首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to inhibit the in vitro translation of Plasmodium falciparum mRNA coding for the bifunctional enzyme dihydrofolate reductase-thymidylate synthase (DHFR-TS), oligodeoxynucleotides (ODNs) were directed against the translation initiation site or a site in the TS-coding region. In both cases considerable hybridization arrest, i.e. greater than 50% inhibition, was only achieved if the lengths of the ODNs to the two regions were 30 and 39 nucleotides, respectively, or longer. The ODN with the highest efficiency was a 49-mer directed against the TS-coding region (OTS49); 45 microM was sufficient to inhibit the expression of DHFR-TS by almost 90%. In this case the synthesis of DHFR-TS was interrupted at the binding site of OTS49 by a RNase H-independent mechanism. The resulting polypeptide was smaller (55 kDa) than one subunit of the native protein (71 kDa) and lacked TS activity.  相似文献   

2.
The HindIII--J HindIII-F fragments of the vaccinia virus DNA strain Lister have been analysed by the technique of mRNA hybridization selection with the subsequent translation in cell-free protein synthesizing system from the rabbit reticulocytes. The viral mRNA hybridizable with the HindIII--J fragment was shown to direct the synthesis of 30 kDa polypeptide in the cell-free system. This polypeptide was demonstrated to react specifically with antiserum to plasma membrane protein p34. The viral mRNA hybridizable with the HindIII-F fragment was shown to direct the synthesis of 37 kDa polypeptide in the cell-free system. This polypeptide reacts specifically with antiserum to major membrane protein p40.  相似文献   

3.
V A Kolb  E V Makeyev    A S Spirin 《The EMBO journal》1994,13(15):3631-3637
In vitro synthesis of firefly luciferase and its folding into an enzymatically active conformation were studied in a wheat germ cell-free translation system. A novel method is described by which the enzymatic activity of newly synthesized luciferase can be monitored continuously in the cell-free system while this protein is being translated from its mRNA. It is shown that ribosome-bound polypeptide chains have no detectable enzymatic activity, but that this activity appears within a few seconds after luciferase has been released from the ribosome. In contrast, the renaturation of denatured luciferase under identical conditions occurs with a half-time of 14 min. These results support the cotranslational folding hypothesis which states that the nascent peptides start to attain their native tertiary structure during protein synthesis on the ribosome.  相似文献   

4.
R Gilmore  G Blobel 《Cell》1985,42(2):497-505
We have characterized the association of a nascent secretory protein with the microsomal membrane at two distinct stages in cell-free synthesis and translocation. Stage one corresponded to a nascent chain of approximately 70 residues generated via elongation arrest by the signal recognition particle (SRP). Binding to microsomal membranes occurred independently of chain elongation and required SRP receptor. Following binding, the 70-mer remained attached to the membrane after extraction of the ribosome. However, protein denaturants (4 M urea or alkaline pH) extracted the 70-mer from the membrane. Stage two of synthesis corresponded to nascent chains of approximately 158 residues generated by oligonucleotide-mediated hybrid arrest of translation. Again, these partially translocated nascent chains were extracted by 4 M urea. Therefore, the initial interaction of the signal sequence with the membrane as well as subsequent chain conductance occur in a microenvironment that is accessible to aqueous reagents. Thus, both processes probably require integral membrane proteins.  相似文献   

5.
Signal recognition particle (SRP) causes an arrest in the translation of nascent secretory proteins in a wheat germ cell-free system. In order to examine at what point during the synthesis of a secretory protein its translocation across the endoplasmic reticulum (ER) membrane can occur, SRP was used to arrest nascent chain elongation at various times during a synchronous translation, thus allowing the generation of nascent chains of increasing length. It was found that SRP can still bring about an arrest as late as when an average of two-thirds of nascent IgG light chain was completed. Rough microsomes were added to translations blocked with SRP to determine if such relatively long nascent chains could still be translocated across the membrane. It was found that nascent chains which had been arrested by SRP, regardless of their length, could be translocated into rough microsomes. In the case of IgG light chain, translocation levels of 50% were still observed with nascent chains corresponding to as much as 70-75% of the intact preprotein. Similar results were observed for the nascent bovine prolactin precursor. These results demonstrate that the synthesis of secretory proteins can be uncoupled from their translocation, and that fairly large nascent chains are capable of crossing the membrane of the ER post-translationally.  相似文献   

6.
We have studied the translation of rabbit globin mRNA in cell free systems (reticulocyte lysate and wheat germ extract) and in microinjected Xenopus oocytes in the presence of anti-sense oligodeoxynucleotides. Results obtained with the unmodified all-oxygen compounds were compared with those obtained when phosphorothioate or alpha-DNA was used. In the wheat germ system a 17-mer sequence targeted to the coding region of beta-globin mRNA was specifically inhibitory when either the unmodified phosphodiester oligonucleotide or its phosphorothioate analogue were used. In contrast no effect was observed with the alpha-oligomer. These results were ascribed to the fact that phosphorothioate oligomers elicit an RNase-H activity comparable to the all-oxygen congeners, while alpha-DNA/mRNA hybrids were a poor substrate. Microinjected Xenopus oocytes followed a similar pattern. The phosphorothioate oligomer was more efficient to prevent translation than the unmodified 17-mer. Inhibition of beta-globin synthesis was observed in the nanomolar concentration range. This result can be ascribed to the nuclease resistance of phosphorothioates as compared to natural phosphodiester linkages, alpha-oligomers were devoid of any inhibitory effect up to 30 microM. Phosphorothioate oligodeoxyribonucleotides were shown to be non-specific inhibitors of protein translation, at concentrations in the micromolar range, in both cell-free systems and oocytes. Non-specific inhibition of translation was dependent on the length of the phosphorothioate oligomer. These non-specific effects were not observed with the unmodified or the alpha-oligonucleotides.  相似文献   

7.
Polypeptides removed from the HeLa cell surface by mild pronase treatment rapidly inhibit protein synthesis when added to HeLa cells or cell-free translation system derived from HeLa cells. The inhibitory activity is heat stable. Protein and carbohydrate components of these polypeptides are required for inhibition of protein synthesis in vivo and in vitro. Two peaks of activity can be recovered from polyacrylamide gels, corresponding to polypeptides with molecular weights of approximately 29 000 and 41 000. Inhibition of protein synthesis in cell-free translation systems appears to be primarily an effect on elongation of polypeptide chains, whereas in the intact cell the primary target may be polypeptide chain initiation.  相似文献   

8.

Background

A study was undertaken to resolve preliminary conflicting results on the proliferation of leukemia cells observed with different c-myc antisense oligonucleotides.

Results

RNase H-active, chimeric methylphosphonodiester / phosphodiester antisense oligodeoxynucleotides targeting bases 1147–1166 of c-myc mRNA downregulated c-Myc protein and induced apoptosis and cell cycle arrest respectively in cultures of MOLT-4 and KYO1 human leukemia cells. In contrast, an RNase H-inactive, morpholino antisense oligonucleotide analogue 28-mer, simultaneously targeting the exon 2 splice acceptor site and initiation codon, reduced c-Myc protein to barely detectable levels but did not affect cell proliferation in these or other leukemia lines. The RNase H-active oligodeoxynucleotide 20-mers contained the phosphodiester linked motif CGTTG, which as an apoptosis inducing CpG oligodeoxynucleotide 5-mer of sequence type CGNNN (N = A, G, C, or T) had potent activity against MOLT-4 cells. The 5-mer mimicked the antiproliferative effects of the 20-mer in the absence of any antisense activity against c-myc mRNA, while the latter still reduced expression of c-myc in a subline of MOLT-4 cells that had been selected for resistance to CGTTA, but in this case the oligodeoxynucleotide failed to induce apoptosis or cell cycle arrest.

Conclusions

We conclude that the biological activity of the chimeric c-myc antisense 20-mers resulted from a non-antisense mechanism related to the CGTTG motif contained within the sequence, and not through downregulation of c-myc. Although the oncogene may have been implicated in the etiology of the original leukemias, expression of c-myc is apparently no longer required to sustain continuous cell proliferation in these culture lines.  相似文献   

9.
R S Quartin  J G Wetmur 《Biochemistry》1989,28(3):1040-1047
A 12-mer oligodeoxynucleotide containing 10 methylphosphonate bonds and 1 phosphodiester bond was shown to bind specifically to the restriction endonuclease fragment containing complementary DNA in a Southern blot. This 12-mer as well as 14-mer oligodeoxynucleotides containing 3 methylphosphonate and 10 phosphodiester bonds was used to examine the effect of reduced charge on the thermodynamics of binding to complementary DNA or complementary oligodeoxynucleotides with additional nucleotides overlapping both the 3' and 5' ends. The 14-mer oligodeoxynucleotides were synthesized with one methylphosphonamidite (A, C, G, or T). Melting profiles were examined by spectrophotometry for the 14-mers and by a gel-shift assay for the 12-mer. Nearest-neighbor free energy values were compiled for predicting concentration-dependent melting temperatures for all oligodeoxynucleotide hybridizations, including those involving adjacent dG residues. The free energy contribution to duplex formation from the dangling ends was about 1 kcal/mol. The free energy decrement due to introduction of each methylphosphonate linkage was -0.75 kcal/mol in high salt independent of the methylphosphonamidite used for synthesis of the oligodeoxynucleotide. However, the change in charge per nearest-neighbor base pair decreased from 0.26 to 0.0 when the nearest-neighbor base pair contained one methylphosphonate. Thus at very low salt, methylphosphonate-substituted oligodeoxynucleotides form more stable hybrids than analogous phosphodiester sequences. The 12-mer with 10 methylphosphonate bonds outcompetes the analogous phosphodiester 12-mer below 0.01 M NaCl. The temperature of 50% dissociation of bound oligodeoxynucleotide after being washed for 30 min was measured with a dot-blot assay. These results, together with the thermodynamic results, indicate that the substitution of methylphosphonate linkages at high salt only affects the reverse rate constant.  相似文献   

10.
A new covalent chromatography system utilizing Activated Thiol Sepharose 4B was employed to quantitate the content of thionein chains synthesized in a polysomal cell-free system. Liver polysomes from zinc injected rats directed the translation of more thionein-like polypeptide chains than polysomes from control rats. The increase was similar to the stimulation in MT synthesis in vivo following a zinc injection. This evidence supports the concept that metallothionein synthesis is regulated by changes in the pool of translatable thionein mRNA.  相似文献   

11.
Globin mRNA, translated in a Saccharomyces cerevisiae cell-free protein synthesizing system prepared from a [psi+ rho+] strain, primarily directed the synthesis of alpha- and beta-globin. A third globin mRNA-specific polypeptide was also synthesized, representing approximately 10% of the total translation products. This polypeptide (beta') was synthesized by translational read-through of the beta- globin mRNA UGA terminator and was mediated primarily by an endogenous tRNA coded for by the mitochondria. This mitochondrial tRNA, when charged, could be preferentially bound, in high salt, to benzoylated DEAE-cellulose, a characteristic of a tRNATrp. The synthesis of beta- mediated by this mitochondrial tRNATrp was significantly reduced when the translation system was prepared from an isogenic [psi-] strain. Evidence for a nuclear-coded tRNA, also able to suppress the beta-globin mRNA UGA terminator in [psi+] but not [psi-] lysates, was also obtained. The presence of these endogenous UGA suppressor activities in the yeast cell-free system should allow successful in vitro translation of mitochondrial mRNAs.  相似文献   

12.
The coding properties of individual poly(A)+ protamine mRNA subcomponents have been explored by analysis of their translation products in two different cell-free protein synthesis systems, the rabbit reticulocyte lysate and the wheat germ S-30, both of which can translate total protamine mRNA. The products synthesized in the reticulocyte lysate in the presence of total poly(A)+ PmRNA consisted mainly of protamine components CII and CIII with component CI only a minor product. However, in the wheat germ S-30, the same mRNA preparation supported the synthesis of all three protamine components, in approximately equal amounts. In addition a new polypeptide, a putative fourth protamine component, labelled CO, was also synthesized. The translation products of subcomponents of poly(A)+ PmRNA separated as individual bands on polyacrylamide gels were similarly analyzed and it was shown that each of the isolated poly(A)+ PmRNA species could stimulate the incorporation of [3H]arginine into protamines in both translational systems. Although each mRNA band stimulated the synthesis of one particular protamine polypeptide predominantly in a given cell-free system, the same RNA preparation was found to direct preferentially the synthesis of a different protamine component in the second cell-free system. The products synthesized in the rabbit reticulocyte lysate in the presence of the individual mRNA species still showed component CI present as a minor product.  相似文献   

13.
Anti-messenger oligodeoxynucleotides covalently linked to an intercalating agent were tested for their ability to inhibit translation of Trypanosoma brucei mRNAs in a cell-free system. The sequence of these oligodeoxynucleotides was complementary to part of the 35-nucleotide (nt) sequence which is present at the 5' end of all trypanosome mRNAs (the so-called mini-exon sequence). In a rabbit reticulocyte lysate, a nonadeoxynucleotide linked to an acridine derivative, specifically inhibited protein synthesis from T. brucei mRNAs much more efficiently than unmodified oligodeoxynucleotides of similar length. These oligodeoxynucleotides were tested on cultured trypanosomes. The acridine-linked nonadeoxynucleotide had a lethal effect on the parasites. No effect was observed with the homologous unmodified 9-mer nor with those 9-mers linked to the acridine derivative which were not complementary to the mini-exon sequence. These effects are probably a result of hybrid formation between the anti-messenger and mini-exon sequence. Trypanocidal activity of the acridine-modified nonadeoxynucleotide is most likely due to (i) increased affinity for its target, (ii) improved resistance to 3' exonucleases, and (iii) promoted membrane penetration of living parasites.  相似文献   

14.
Insulin modulation of apolipoprotein B gene expression was studied at the translational level by the use of a cell-free translation system from a hepatoma cell-line, HepG2. Extracts of HepG2 cells lysed with lysolecithin were found to have high in vitro protein synthesizing activity utilizing endogenous mRNA. The level of peptide chain initiation was high, as suggested by a significant inhibition of translation by edeine. The translation products of endogenous mRNA in HepG2 cell-free lysate were probed with anti-apolipoprotein B antibodies to investigate its synthesis. A 550 kilodalton (kDa) polypeptide was selected by a polyclonal antibody, as well as a monoclonal antibody, against the C-terminal end of apolipoprotein B molecule. This in vitro synthesized polypeptide was also found to compare well in size with the in vivo product. The HepG2 lysate was also shown to efficiently synthesize in vitro a number of other proteins including albumin, apolipoprotein E, apolipoprotein A1, and actin. The in vitro synthesis of polypeptides as large as 500 kDa was unexpected and has not previously been demonstrated in a cell-free system. The HepG2 translation system was used to investigate the effect of insulin on the in vitro translation of apolipoprotein B. Lysates prepared from HepG2 cells treated with insulin were found to have lower translational activity (by an average of 52.3%) for apolipoprotein B compared with lysates from control untreated cells. In vitro synthesis of actin and apolipoprotein E were unaffected under these conditions. The insulin-stimulated decline in in vitro apolipoprotein B synthesis was not due to a change in apolipoprotein B mRNA levels as determined by slot- and Northern-blot analyses, suggesting that the inhibitory effect of insulin may be exerted partly at the level of apolipoprotein B mRNA translation.  相似文献   

15.
Ten species of reovirus mRNAs were synthesized by incubating ATP, CTP, GTP, and UTP with reovirus particles which had been treated with chymotrypsin. The mRNAs obtained promote the synthesis of seven or more proteins in a cell-free system prepared from mouse L fibroblasts and the mobilities of these proteins during electrophoresis through polyacrylamide gels are indistinguishable from those of reo capsid proteins. Three antisera were prepared in rabbits: the first against the large size class of reo virion proteins, the second against the medium, and the third against the small. From the proteins whose synthesis was directed in the cell-free system by reo mRNAs each antiserum precipitates only those which correspond in size to the virion proteins against which the antiserum was prepared. The translation of reo mRNA occurs on large polysomal structures. Translation of peptide chains is initiated in the reo mRNA-directed cell-free system for at least 30 min. The average half-life of the various reo mRNAs during protein synthesis in our system is about 15 min. The optimal ionic conditions for reo mRNA translation are very different from those for encephalomyocarditis virus mRNA translation.  相似文献   

16.
Antisense oligodeoxynucleotides (ODNs) have been applied to regulate gene expression using cell-free media or animal cells. Here we demonstrate the specific inhibition of barley alpha-amylase gene expression by synthetic antisense ODNs. In a cell free system using wheat-germ extracts, 5 microM of a 20-mer antisense ODN prevented the synthesis of the polypeptide corresponding to the predetermined length of alpha-amylase translated in vitro, whereas there was no effect on other protein synthesis. Furthermore, in cultured aleurone cells, alpha-amylase activity was efficiently decreased by addition of ODNs. At the concentrations higher than 5 microM, antisense ODN inhibited alpha-amylase gene expression almost completely. These results imply that ODN could transport into the cultured aleurone cells crossing the cell membrane, and regulate specific gene expression. This simple model system could be applicable not only for the analysis of the alpha-amylase multigene family in barley but also for studying functions of cryptic genes in higher plant.  相似文献   

17.
When the export of E. coli SecM is blocked, a 17 amino acid motif near the C terminus of the protein induces a translation arrest from within the ribosome tunnel. Here we used a recently described application of fluorescence resonance energy transfer (FRET) to gain insight into the mechanism of translation arrest. We found that the SecM C terminus adopted a compact conformation upon synthesis of the arrest motif. This conformational change did not occur spontaneously, but rather was induced by the ribosome. Translation arrest required both compaction of the SecM C terminus and the presence of key residues in the arrest motif. Further analysis showed that the arrested peptidyl-tRNA was resistant to puromycin treatment and revealed additional changes in the ribosome-nascent SecM complex. Based on these observations, we propose that translation arrest results from a series of reciprocal interactions between the ribosome and the C terminus of the nascent SecM polypeptide.  相似文献   

18.
Effect of complementary oligonucleotides and their reactive derivatives on translation of mouse immunoglobulin G kappa light chain was investigated. It was found that oligonucleotide pTGCTCTGGTTT and shorter oligonucleotides complementary to the coding sequence of the mRNA (nucleotides 205-215) do not arrest translation of the mRNA in the rabbit reticulocyte cell-free translation system. Preincubation of the mRNA with the alkylating 4-(N-2-chloroethyl-N-methylamino)benzyl-5'-phosphamide derivative of the oligonucleotide completely suppresses the synthesis of the protein thus demonstrating higher efficiency of the reactive oligonucleotide derivatives as inhibitors of the mRNA function.  相似文献   

19.
20.
An 11S protein composed of six polypeptide chains was previously purified from a salt extract of dog pancreas microsomal membranes and shown to be required for translocation of nascent secretory protein across the microsomal membrane (Wistar and Blobel 1980 Proc. Natl. Acad. Sci. U. S. A. 77:7112-7116). This 11S protein, termed signal recognition protein (SRP), has been shown here (a) to inhibit translation in the wheat germ cell-free system selectively of mRNA for secretory protein (bovine preprolactin) but not of mRNA for cytoplasmic protein (alpha and beta chain of rabbit globin); (b) to bind with relatively low affinity (apparent KD less than 5 x 10(-5)) to monomeric wheat germ ribosomes; and (c) to bind selectively and with 6,000-fold higher affinity (apparent KD less than 8 x 10(-9)) to wheat germ ribosomes engaged in the synthesis of secretory protein but not to those engaged in the synthesis of cytoplasmic protein. Low- and high- affinity binding as well as the selective translation-inhibitory effect were abolished after modification of SRP by N-ethyl maleimide. High- affinity binding and the selective translation-inhibitory effect of SRP were largely abolished when the leucine (Leu) analogue beta-hydroxy leucine was incorporated into the nascent secretory polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号