, Lm) and smooth (L. vulgaris, Lv) newts. We combine an extensive geographical sampling and multilocus nuclear sequence data with the approximate Bayesian computation framework to test alternative scenarios of divergence and reconstruct the temporal and spatial pattern of gene flow between species. A model of recent (last glacial period) interspecific gene flow was favoured over alternative models. Thus, despite the relatively old divergence (4–6 mya) and presumably long periods of isolation, the species have retained the ability to exchange genes. Nevertheless, the low migration rates (ca. 10?6 per gene copy per generation) are consistent with strong reproductive isolation between the species. Models allowing demographic changes were favoured, suggesting that the effective population sizes of both species at least doubled as divergence reaching the current ca. 0.2 million in Lm and 1 million in Lv. We found asymmetry in rates of interspecific gene flow between Lm and one evolutionary lineage of Lv. We suggest that intraspecific polymorphism for hybrid incompatibilities segregating within Lv could explain this pattern and propose further tests to distinguish between alternative explanations. Our study highlights the importance of incorporating intraspecific genetic structure into the models investigating the history of divergence.  相似文献   

3.
Depletion of polymorphism at major histocompatibility complex (MHC) genes has been hypothesized to limit the ability of populations to respond to emerging pathogens, thus putting their survival at risk. As pathogens contribute substantially to the global amphibian decline, assessing patterns of MHC variation is important in devising conservation strategies. Here, we directly compare levels of MHC class II and neutral variation between multiple populations of the great crested newt ( Triturus cristatus ) from refugial (REF: Romania) and postglacial expansion (PGE: Germany, Poland and UK) areas. REF populations harboured high levels of adaptive variation (24 expressed alleles), exhibiting clear signatures of historical positive selection, which points to the overall importance of MHC class II variation in this species. On the other hand, PGE populations were extremely depauperate (two alleles) but nevertheless have survived for c . 10 000 years, since the postglacial expansion. Variation in putative MHC class II pseudogenes, microsatellites and allozymes also showed a significant southern richness–northern purity pattern. The populations in the postglacial expansion area thus provide the clearest example to date of the long-term survival of populations in which MHC variation, historically under positive selection, has been depleted.  相似文献   

4.
Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA‐DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (Ne < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift.  相似文献   

5.
Neutral genetic markers are commonly used to understand the effects of fragmentation and population bottlenecks on genetic variation in threatened species. Although neutral markers are useful for inferring population history, the analysis of functional genes is required to determine the significance of any observed geographical differences in variation. The genes of the major histocompatibility complex (MHC) are well‐known examples of genes of adaptive significance and are particularly relevant to conservation because of their role in pathogen resistance. In this study, we survey diversity at MHC class I loci across a range of tuatara populations. We compare the levels of MHC variation with that observed at neutral microsatellite markers to determine the relative roles of balancing selection, diversifying selection and genetic drift in shaping patterns of MHC variation in isolated populations. In general, levels of MHC variation within tuatara populations are concordant with microsatellite variation. Tuatara populations are highly differentiated at MHC genes, particularly between the northern and Cook Strait regions, and a trend towards diversifying selection across populations was observed. However, overall our results indicate that population bottlenecks and isolation have a larger influence on patterns of MHC variation in tuatara populations than selection.  相似文献   

6.
The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans‐species evolution).  相似文献   

7.
We examined variation at MHC Class IIB genes in a recently established population of dark-eyed juncos (Junco hyemalis) in a coastal urban environment in southern California, USA relative to an ancestral-range population from a nearby species-typical montane environment. The founding population is estimated to have been quite small, but we predicted that variation at the major histocompatibility complex (MHC) among the founders would nevertheless be preserved owing to the high functional significance of MHC. Previous studies of MHC in songbirds have had varying degrees of success in isolating loci, as passerines show extensive MHC gene duplication. In order to compare diversity in the two populations, we employed two published approaches to sequencing MHC Class II exon 2: direct sequencing with exon-based primers, and traditional cloning and sequencing with intron-based primers. Results from both methods show that the colonist population has maintained high levels of variation. Our results also indicate varying numbers of alleles across individuals, corroborating evidence for gene duplication in songbird MHC. While future studies in songbirds may need to take a genomic approach to fully understand the structure of MHC in this lineage, our results show that it is possible to use traditional methods to reveal functional variation across populations.  相似文献   

8.
Variation in the vertebrate major histocompatibility complex (MHC) genes is crucial for fighting pathogen assault. Because new alleles confer a selective advantage, MHC should readily introgress between species, even under limited hybridization. Using replicated transects through two hybrid zones between strongly reproductively isolated European newts, Lissotriton montandoni and L. vulgaris, we demonstrated recent and ongoing MHC class I and II introgression in the Carpathian region. The extent of introgression correlated with the age of contact. In the older zone, MHC similarity between species within transects exceeded similarity between transects within species, implying pervasive introgression ‐ a massive exchange of MHC genes, not limited to specific variants. In simulations, the observed pattern emerged under the combined action of balancing selection and hybridization, but not when these processes acted separately. Thus, massive introgression at advanced stages of divergence can introduce novel and restore previously lost MHC variation, boosting the adaptive potential of hybridizing taxa. In consequence, MHC genes may be the last to stop introgressing between incipient species.  相似文献   

9.
The fragmentation of populations typically enhances depletion of genetic variation, but highly polymorphic major histocompatibility complex (MHC) genes are thought to be under balancing selection and therefore retain polymorphism despite population bottlenecks. In this study, we investigate MHC DRB (class II) exon 2 variation in 14 spotted suslik populations from two regions differing in their degree of habitat fragmentation and gene flow. We found 16 alleles that segregated in a sample of 248 individuals. The alleles were highly divergent and revealed the hallmark signs of positive selection acting on them in the past, showing a significant excess of nonsynonymous substitutions. This excess was concentrated in putative antigen‐binding sites, which suggests that past selection was driven by pathogens. MHC diversity was significantly lower in fragmented western populations than in the eastern populations, characterized by significant gene flow. In contrast to neutral variation, amova did not reveal genetic differentiation between the two regions. This may indicate similar selective pressures shaping MHC variation in both regions until the recent past. However, MHC allelic richness within a population was correlated with that for microsatellites. FST outlier analyses have shown that population differentiation at DRB was neither higher nor lower than expected under neutrality. The results suggest that selection on MHC is not strong enough to counteract drift that results from recent fragmentation of spotted suslik populations.  相似文献   

10.
The genes of the major histocompatibility complex (MHC) code for proteins involved in antigen recognition and triggering of the adaptive immune response, and are therefore likely to be under selection from parasites. These selection regimes may vary in space and time. Here we report a strong geographical structure in MHC class II B genes of a migrating bird, the great snipe (Gallinago media). Genetic differentiation in the MHC between two ecologically distinct distributional regions (Scandinavian mountain populations vs. East European lowland populations) was still present after statistically controlling for the effect of selectively neutral variation (microsatellites) using partial Mantel tests. This suggests a role for selection in generating this spatial structure and that it represents local adaptation to different environments. Differentiation between populations within the two regions was negligible. Overall, we found a high number of MHC alleles (50, from 175 individuals). This, together with a tendency for a higher rate of nonsynonymous than synonymous substitutions in the peptide binding sites, and high Tajima's D in certain regions of the gene, suggests a history of balancing selection. MHC variation is often thought to be maintained by some form of balancing selection, but the nature of this selection remains unclear. Our results support the hypothesis that spatial variation in selection regimes contributes to the high polymorphism.  相似文献   

11.
Miller HC  Lambert DM 《Molecular ecology》2004,13(12):3709-3721
The Chatham Island black robin, Petroica traversi, is a highly inbred, endangered passerine with extremely low levels of variation at hypervariable neutral DNA markers. In this study we investigated variation in major histocompatibility complex (MHC) class II genes in both the black robin and its nonendangered relative, the South Island robin Petroica australis australis. Previous studies have shown that Petroica have at least four expressed class II B MHC genes. In this study, the sequences of introns flanking exon 2 of these loci were characterized to design primers for peptide-binding region (PBR) sequence analysis. Intron sequences were comprised of varying numbers of repeated units, with highly conserved regions immediately flanking exon 2. Polymerase chain reaction primers designed to this region amplified three or four sequences per black robin individual, and eight to 14 sequences per South Island robin individual. MHC genes are fitness-related genes thought to be under balancing selection, so they may be more likely to retain variation in bottlenecked populations. To test this, we compared MHC variation in the black robin with artificially bottlenecked populations of South Island robin, and with their respective source populations, using restriction fragment length polymorphism analyses and DNA sequencing of the PBR. Our results indicate that the black robin is monomorphic at class II B MHC loci, while both source and bottlenecked populations of South Island robin have retained moderate levels of variation. Comparison of MHC variation with minisatellite DNA variation indicates that genetic drift outweighs balancing selection in determining MHC diversity in the bottlenecked populations. However, balancing selection appears to influence MHC diversity over evolutionary timescales, and the effects of gene conversion are evident.  相似文献   

12.
Eight polymorphic microsatellites were isolated from the Greek smooth newt (Lissotriton vulgaris graecus) using a microsatellite enrichment protocol and selective hybridization with a biotinylated (AC)(11) probe. The loci showed different variation patterns in a single breeding population (32 individuals) with mean number of alleles at 5.0 and mean observed heterozygosity at 0.520. The amplification success also in the nominotypical subspecies favours the use of these microsatellite loci in population genetic analyses as well as in the study of contact zones between smooth newt subspecies.  相似文献   

13.
Johanet A  Secondi J  Lemaire C 《Heredity》2011,106(6):962-972
Species that overlap over a large part of their range and habitat requirements are challenging for the study of speciation and hybridization. In this respect, the study of broadscale introgressive hybridization has raised recent interest. Here we studied hybridization between two closely related amphibians Lissotriton helveticus and Lissotriton vulgaris that reproduce over a wide sympatric zone. We used mitochondrial and microsatellite markers on 1272 individuals in 37 sites over Europe to detect hybrids at the individual-level and to analyse Hardy-Weinberg and linkage disequilibria at the population-level. Morphological traits showed a strong bimodal distribution. Consistently, hybrid frequency was low (1.7%). We found asymmetric introgression with five times more hybrids in L. vulgaris than in L. helveticus, a pattern probably explained by an unequal effective population size in a study part wherein L. helveticus numerically predominates. Strikingly, significant levels of introgression were detected in 73% of sites shared by both species. Our study showed that introgression is widespread but remains confined to the sites where the two species reproduce at the same time. This pattern may explain why these species remain genetically distinct over a broad sympatric zone.  相似文献   

14.
Stochastic effects from demographic processes and selection are expected to shape the distribution of genetic variation in spatially heterogeneous environments. As the amount of genetic variation is central for long‐term persistence of populations, understanding how these processes affect variation over large‐scale geographical gradients is pivotal. We investigated the distribution of neutral and putatively adaptive genetic variation, and reconstructed demographic history in the moor frog (Rana arvalis) using 136 individuals from 15 populations along a 1,700‐km latitudinal gradient from northern Germany to northern Sweden. Using double digest restriction‐site associated DNA sequencing we obtained 27,590 single nucleotide polymorphisms (SNPs), and identified differentiation outliers and SNPs associated with growing season length. The populations grouped into a southern and a northern cluster, representing two phylogeographical lineages from different post‐glacial colonization routes. Hybrid index estimation and demographic model selection showed strong support for a southern and northern lineage and evidence of gene flow between regions located on each side of a contact zone. However, patterns of past gene flow over the contact zone differed between neutral and putatively adaptive SNPs. While neutral nucleotide diversity was higher along the southern than the northern part of the gradient, nucleotide diversity in differentiation outliers showed the opposite pattern, suggesting differences in the relative strength of selection and drift along the gradient. Variation associated with growing season length decreased with latitude along the southern part of the gradient, but not along the northern part where variation was lower, suggesting stronger climate‐mediated selection in the north. Outlier SNPs included loci involved in immunity and developmental processes.  相似文献   

15.
Our understanding of the evolution of genes of the major histocompatibility complex (MHC) is rapidly increasing, but there are still enigmatic questions remaining, particularly regarding the maintenance of high levels of MHC polymorphisms in small, isolated populations. Here, we analyze the genetic variation at eight microsatellite loci and sequence variation at exon 2 of the MHC class IIB (DAB) genes in two wild populations of the Trinidadian guppy, Poecilia reticulata. We compare the genetic variation of a small (Ne, 100) and relatively isolated upland population to that of its much larger (Ne approximately 2400) downstream counterpart. As predicted, microsatellite diversity in the upland population is significantly lower and highly differentiated from the population further downstream. Surprisingly, however, these guppy populations are not differentiated by MHC genetic variation and show very similar levels of allelic richness. Computer simulations indicate that the observed level of genetic variation can be maintained with overdominant selection acting at three DAB loci. The selection coefficients differ dramatically between the upland (s > or = 0.2) and lowland (s < or = 0.01) populations. Parasitological analysis on wild-caught fish shows that parasite load is significantly higher on upland than on lowland fish, which suggests that large differences in selection intensity may indeed exist between populations. Based on the infection intensity, a substantial proportion of the upland fish would have suffered direct or indirect fitness consequences as a result of their high parasite loads. Selection by parasites plays a particularly important role in the evolution of guppies in the upland habitat, which has resulted in high levels of MHC diversity being maintained in this population despite considerable genetic drift.  相似文献   

16.
Major histocompatibility complex (MHC) genes encode proteins that play a central role in vertebrates' adaptive immunity to parasites. MHC loci are among the most polymorphic in vertebrates' genomes, inspiring many studies to identify evolutionary processes driving MHC polymorphism within populations and divergence between populations. Leading hypotheses include balancing selection favouring rare alleles within populations, and spatially divergent selection. These hypotheses do not always produce diagnosably distinct predictions, causing many studies of MHC to yield inconsistent or ambiguous results. We suggest a novel strategy to distinguish balancing vs. divergent selection on MHC, taking advantage of natural admixture between parapatric populations. With divergent selection, individuals with immigrant alleles will be more infected and less fit because they are susceptible to novel parasites in their new habitat. With balancing selection, individuals with locally rare immigrant alleles will be more fit (less infected). We tested these contrasting predictions using three‐spine stickleback from three replicate pairs of parapatric lake and stream habitats. We found numerous positive and negative associations between particular MHC IIβ alleles and particular parasite taxa. A few allele–parasite comparisons supported balancing selection, and others supported divergent selection between habitats. But, there was no overall tendency for fish with immigrant MHC alleles to be more or less heavily infected. Instead, locally rare MHC alleles (not necessarily immigrants) were associated with heavier infections. Our results illustrate the complex relationship between MHC IIβ allelic variation and spatially varying multispecies parasite communities: different hypotheses may be concurrently true for different allele–parasite combinations.  相似文献   

17.
In this study, we explore skull size and shape variation in the smooth newt, a taxon with substantial morphological differentiation and complex phylogeographic relations. By projecting phylogenies into the morphospace of the skull shape, we explore the variation in and differentiation of this complex morphological structure within a phylogenetic framework. For these analyses, we used a dataset that covers the most southern part of the species’ distribution range, including all conventionally recognized subspecies. The study revealed different patterns of divergence in skull shape between sexes, which is paralleled by intraspecific differentiation. The divergence in dorsal skull shape is concordant with the phylogenetic divergence, as the most diverged clades of the smooth newt (Lissotriton vulgaris kosswigi and Lissotriton vulgaris lantzi) exhibit a skull shape that significantly diverges from the smooth newt’s mean shape configuration. The results of this study also indicate that ventral skull portion, which is more directly related to feeding and foraging, shows higher variation between populations than dorsal skull portion, which appears to be less variable and phylogenetically informative.  相似文献   

18.
Empirical evidence is accumulating that pathogens drive selection and explain common patterns of high immune gene (major histocompatibility complex, MHC) polymorphism. While most previous studies have identified that selection has acted over large time scales on the MHC, there still is a paucity of information in mammal species that demonstrates how processes operate on MHC genes in extant generations. Here we investigated 439 striped mouse individuals (Rhabdomys pumilio), trapped across seven different locations along a climatic gradient in southern Africa. Data from a previous study, conducted in the same study system, revealed that gastro-intestinal nematode infections were higher in individuals from study sites located within wetter climates compared to those from drier ones. In order to improve our understanding about the role of parasite-driven selection on the MHC in contemporary generations we tested for population divergences based on seven neutral microsatellite markers and the MHC DRB exon II locus. If divergences exist, we wanted to know if they are influenced by the spatial variation in parasite pressure mediated by different climatic conditions along the study site transect. Our analysis revealed an extensive polymorphism of 249 different MHC alleles and isolation-by-distance showed significant correlations at the microsatellite loci but not at the MHC. Nematode pressure was lowest at the driest site (Fish River Canyon, Namibia) and specifically this population revealed the highest divergence between MHC and microsatellite loci. We conclude that spatial variation in parasite pressure can facilitate local immune gene adaptations and thus mediate interactions of directional and balancing selection shaping MHC polymorphism in contemporary generations.  相似文献   

19.
Demography, migration and natural selection are predominant processes affecting the distribution of genetic variation among natural populations. Many studies use neutral genetic markers to make inferences about population history. However, the investigation of functional coding loci, which directly reflect fitness, is critical to our understanding of species'' ecology and evolution. Immune genes, such as those of the Major Histocompatibility Complex (MHC), play an important role in pathogen recognition and provide a potent model system for studying selection. We contrasted diversity patterns of neutral data with MHC loci, ELA-DRA and -DQA, in two southern African plains zebra (Equus quagga) populations: Etosha National Park, Namibia, and Kruger National Park, South Africa. Results from neutrality tests, along with observations of elevated diversity and low differentiation across populations, supported previous genus-level evidence for balancing selection at these loci. Despite being low, MHC divergence across populations was significant and may be attributed to drift effects typical of geographically separated populations experiencing little to no gene flow, or alternatively to shifting allele frequency distributions driven by spatially variable and fluctuating pathogen communities. At the DRA, zebra exhibited geographic differentiation concordant with microsatellites and reduced levels of diversity in Etosha due to highly skewed allele frequencies that could not be explained by demography, suggestive of spatially heterogeneous selection and local adaptation. This study highlights the complexity in which selection affects immune gene diversity and warrants the need for further research on the ecological mechanisms shaping patterns of adaptive variation among natural populations.  相似文献   

20.
The genes of the major histocompatibility complex (MHC) are an important component of the vertebrate immune system and can provide insights into the role of pathogen‐mediated selection in wild populations. Here, we examined variation at the MHC class II peptide‐binding region in 27 populations of sockeye salmon (Oncorhynchus nerka), distributed among three distinct spawning ecotypes, from a complex of interconnected rivers and lakes in south‐western Alaska. We also obtained genotypes from 90 putatively neutral single nucleotide polymorphisms for each population to compare the relative roles of demography and selection in shaping the observed MHC variation. We found that MHC divergence was generally partitioned by spawning ecotype (lake beaches, rivers and streams) and was 30 times greater than variation at neutral markers. Additionally, we observed substantial differences in modes of selection and diversity among ecotypes, with beach populations displaying higher levels of directional selection and lower MHC diversity than the other two ecotypes. Finally, the level of MHC differentiation in our study system was comparable to that observed over much larger geographic ranges, suggesting that MHC variation does not necessarily increase with increasing spatial scale and may instead be driven by fine‐scale differences in pathogen communities or pathogen virulence. The low levels of neutral structure and spatial proximity of populations in our study system indicate that MHC differentiation can be maintained through strong selective pressure even when ample opportunities for gene flow exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号