首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations, Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2 concentrations within the range 3-186μmol/L and the biochemical composition, carbonic anhydrase (CA),and nitrate reductase activities of the cells were investigated. Chlorophylls (Chl), carotenoids, carbonhydrate,and protein contents were enhanced to varying extents with increasing CO2 concentration from 3-186μmol/L. The CO2 enrichment significantly increased the Chl a/Chl b ratio in ChloreUa pyrenoidosa, but not in Chlamydomonas reinhardtii. The CO2 concentration had significant effects on CA and nitrate reductase activity. Elevating CO2 concentration to 186μmol/L caused a decline in intracellular and extracellullar CA activity. Nitrate reductase activity, under either light or dark conditions, in C. reinhardtii and C. pyrenoidosa was also significantly decreased with CO2 enrichment. From this study, it can be concluded that CO2 enrichment can affect biochemical composition, CA, and nitrate reductase activity, and that the biochemical response was species dependent.  相似文献   

2.
为了探讨淡水绿藻在适应CO2浓度变化过程中细胞形态和结构的变化,通过普通显微镜和电子显微镜观察了在不同CO2浓度培养下的莱因衣藻(Chlamydomonas reinhardtii Dang)和斜生栅藻(Scenedesmus obliquus Kütz)细胞.结果表明,CO2浓度变化对莱因衣藻细胞体积没有明显的影响,但斜生栅藻在低浓度CO2培养下细胞体积明显增大,并可见细胞内含有大量颗粒.两种绿藻细胞的超微结构显示,在低浓度CO2培养下,细胞内叶绿体数目明显减少,并可见明显的淀粉盘包围的蛋白核;细胞内还可见大量的淀粉粒.而在高浓度CO2培养下,这两种绿藻细胞内均未见明显的蛋白核和大量淀粉粒出现.  相似文献   

3.
In an assay of carbonic anhydrase (CA), NAH14CO3 soltution at the bottom of a sealed vessel releases 14CO2, which diffuses to the top of the vessel to be assimilated by photosynthesizing Chlamydomonas reinhardtii cells that have been adapted to a low-CO2 environment. The assay is initiated by illuminating the cells and is stopped by turning the light off and killing the cells with acid. Enzyme activity was estimated from acid-stable radioactivity. With bovine CA, 1.5 Wilbur-Anderson units (WAU) was consistently measured at 5- to 6-fold above background. Sonicated whole cells of air-adapted wild-type C. reinhardtii had 740 [plus or minus] 12.4 WAU/mg chlorophyll (Chl). Sonicated chloroplasts from a mixotrophically grown wall-less strain, cw-15, had 35.5 [plus or minus] 2.6 WAU/mg Chl, whereas chloroplasts from wall-less external CA mutant strain cia5/cw-15 had 33.8 [plus or minus] 1.9 WAU/mg Chl. Sonicated chloroplasts from the wall-less mutant strain cia-3/cw-15, believed to lack an internal CA, had 2.8 [plus or minus] 3.2 WAU/mg Chl. Sonicated whole cells from cia3/cw-15 had 2.8 [plus or minus] 7.8 WAU/mg Chl. Acetazolamide, ethoxyzolamide, and p-aminomethylbenzene sulfonamide (Mafenide) at 100 [mu]M inhibited CA in sonicated chloroplasts from cia-5/cw-15. Treatment at 80[deg]C for 10 min inhibited this CA activity by 90.8 [plus or minus] 3.6%. Thus, a sensitive 14C assay has confirmed the presence of a CA in cw-15 and cia-5/cw-15 chloroplasts and the lack of a CA in cia-3/cw-15 chloroplasts. Our results indicate that HCO3- is the inorganic carbon species that is accumulated by chloroplasts of Chlamydomonas and that chloroplastic CA is responsible for the majority of internal CA activity.  相似文献   

4.
The effects of phosphorus, Zn2+, CO2, and light intensity on growth, biochemical composition, and the activity of extracellular carbonic anhydrase (CA) in Isochrysis galbana were investigated. A significant change was observed when the concentration of phosphorus in the medium was increased from 5 μmol/L to 1000 μmol/L affecting I. galbana’s cell density, biochemical composition, and the activity of extracellular CA. Phosphorous concentration of 50 μmol/L to 500 μmol/L was optimal for this microalgae. The Zn2+ concentration at 10 μmol/L was essential to maintain optimal growth of the cells, but a higher concentration of Zn2+ (≥ 1000 μmol/L) inhibited the growth of I. galbana. High CO2 concentrations (43.75 mL/L) significantly increased the cell densities compared to low CO2 concentrations (0.35 mL/L). However, the activity of extracellular CA decreased significantly with an increasing concentration of CO2. The activity of extracellular CA at a CO2 concentration of 43.75 mL/L was approximately 1/6 of the activity when the CO2 concentration was at 0.35 mL/L CO2. Light intensity from 4.0 mW/cm2 to 5.6 mW/cm2 was beneficial for the growth, biochemical composition and the activity of extracellular CA. The lower and higher light intensity was restrictive for growth and changed its biochemical composition and the activity of extracellular CA. These results indicate that phosphorus, Zn2+, CO2, and light intensity are important factors that impact growth, biochemical composition and the activity of extracellular CA in I. galbana.  相似文献   

5.
6.
7.
8.
From high-CO2 (5% CO2) grown unicellular green alga, Chlamydomonas reinhardtii, carbonic anhydrase (CA) was isolated by affinity chromatography and characterized. Isolated CA was identified as an isozyme (CA2) which is the product from the second gene CAH2 by peptide sequencing. The CA2 was inactivated by dithiothreitol. This treatment caused dissociation of CA2 into the large (38 kDa) and small subunits (4243 Da). The molecular mass of the CA2 holoenzyme measured by low-angle laser light-scattering photometry and precision differential refractometry combined with gel-filtration HPLC was 87.9 kDa. These results and gene structure indicate that CA2 is a heterotetramer consisting of two large and two small subunits linked by disulfide bonds like CA1, which is the CAH1 gene product. The specific activity of CA2 purified by anion-exchange HPLC was 3300 units per mg protein, which was approximately 1.6 times higher than that of CA1. Therefore, it was concluded that two structurally related isozymes, CA1 and CA2, are present in the wild type cells of C. reinhardtii and differentially regulated by the atmospheric CO2 concentration.  相似文献   

9.
Using mass-spectrometric measurements of 18O exchange from 13C18O2 we determined the activity of carbonic anhydrase (CA; EC 4.2.1.1) in chloroplast envelope membranes isolated from Chlamydomonas reinhardtii cw-15. Our results show an enrichment of CA activity in these fractions relative to the activity in the crude chloroplast. The envelope CA activity increased about 8-fold during the acclimation to low-CO2 conditions and was completely induced within the first 4 h after the transfer to air levels of CO2. The CA-activity was not dissociated from envelope membranes after salt treatment. In addition, no cross-reactivity with other CA isoenzymes of Chlamydomonas was observed in our chloroplast envelope membranes. All these observations indicated that the protein responsible for this activity was a new CA isoenzyme, which was an integral component of the chloroplast envelopes from Chlamydomonas. The catalytic properties of the envelope CA activity were completely different from those of the thylakoid isoenzyme, showing a high requirement for Mg2+ and a high sensitivity to ethoxyzolamide. Analysis of the integral envelope proteins showed that there were no detectable differences between high- and low-inorganic carbon (Ci) cells, suggesting that the new CA activity was constitutively expressed in both high- and low-Ci cells. Two different high-Ci-requiring mutants of C. reinhardtii, cia-3 and pmp-1, had a reduced envelope CA activity. We propose that this activity could play a role in the uptake of inorganic carbon at the chloroplast envelope membranes.  相似文献   

10.
11.
The activity of deoxyribonucleic acid polymerase in some species of algae   总被引:2,自引:1,他引:1  
1. The activities of DNA polymerase preparations from the algae Euglena gracilis, Chlamydomonas reinhardtii, Chlorella pyrenoidosa, Anabaena variabilis and Anacystis nidulans were measured. The blue-green algae Anabaena and Anacystis contain a 5-20-fold higher activity of the enzyme than do the green algae. DNA polymerases from the blue-green algae show a pH optimum of 9 and prefer a relatively low Mg(2+) concentration (1-3mm). DNA polymerases from the green algae, however, display a pH optimum between 7.5 and 8.5 and an optimum Mg(2+) concentration of 8mm. With all algae, a higher polymerase activity was obtained with denatured salmon sperm DNA as template than with native DNA. All four deoxyribonucleoside 5'-triphosphates must be present for full activity of the polymerases. 2. With one exception, the deoxyribonuclease activities in the preparations, measured under conditions of the DNA polymerase assay, are low compared with corresponding preparations from Escherichia coli. Chlamydomonas extracts contain a high deoxyribonuclease activity. 3. After purification on columns of DEAE-cellulose, the polymerase activity was linear over a wide range of protein concentrations, except for Chlamydomonas preparations, where the observed deviation from linearity was probably attributable to the high nuclease activity. 4. DNA polymerases from all these algae bind strongly to DNA-cellulose; 6-40-fold purifications of the enzyme were obtained by chromatography on columns of DNA-cellulose. 5. The partially purified polymerases of Euglena and Anacystis are heat-labile but become much more heat-stable when tested in the presence of DNA.  相似文献   

12.
Hydroxypyruvate and glyoxylate reductase activities were measured in extracts from the unicellular green algae, Chlamydomonas reinhardtii, Chlorella vulgaris, Chlorella miniata, and Dunaliella tertiolecta. Only trace levels of these activities were detectable in the blue-green algae, Anabaena variabilis and Synechococcus leopoliensis. A NADH-dependent hydroxypyruvate reductase was purified 130-fold from Chlamydomonas to a specific activity of 18 mumol NADH oxidized X min-1 X mg protein-1. The pH optimum was 5.0 to 7.0 in the presence of phosphate and the Km(hydroxypyruvate) was 0.05 mM. Substrate inhibition by hydroxypyruvate could be partially relieved by phosphate. The molecular weight, estimated by gel filtration, was 96,000. NADH-dependent glyoxylate reductase activity copurified with the hydroxypyruvate reductase. The Km(glyoxylate) was 10 mM, and the pH optimum was 4.5 to 8.5. A specific NADPH:glyoxylate reductase was also partially purified which did not reduce hydroxypyruvate or pyruvate. The NADPH:glyoxylate reductase had a Km(glyoxylate) of 0.1 mM and a pH optimum of 5.0 to 9.5. These reductases were compared with the pyruvate reductase of Chlamydomonas which also catalyzes the reduction of both hydroxypyruvate and glyoxylate.  相似文献   

13.
以普通小球藻(Chlorella vulgaris)为研究材料探讨不同镉浓度对小球藻生理生化特性的影响。研究结果表明: 在5—40 μmol/L的Cd2+胁迫下, 普通小球藻的蛋白质、多糖和叶绿素含量均表现为随着Cd2+浓度的增加呈现逐渐增加的趋势, 30 μmol/L略高于对照组后又逐渐降低; 小球藻细胞中SOD活性及过氧化氢(H2O2)含量表现出先增加后减弱的趋势, 35 μmol/L时达到最大; 而小球藻中MDA含量随着Cd2+浓度的升高一直增加。这说明在重金属镉胁迫下小球藻会通过不同的生理应答来维持自身的正常生长代谢。  相似文献   

14.
15.
Aquatic photosynthetic organisms, such as the green alga Chlamydomonas reinhardtii, respond to low CO(2) conditions by inducing a CO(2) concentrating mechanism (CCM). Carbonic anhydrases (CAs) are important components of the CCM. CAs are zinc-containing metalloenzymes that catalyze the reversible interconversion of CO(2) and HCO(3)(-). In C. reinhardtii, there are at least 12 genes that encode CA isoforms, including three alpha, six beta, and three gamma or gamma-like CAs. The expression of the three alpha and six beta genes has been measured from cells grown on elevated CO(2) (having no active CCM) versus cells growing on low levels of CO(2) (with an active CCM) using northern blots, differential hybridization to DNA chips and quantitative RT-PCR. Recent RNA-seq profiles add to our knowledge of the expression of all of the CA genes. In addition, protein content for some of the CA isoforms was estimated using antibodies corresponding to the specific CA isoforms: CAH1/2, CAH3, CAH4/5, CAH6, and CAH7. The intracellular location of each of the CA isoforms was elucidated using immunolocalization and cell fractionation techniques. Combining these results with previous studies using CA mutant strains, we will discuss possible physiological roles of the CA isoforms concentrating on how these CAs might contribute to the acquisition and retention of CO(2) in C. reinhardtii.  相似文献   

16.
A photosystem for solar energy conversion, comprised of a culture of green microalgae supplemented with methyl viologen, is proposed. The capture of solar energy is based on the Mehler reaction. The reduction of methyl viologen by the photosynthetic apparatus and its subsequent reoxidation by oxygen produces hydrogen peroxide. This is a rich-energy compound that can be used as a nonpollutant and efficient fuel. Four different species of green microalgae, Chlamydomonas reinhardtii (21gr) C. reinhardtii (CW15), Chlorella fusca, and Monoraphidium braunii, were tested as a possible biocatalyst. Each species presented a different efficiency level in the transformation of energy. Azide was an efficient inhibitor of the hydrogen peroxide scavenging system while maintaining photosynthetic activity of the microalgae, and thus significantly increasing the production of the photosystem. The strain C. reinhardtii (21gr), among the species studied, was the most efficient with an initial production rate of 185 micromol H(2)O(2)/h x mg Chl and reaching a maximum of 42.5 micromol H(2)O(2)/mg Chl when assayed in the presence of azide inhibitor.  相似文献   

17.
藻类氮的生态辐是指在一定氮浓度范围内藻类能生长和繁殖的浓度范围。它由藻类生长的最佳氮浓度、氮适宜生长范围和氮耐受限度构成。为了定量计算藻类的氮生态幅,在室内培养条件下,研究了低磷(0.48 μmol/L)、中磷(0.97 μmol/L)和高磷(1.45 μmol/L)3种不同磷起始浓度条件下不同氮对塔玛亚历山大藻细胞数和最大比生长率的影响,依据Shelford耐受性定律建立了塔玛亚历山大藻生长的氮耐受性模型,并得到了藻类生长的最佳氮浓度、氮适宜生长范围和氮耐受范围的定量表达。结果表明,在低磷、中磷和高磷条件下,当氮浓度小于适合藻类生长的最佳氮浓度时,藻类细胞数和最大比生长率均随着氮浓度的增大而增大;当氮浓度大于适合藻类生长的最佳氮浓度时,藻类细胞数和最大比生长率均随着氮浓度的增大而减小。藻类生长的氮耐受性模型与谢尔福德耐受定律较为吻合,定量得到在低磷、中磷和高磷培养条件下塔玛亚历山大藻的最佳氮浓度分别为30.36、62.07和77.85 μmol/L;氮适宜生长范围分别为18.30-42.42、37.71-86.43和41.52-114.18 μmol/L;氮耐受限度分别为6.24-54.48、13.35-110.79和5.19-150.51 μmol/L。研究显示不同磷起始浓度条件下,藻类的氮生态幅也不相同。  相似文献   

18.
External carbonic anhydrase (CA) was detected in whole cells of alkaline-grown Chlorella saccharophila but was suppressed by growth at acid pH or growth on elevated levels of CO2. Internal CA activity was measured potentiometrically as an increase in activity in cell extracts over that of intact cells. Cells grown under all conditions had equal levels of internal CA activity. Two isozymes were identified after electrophoretic separation of soluble proteins on cellulose acetate plates. The fast isozyme was found in cells grown under all conditions, whereas the slow isozyme was found only in cells grown at alkaline pH. Western blot analysis following sodium dodecyl sulfate-polyacrylamide gel electrophoresis using antibodies produced against the periplasmic form of CA from Chlamydomonas reinhardtii revealed a single band at 39 kD, which did not change in intensity between growth conditions and was associated only with proteins eluted from the fast band. The slow isozyme was inactivated by incubation of cell extract at 30[deg]C and by incubation in 10 mM dithiothreitol, whereas the internal form was unaffected. These results indicate that external and internal forms of CA differ in structure and their activities respond differently to environmental conditions.  相似文献   

19.
Cadmium (Cd(2+)) or copper (Cu(2+)) ions are toxic for Chlamydomonas reinhardtii growth, at 300 microM, and the alga may accumulate about 0.90+/-0.02 and 0.64+/-0.02% of its dry weight, respectively. Metal contamination changes the elemental composition of dried alga biomass, which indicates the possibility to use C. reinhardtii as biosensor and bioremediator of the aquatic contamination by heavy metals. Either, Cd(2+) or Cu(2+), inhibits about 20% of the nitrate consumption rate by the cells, while only Cd(2+) increases about 40% the sulfate consumption rate. The presence of 1 mM calcium (Ca(2+)) in the culture medium increases the C. reinhardtii productivity (about 50%), the nitrate uptake rate (about 20%) and the sulfate uptake rate (about 30%). In addition, Ca(2+) overcomes the Cd(2+) (300 microM) toxicity by decreasing (about 35%) the intracellular accumulation of metal. Sulfur-starvation induces in C. reinhardtii the expression of serine acetyltransferase and O-acetylserine(thiol)lyase activities, but decreases 50% the consumption rate of nitrate by the cells. Sulfate is also required for the full expression of the nitrate reductase (NR), nitrite reductase (NiR) and glutamate synthase activities.  相似文献   

20.
Tang D  Han W  Li P  Miao X  Zhong J 《Bioresource technology》2011,102(3):3071-3076
In this study, Scenedesmus obliquus SJTU-3 and Chlorella pyrenoidosa SJTU-2 were cultivated with 0.03%, 5%, 10%, 20%, 30%, 50% CO(2). The two microalgae could grow at 50% CO(2) (>0.69 g L(-1)) and grew well (>1.22 g L(-1)) under CO(2) concentrations ranging from 5% to 20%. Both of the two examined microalgae showed best growth potential at 10% CO(2). The maximum biomass concentration and CO(2) biofixation rate were 1.84 g L(-1) and 0.288 g L(-1) d(-1) for S. obliquus SJTU-3 and 1.55 g L(-1) and 0.260 g L(-1) d(-1) for C. pyrenoidosa SJTU-2, respectively. The main fatty acid compositions of the two examined microalgae were fatty acids with C(16)-C(18) (>94%) under different CO(2) levels. High CO(2) levels (30-50%) were favorable for the accumulation of total lipids and polyunsaturated fatty acids. The present results suggested that the two microalgae be appropriate for mitigating CO(2) in the flue gases and biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号