首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The parasite Toxoplasma gondii can lead to toxoplasmosis in those who are immunocompromised. To combat the infection, the enzyme responsible for nucleotide synthesis thymidylate synthase–dihydrofolate reductase (TS–DHFR) is a suitable drug target. We have used virtual screening to determine novel allosteric inhibitors at the interface between the two TS domains. Selected compounds from virtual screening inhibited TS activity. Thus, these results show that allosteric inhibition by small drug-like molecules can occur in T. gondii TS–DHFR and pave the way for new and potent species-specific inhibitors.  相似文献   

2.
The bifunctional enzyme thymidylate synthase–dihydrofolate reductase (TS–DHFR) plays an essential role in DNA synthesis and is unique to several species of pathogenic protozoans, including the parasite Toxoplasma gondii. Infection by T. gondii causes the prevalent disease toxoplasmosis, for which TS–DHFR is a major therapeutic target. Here, we design peptides that target the dimer interface between the TS domains of bifunctional T. gondii TS–DHFR by mimicking β‐strands at the interface, revealing a previously unknown allosteric target. The current study shows that these β‐strand mimetic peptides bind to the apo‐enzyme in a species‐selective manner to inhibit both the TS and distal DHFR. Fluorescence spectroscopy was used to monitor conformational switching of the TS domain and demonstrate that these peptides induce a conformational change in the enzyme. Using structure‐guided mutagenesis, nonconserved residues in the linker between TS and DHFR were identified that play a key role in domain–domain communication and in peptide inhibition of the DHFR domain. These studies validate allosteric inhibition of apo‐TS, specifically at the TS–TS interface, as a potential target for novel, species‐specific therapeutics for treating T. gondii parasitic infections and overcoming drug resistance.  相似文献   

3.
胸苷酸合成酶表达调控的分子机制   总被引:3,自引:0,他引:3  
胸苷酸合成酶(thymidylate synthase,TS)是生物体内催化胸苷酸合成所必需的酶.多年来一直作为肿瘤化疗的重要靶酶。对TS基因调控机制的研究表明:基因扩增、转录、翻译和翻译后过程都参与了TS表达的调控。先前的研究表明:TS可与自身的mRNA结合形成TS-mRNA复合物,使mRNA翻译受阻,5-氟尿嘧啶(5-fluorouracil,5-FU)等抗代谢药物可与TS蛋白结合,结合后的复合物不能与TS mRNA作用,导致体内TS的表达升高,是肿瘤细胞产生抗药性的重要分子机制之一。现对TS基因表达调控研究进展、翻译调控与抗药性产生的分子机制进行综述。  相似文献   

4.
Thymidylate synthase plays a central role in the biosynthesis of thymidylate, an essential precursor for DNA biosynthesis. In addition to its role in catalysis and cellular metabolism, it is now appreciated that thymidylate synthase functons as an RNA binding protein. Specifically, thymidylate synthase binds with high affinity to its own mRNA, resulting in translational repression. An extensive series of experiments has been performed to elucidate the molecular elements underlying the interaction between thymidylate synthase and its own mRNA. In addition to characterization of the underlying cis- and trans-acting elements, recent studies have shown that thymidylate synthase has the capacity to bind specifically to other cellular RNA species. While the biological significance of these other RNA/thymidylate synthase interactions remains to be defined, this work suggests a potential role for TS in coordinately regulating several critical aspects of cellular metabolism.  相似文献   

5.
Enzymes involved in thymidylate biosynthesis, thymidylate synthase (TS), and dihydrofolate reductase (DHFR) are well-known targets in cancer chemotherapy. In this study, we demonstrated for the first time, that human TS and DHFR form a strong complex in vitro and co-localize in human normal and colon cancer cell cytoplasm and nucleus. Treatment of cancer cells with methotrexate or 5-fluorouracil did not affect the distribution of either enzyme within the cells. However, 5-FU, but not MTX, lowered the presence of DHFR-TS complex in the nucleus by 2.5-fold. The results may suggest the sequestering of TS by FdUMP in the cytoplasm and thereby affecting the translocation of DHFR-TS complex to the nucleus. Providing a strong likelihood of DHFR-TS complex formation in vivo, the latter complex is a potential new drug target in cancer therapy. In this paper, known 3D structures of human TS and human DHFR, and some protozoan bifunctional DHFR-TS structures as templates, are used to build an in silico model of human DHFR–TS complex structure, consisting of one TS dimer and two DHFR monomers. This complex structure may serve as an initial 3D drug target model for prospective inhibitors targeting interfaces between the DHFR and TS enzymes.  相似文献   

6.
Agrawal N  Lesley SA  Kuhn P  Kohen A 《Biochemistry》2004,43(32):10295-10301
The ThyA gene that encodes for thymidylate synthase (TS) is absent in the genomes of a large number of bacteria, including several human pathogens. Many of these bacteria also lack the genes for dihydrofolate reductase (DHFR) and thymidine kinase and are totally dependent on an alternative enzyme for thymidylate synthesis. Thy1 encodes flavin-dependent TS (FDTS, previously denoted as TSCP) and shares no sequence homology with classical TS genes. Mechanistic studies of a FDTS from Thermotoga maritima (TM0449) are presented here. Several isotopic labeling experiments reveal details of the catalyzed reaction, and a chemical mechanism that is consistent with the experimental data is proposed. The reaction proceeds via a ping-pong mechanism where nicotinamide binding and release precedes the oxidative half-reaction. The enzyme is primarily pro-R specific with regard to the nicotinamide (NADPH), the oxidation of which is the rate-limiting step of the whole catalytic cascade. An enzyme-bound flavin is reduced with an isotope effect of 25 (consistent with H-tunneling) and exchanges protons with the solvent prior to the reduction of an intermediate methylene. A quantitative assay was developed, and the kinetic parameters were measured. A significant NADPH substrate inhibition and large K(M) rationalized the slow activity reported for this enzyme in the past. These and other findings are compared with classical TS (ThyA) catalysis in terms of kinetic and molecular mechanisms. The differences between the FDTS proposed mechanism and that of the classical TS are striking and invoke the notion that mechanism-based drugs will selectively inhibit FDTS and will not have much effect on human (and other eukaryotes) TS. Since TS activity is essential to DNA replication, the unique mechanism of FDTS makes it an attractive target for antibiotic drug development.  相似文献   

7.
The folate biosynthetic pathway and its key enzyme dihydrofolate reductase (DHFR) is a popular target for drug development due to its essential role in the synthesis of DNA precursors and some amino acids. Despite its importance, little is known about plant DHFRs, which, like the enzymes from the malarial parasite Plasmodium, are bifunctional, possessing DHFR and thymidylate synthase (TS) domains. Here using genetic knockout lines we confirmed that either DHFR‐TS1 or DHFR‐TS2 (but not DHFR‐TS3) was essential for seed development. Screening mutated Arabidopsis thaliana seeds for resistance to antimalarial DHFR‐inhibitor drugs pyrimethamine and cycloguanil identified causal lesions in DHFR‐TS1 and DHFR‐TS2, respectively, near the predicted substrate‐binding site. The different drug resistance profiles for the plants, enabled by the G137D mutation in DHFR‐TS1 and the A71V mutation in DHFR‐TS2, were consistent with biochemical studies using recombinant proteins and could be explained by structural models. These findings provide a great improvement in our understanding of plant DHFR‐TS and suggest how plant‐specific inhibitors might be developed, as DHFR is not currently targeted by commercial herbicides.  相似文献   

8.
A novel flavin-dependent thymidylate synthase was identified recently as an essential gene in many archaebacteria and some pathogenic eubacteria. This enzyme, ThyX, is a potential antibacterial drug target, since humans and most eukaryotes lack the thyX gene and depend upon the conventional thymidylate synthase (TS) for their dTMP requirements. We have cloned and overexpressed the thyX gene (Rv2754c) from Mycobacterium tuberculosis in Escherichia coli. The M.tuberculosis ThyX (MtbThyX) enzyme complements the E.coli chi2913 strain that lacks its conventional TS activity. The crystal structure of the homotetrameric MtbThyX was determined in the presence of the cofactor FAD and the substrate analog, 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdUMP). In the active site, which is formed by three monomers, FAD is bound in an extended conformation with the adenosine ring in a deep pocket and BrdUMP in a closed conformation near the isoalloxazine ring. Structure-based mutational studies have revealed a critical role played by residues Lys165 and Arg168 in ThyX activity, possibly by governing access to the carbon atom to be methylated of a totally buried substrate dUMP.  相似文献   

9.
In Plasmodium falciparum, dihydrofolate reductase and thymidylate synthase activities are conferred by a single 70-kDa bifunctional polypeptide (DHFR-TS, dihydrofolate reductase-thymidylate synthase) which assembles into a functional 140-kDa homodimer. In mammals, the two enzymes are smaller distinct molecules encoded on different genes. A 27-kDa amino domain of malarial DHFR-TS is sufficient to provide DHFR activity, but the structural requirements for TS function have not been established. Although the 3'-end of DHFR-TS has high homology to TS sequences from other species, expression of this protein fragment failed to yield active TS enzyme, and it failed to complement TS(-) Escherichia coli. Unexpectedly, even partial 5'-deletion of full-length DHFR-TS gene abolished TS function on the 3'-end. Thus, it was hypothesized that the amino end of the bifunctional parasite protein plays an important role in TS function. When the 27-kDa amino domain (DHFR) was provided in trans, a previously inactive 40-kDa carboxyl-domain from malarial DHFR-TS regained its TS function. Physical characterization of the "split enzymes" revealed that the 27- and the 40-kDa fragments of DHFR-TS had reassembled into a 140-kDa hybrid complex. Thus, in malarial DHFR-TS, there are physical interactions between the DHFR domain and the TS domain, and these interactions are necessary to obtain a catalytically active TS. Interference with these essential protein-protein interactions could lead to new selective strategies to treat malaria resistant to traditional DHFR-TS inhibitors.  相似文献   

10.
We developed an immunoprecipitation-RNA-random PCR (rPCR) method to isolate cellular RNA sequences that bind to the folate-dependent enzyme thymidylate synthase (TS). Using this approach, nine different cellular RNAs that formed a ribonucleoprotein (RNP) complex with thymidylate synthase (TS) in human colon cancer cells were identified. RNA binding experiments revealed that seven of these RNAs bound TS with relatively high affinity (IC50 values ranging from 1.5 to 6 nM). One of the RNAs was shown to encode the interferon (IFN)-induced 15 kDa protein. Western immunoblot analyses demonstrated that the level of IFN-induced 15 kDa protein was significantly decreased in human colon cancer H630-R10 cells compared with parent H630 cells. While the level of IFN-induced 15 kDa mRNA expression was the same in parent and TS-overexpressing cell lines, the level of IFN-induced 15 kDa RNA bound to TS in the form of a RNP complex was markedly higher in H630-R10 cells relative to parent H630 cells. These studies begin to define a number of cellular target RNA sequences with which TS interacts and suggest that these TS protein-cellular RNA interactions may have a biological role.  相似文献   

11.
L Liu  D V Santi 《Biochemistry》1992,31(22):5100-5104
The conserved Asn 229 of thymidylate synthase (TS) forms a cyclic hydrogen bond network with the 3-NH and 4-O of the nucleotide substrate dUMP. The Asn 229 to Asp mutant of Lactobacillus casei thymidylate synthase (TS N229D) has been prepared, purified, and investigated. Steady-state kinetic parameters of TS N229D show 3.5- and 10-fold increases in the Km values of CH2H4folate and dUMP, respectively, and a 1000-fold decrease in kcat. Most important, the Asp 229 mutation changes the substrate specificity of TS to an enzyme which recognizes and methylates dCMP in preference to dUMP. With TS N229D the Km for dCMP is bout 3-fold higher than for dUMP, and the Km for CH2H4folate is increased about 5-fold; however, the kcat for dCMP methylation is 120-fold higher than that for dUMP methylation. Specificity for dCMP versus dUMP, as measured by kcat/Km, changes from negligible with wild-type TS to about a 40-fold increase with TS N229D. TS N229D reacts with CH2H4folate and FdUMP or FdCMP to form ternary complexes which are analogous to the TS-FdUMP-CH2H4folate complex. From what is known of the mechanism and structure of TS, the dramatic change in substrate specificity of TS N229D is proposed to involve a hydrogen bond network between Asp 229 and the 3-N and 4-NH2 of the cytosine heterocycle, causing protonation of the 3-N and stabilization of a reactive imino tautomer. A similar mechanism is proposed for related enzymes which catalyze one-carbon transfers to cytosine heterocycles.  相似文献   

12.
The design and synthesis of multisubstrate analog enzyme inhibitors offer new opportunities in the creation of potent, highly specific drug molecules. Selected examples of inhibitors of 1-carbon transfer serve to illustrate the potential of this approach. Inhibitors of indole-N-methyltransferase, L-aspartyl transcarbamoylase, and thymidylate synthase are illustrative of many compounds that have demonstrated considerable specificity and potency. Several of these inhibitors and the rationale for their syntheses are described.  相似文献   

13.
Thymidylate synthase (TS), a half-the-sites reactive enzyme, catalyzes the final step in the de novo biosynthesis of deoxythymidine monophosphate, dTMP, required for DNA replication. The cocrystal structure of TS from Pneumocystis carinii (PcTS), a new drug target for an important pathogen, with its substrate, deoxyuridine monophosphate (dUMP), and a cofactor mimic, CB3717, was determined. The structure, solved at 2.6 A resolution, shows an asymmetric dimer with two molecules of the substrate dUMP bound yet only one molecule of cofactor analogue bound. The structural evidence reveals that upon binding cofactor analogue and forming a covalent bond from the nucleophilic cysteine to the substrate, dUMP, at one active site, PcTS undergoes a conformational change that renders the opposite monomer incapable of forming a covalent bond or binding a molecule of cofactor analogue. The communication pathway between the two active sites is evident, allowing a structural definition of the basis of half-the-sites reactivity for thymidylate synthase and providing an example of such a mechanism for other half-the-sites reactive enzymes.  相似文献   

14.
We have determined the kinetic parameters of human recombinant thymidylate synthase (hrTS) with its natural substrate, dUMP, and E-5-(2-bromovinyl)-2(')-deoxyuridine monophosphate (BVdUMP), a nucleotide derivative believed to be the active species of the novel anticancer drug NB1011. NB1011 is activated by hrTS and is selectively toxic to high thymidylate synthase expressing tumor cells. BVdUMP undergoes hrTS-catalyzed thiol-dependent transformation. dUMP and BVdUMP act as competitive hrTS substrates. The natural folate cofactor, CH(2)-THF, inhibits the TS-catalyzed reaction with BVdUMP. We suggest that lower folate levels found in tumor cells favor TS-catalyzed BVdUMP transformation, which, in addition to higher levels of TS expression in tumor cells, contributes to the favorable therapeutic index of the drug NB1011.  相似文献   

15.
Thymidylate synthase (TS) is the target in colon cancer therapeutic protocols utilizing such drugs as 5-fluorouracil and raltitrexed. The effectiveness of these treatments is hampered by emerging drug resistance, usually related to increased levels of TS. Human TS (hTS) is unique among thymidylate synthases from all species examined as its loop 181-197 can assume two main conformations related by rotation of 180 degrees. In one conformation, "active", the catalytic Cys-195 is positioned in the active site; in the other conformation, "inactive", it is at the subunit interface. Also, in the active conformation, region 107-128 has one well-defined conformation while in the inactive conformation this region assumes multiple conformations and is disordered in crystals. The native protein exists in apparent equilibrium between the two conformational states, while the enzyme liganded with TS inhibitors assumes the active conformation. The native protein has been reported to bind to several mRNAs, including its own mRNA, but upon ligation, RNA binding activity is lost. Ligation of TS by inhibitors also stabilizes it to turnover. Since currently used TS-directed drugs stabilize the active conformation and slow down the enzyme degradation, it is postulated that inhibitors of hTS stabilizing the inactive conformation of hTS should cause a down-regulation in enzyme levels as well as inactivate the enzyme.  相似文献   

16.
17.
Thymidylate deprivation brings about "thymineless death" in prokaryotes and eukaryotes. Although the precise mechanism for thymineless death has remained elusive, inhibition of the enzyme thymidylate synthase (TS), which catalyzes the de novo synthesis of TMP, has served for many years as a basis for chemotherapeutic strategies. Numerous studies have identified a variety of cellular responses to thymidylate deprivation, including disruption of DNA replication and induction of DNA breaks. Since stalled or collapsed replication forks and strand breaks are generally viewed as being recombinogenic, it is not surprising that a link has been demonstrated between recombination induction and thymidylate deprivation in bacteria and lower eukaryotes. A similar connection between recombination and TS inhibition has been suggested by studies done in mammalian cells, but the relationship between recombination and TS inhibition in mammalian cells had not been demonstrated rigorously. To gain insight into the mechanism of thymineless death in mammalian cells, in this work we undertook a direct investigation of recombination in human cells treated with raltitrexed (RTX), a folate analog that is a specific inhibitor of TS. Using a model system to study intrachromosomal homologous recombination in cultured fibroblasts, we provide definitive evidence that treatment with RTX can stimulate accurate recombination events in human cells. Gene conversions not associated with crossovers were specifically enhanced several-fold by RTX. Additional experiments demonstrated that recombination events provoked by a double-strand break (DSB) were not impacted by treatment with RTX, nor was error-prone DSB repair via nonhomologous end-joining. Our work provides evidence that thymineless death in human cells is not mediated by corruption of DSB repair processes and suggests that an increase in chromosomal recombination may be an important element of cellular responses leading to thymineless death.  相似文献   

18.
Cryptosporidium is the causative agent of a gastrointestinal disease, cryptosporidiosis, which is often fatal in immunocompromised individuals and children. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer, bacterial infections, and malaria. Cryptosporidium hominis has a bifunctional thymidylate synthase and dihydrofolate reductase enzyme, compared to separate enzymes in the host. We evaluated lead compound 1 from a novel series of antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines as an inhibitor of Cryptosporidium hominis thymidylate synthase with selectivity over the human enzyme. Complementing the enzyme inhibition compound 1 also has anti-cryptosporidial activity in cell culture. A crystal structure with compound 1 bound to the TS active site is discussed in terms of several van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate (TS), cofactor NADPH and inhibitor methotrexate (DHFR). Another crystal structure in complex with compound 1 bound in both the TS and DHFR active sites is also reported here. The crystal structures provide clues for analog design and for the design of ChTS–DHFR specific inhibitors.  相似文献   

19.
In a panel of 18 colon cancer cell lines we found that the thymidylate synthase (TS) genotype was related to TS enzyme activity, but not to TS protein and mRNA levels. In addition, no relation with drug sensitivity was observed. TS genotyping of different tissues from 78 colorectal cancer patients revealed a high level of homology in polymorphic status between normal and malignant tissues and the heterozygous genotype to be the most frequent.  相似文献   

20.
Du C  Niu R  Chu E  Zhang P  Lin X 《Journal of biochemistry》2006,139(5):913-920
The thymidylate synthase (TS), an important target for many anticancer drugs, has been cloned from different species. But the cDNA property and function of TS in zebrafish are not well documented. In order to use zebrafish as an animal model for screening novel anticancer agents, we isolated TS cDNA from zebrafish and compared its sequence with those from other species. The open reading frame (ORF) of zebrafish TS cDNA sequence was 954 nucleotides, encoding a 318-amino acid protein with a calculated molecular mass of 36.15 kDa. The deduced amino acid sequence of zebrafish TS was similar to those from other organisms, including rat, mouse and humans. The zebrafish TS protein was expressed in Escherichia coli and purified to homogeneity. The purified zebrafish TS showed maximal activity at 28 degrees C with similar K(m) value to human TS. Western immunoblot assay confirmed that TS was expressed in all the developmental stages of zebrafish with a high level of expression at the 1-4 cell stages. To study the function of TS in zebrafish embryo development, a short hairpin RNA (shRNA) expression vector, pSilencer 4.1-CMV/TS, was constructed which targeted the protein-coding region of zebrafish TS mRNA. Significant change in the development of tail and epiboly was found in zebrafish embryos microinjected pSilencer4.1-CMV/TS siRNA expression vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号