首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polar auxin transport, which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers, mediates various processes of plant growth and development. Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein, GNOM. However, the mediation of auxin influx carrier recycling is poorly understood. Here, we report that overexpression of OsAGAP, an ARF-GTPase-activating protein in rice, stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1. AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption. Furthermore, OsAGAP is involved in actin cytoskeletal organization, and its overexpression tends to reduce the thickness and bundling of actin filaments. Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells, and was only slightly promoted when the actin filaments were completely disrupted by Lat B. Thus, we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.  相似文献   

2.
In land plants polar auxin transport is one of the substantial processes guiding whole plant polarity and morphogenesis. Directional auxin fluxes are mediated by PIN auxin efflux carriers, polarly localized at the plasma membrane. The polarization of exocytosis in yeast and animals is assisted by the exocyst: an octameric vesicle‐tethering complex and an effector of Rab and Rho GTPases. Here we show that rootward polar auxin transport is compromised in roots of Arabidopsis thaliana loss‐of‐function mutants in the EXO70A1 exocyst subunit. The recycling of PIN1 and PIN2 proteins from brefeldin–A compartments is delayed after the brefeldin‐A washout in exo70A1 and sec8 exocyst mutants. Relocalization of PIN1 and PIN2 proteins after prolonged brefeldin‐A treatment is largely impaired in these mutants. At the same time, however, plasma membrane localization of GFP:EXO70A1, and the other exocyst subunits studied (GFP:SEC8 and YFP:SEC10), is resistant to brefeldin‐A treatment. In root cells of the exo70A1 mutant, a portion of PIN2 is internalized and retained in specific, abnormally enlarged, endomembrane compartments that are distinct from VHA‐a1‐labelled early endosomes or the trans‐Golgi network, but are RAB‐A5d positive. We conclude that the exocyst is involved in PIN1 and PIN2 recycling, and thus in polar auxin transport regulation.  相似文献   

3.
The actin filament (F-actin) cytoskeleton associates dynamically with the plasma membrane and is thus ideally positioned to participate in endocytosis. Indeed, a wealth of genetic and biochemical evidence has confirmed that actin interacts with components of the endocytic machinery, although its precise function in endocytosis remains unclear. Here, we use 4D microscopy to visualize the contribution of actin during compensatory endocytosis in Xenopus laevis eggs. We show that the actin cytoskeleton maintains exocytosing cortical granules as discrete invaginated compartments, such that when actin is disrupted, they collapse into the plasma membrane. Invaginated, exocytosing cortical granule compartments are directly retrieved from the plasma membrane by F-actin coats that assemble on their surface. These dynamic F-actin coats seem to drive closure of the exocytic fusion pores and ultimately compress the cortical granule compartments. Active Cdc42 and N-WASP are recruited to exocytosing cortical granule membranes before F-actin coat assembly and coats assemble by Cdc42-dependent, de novo actin polymerization. Thus, F-actin may power fusion pore resealing and function in two novel endocytic capacities: the maintenance of invaginated compartments and the processing of endosomes.  相似文献   

4.
Formation of large perinuclear brefeldin A (BFA)-induced compartments is a characteristic feature of root apex cells, but it does not occur in shoot apex cells. BFA-induced compartments have been studied mostly using low resolution fluorescence microscopy techniques. Here, we have employed a high-resolution ultrastructural method based on ultra rapid freeze fixation of samples in order to study the formation of BFA-induced compartments in intact maize root epidermis cells in detail. This approach reveals five novel findings. Firstly, plant TGN/PGN elements are not tubular networks, as generally assumed, but rather vesicular compartments. Secondly, TGN/PGN vesicles interact with one another extensively via stalk-like connections and even fuse together via bridge-like structures. Thirdly, BFA-induced compartments are formed via extensive homotypic fusions of the TGN/PGN vesicles. Fourthly, multivesicular bodies (MVBs) are present within the BFA-induced compartments. Fifthly, mitochondria and small vacuoles accummulate abundantly around the large perinuclear BFA-induced compartments.Key Words: brefeldin A, BFA-induced compartments, golgi, endosomes, root apex  相似文献   

5.
The formation of synapses and the proper construction of neural circuits depend on signaling pathways that regulate cytoskeletal structure and dynamics. After the mutual recognition of a growing axon and its target, multiple signaling pathways are activated that regulate cytoskeletal dynamics to determine the morphology and strength of the connection. By analyzing Drosophila mutations in the cytoplasmic FMRP interacting protein Cyfip, we demonstrate that this component of the WAVE complex inhibits the assembly of filamentous actin (F-actin) and thereby regulates key aspects of synaptogenesis. Cyfip regulates the distribution of F-actin filaments in presynaptic neuromuscular junction (NMJ) terminals. At cyfip mutant NMJs, F-actin assembly was accelerated, resulting in shorter NMJs, more numerous satellite boutons, and reduced quantal content. Increased synaptic vesicle size and failure to maintain excitatory junctional potential amplitudes under high-frequency stimulation in cyfip mutants indicated an endocytic defect. cyfip mutants exhibited upregulated bone morphogenetic protein (BMP) signaling, a major growth-promoting pathway known to be attenuated by endocytosis at the Drosophila NMJ. We propose that Cyfip regulates synapse development and endocytosis by inhibiting actin assembly.  相似文献   

6.
Polar auxin transport (PAT), which is controlled precisely by both auxin efflux and influx facilitators and mediated by the cell trafficking system, modulates organogenesis, development and root gravitropism. ADP-ribosylation factor (ARF)-GTPase protein is catalyzed to switch to the GTP-bound type by a guanine nucleotide exchange factor (GEF) and promoted for hybridization to the GDP-bound type by a GTPase-activating protein (GAP). Previous studies showed that auxin efflux facilitators such as PIN1 are regulated by GNOM, an ARF-GEF, in Arabidopsis. In the November issue of The Plant Journal, we reported that the auxin influx facilitator AUX1 was regulated by ARF-GAP via the vesicle trafficking system.1 In this addendum, we report that overexpression of OsAGAP leads to enhanced root gravitropism and propose a new model of PAT regulation: a loop mechanism between ARF-GAP and GEF mediated by vesicle trafficking to regulate PAT at influx and efflux facilitators, thus controlling root development in plants.Key Words: ADP-ribosylation factor (ARF), ARF-GAP, ARF-GEF, auxin, GNOM, polar transport of auxinPolar auxin transport (PAT) is a unique process in plants. It results in alteration of auxin level, which controls organogenesis and development and a series of physiological processes, such as vascular differentiation, apical dominance, and tropic growth.2 Genetic and physiological studies identified that PAT depends on efflux facilitators such as PIN family proteins and influx facilitators such as AUX1 in Arabidopsis.Eight PIN family proteins, AtPIN1 to AtPIN8, exist in Arabidopsis. AtPIN1 is located at the basal side of the plasma membrane in vascular tissues but is weak in cortical tissues, which supports the hypothesis of chemical pervasion.3 AtPIN2 is localized at the apical side of epidermal cells and basally in cortical cells.1,4 GNOM, an ARF GEF, modulates the localization of PIN1 and vesicle trafficking and affects root development.5,6 The PIN auxin-efflux facilitator network controls root growth and patterning in Arabidopsis.4 As well, asymmetric localization of AUX1 occurs in the root cells of Arabidopsis plants,7 and overexpression of OsAGAP interferes with localization of AUX1.1 Our data support that ARF-GAP mediates auxin influx and auxin-dependent root growth and patterning, which involves vesicle trafficking.1 Here we show that OsAGAP overexpression leads to enhanced gravitropic response in transgenic rice plants. We propose a model whereby ARF GTPase is a molecular switch to control PAT and root growth and development.Overexpression of OsAGAP led to reduced growth in primary or adventitious roots of rice as compared with wild-type rice.1 Gravitropism assay revealed transgenic rice overxpressing OsAGAP with a faster response to gravity than the wild type during 24-h treatment. However, 1-naphthyl acetic acid (NAA) treatment promoted the gravitropic response of the wild type, with no difference in response between the OsAGAP transgenic plants and the wild type plants (Fig. 1). The phenotype of enhanced gravitropic response in the transgenic plants was similar to that in the mutants atmdr1-100 and atmdr1-100/atpgp1-100 related to Arabidopsis ABC (ATP-binding cassette) transporter and defective in PAT.8 The physiological data, as well as data on localization of auxin transport facilitators, support ARF-GAP modulating PAT via regulating the location of the auxin influx facilitator AUX1.1 So the alteration in gravitropic response in the OsAGAP transgenic plants was explained by a defect in PAT.Open in a separate windowFigure 1Gravitropism of OsAGAP overexpressing transgenic rice roots and response to 1-naphthyl acetic acid (NAA). (A) Gravitropism phenotype of wild type (WT) and OsAGAP overexpressing roots at 6 hr gravi-stimulation (top panel) and 0 hr as a treatment control (bottom panel). (B) Time course of gravitropic response in transgenic roots. (C and D) results correspond to those in (A and B), except for treatment with NAA (5 × 10−7 M).The polarity of auxin transport is controlled by the asymmetric distribution of auxin transport proteins, efflux facilitators and influx carriers. ARF GTPase is a key member in vesicle trafficking system and modulates cell polarity and PAT in plants. Thus, ARF-GDP or GTP bound with GEF or GAP determines the ARF function on auxin efflux facilitators (such as PIN1) or influx ones (such as AUX1).ARF1, targeting ROP2 and PIN2, affects epidermal cell polarity.9 GNOM is involved in the regulation of PIN1 asymmetric localization in cells and its related function in organogenesis and development.6 Although VAN3, an ARF-GAP in Arabidopsis, is located in a subpopulation of the trans-Golgi transport network (TGN), which is involved in leaf vascular network formation, it does not affect PAT.10 OsAGAP possesses an ARF GTPase-activating function in rice.11 Specifically, our evidence supports that ARF-GAP bound with ARF-GTP modulates PAT and gravitropism via AUX1, mediated by vesicle trafficking, including the Golgi stack.1Therefore, we propose a loop mechanism between ARF-GAP and GEF mediated by the vascular trafficking system in regulating PAT at influx and efflux facilitators, which controls root development and gravitropism in plants (Fig. 2). Here we emphasize that ARF-GEF catalyzes a conversion of ARF-bound GDP to GTP, which is necessary for the efficient delivery of the vesicle to the target membrane.12 An opposite process of ARF-bound GDP to GTP is promoted by ARF-GTPase-activating protein via binding. A loop status of ARF-GTP and ARF-GDP bound with their appurtenances controls different auxin facilitators and regulates root development and gravitropism.Open in a separate windowFigure 2Model for ARF GTPase as a molecular switch for the polar auxin transport mediated by the vesicle traffic system.  相似文献   

7.
植物生长素极性运输调控机理的研究进展   总被引:1,自引:0,他引:1  
李俊华  种康 《植物学报》2006,23(5):466-477
生长素极性运输特异地调控植物器官发生、发育和向性反应等生理过程。本文综述和分析了生长素极性运输的调控机制。分子遗传和生理学研究证明极性运输这一过程是由生长素输入载体和输出载体活性控制的。小G蛋白ARF附属蛋白GEF和GAP分别调控输出载体(PIN1)和输入载体(AUX1)的定位和活性, 并影响高尔基体等介导的细胞囊泡运输系统, 小G蛋白ROP也参与输出载体PIN2活性的调节。本 文基于作者的研究工作提出小G蛋白在调控生长素极性运输中的可能作用模式。  相似文献   

8.
植物生长素极性运输调控机理的研究进展   总被引:7,自引:2,他引:5  
李俊华  种康 《植物学通报》2006,23(5):466-477
生长素极性运输特异地调控植物器官发生、发育和向性反应等生理过程。本文综述和分析了生长素极性运输的调控机制。分子遗传和生理学研究证明极性运输这一过程是由生长素输入载体和输出载体活性控制的。小G蛋白ARF附属蛋白GEF和GAP分别调控输出载体(PINI)和输入载体(AUX1)的定位和活性。并影响高尔基体等介导的细胞囊泡运输系统,小G蛋白ROP也参与输出载体PIN2活性的调节。本文基于作者的研究工作提出小G蛋白在调控生长素极性运输中的可能作用模式。  相似文献   

9.
The directional transport of the plant hormone auxin has been identified as central element of axis formation and patterning in plants. This directionality of transport depends on gradients, across the cell, of auxin-efflux carriers that continuously cycle between plasma membrane and intracellular compartments. This cycling has been proposed to depend on actin filaments. However, the role of actin for the polarity of auxin transport has been disputed. The organization of actin, in turn, has been shown to be under control of auxin. By overexpression of the actin-binding protein talin, we have generated transgenic rice (Oryza sativa) lines, where actin filaments are bundled to variable extent and, in consequence, display a reduced dynamics. We show that this bundling of actin filaments correlates with impaired gravitropism and reduced longitudinal transport of auxin. We can restore a normal actin configuration by addition of exogenous auxins and restore gravitropism as well as polar auxin transport. This rescue is mediated by indole-3-acetic acid and 1-naphthyl acetic acid but not by 2,4-dichlorophenoxyacetic acid. We interpret these findings in the context of a self-referring regulatory circuit between polar auxin transport and actin organization. This circuit might contribute to the self-amplification of auxin transport that is a central element in current models of auxin-dependent patterning.In addition to its role as central regulator of growth, auxin is involved in pattern formation (Berleth and Sachs, 2001). Auxin-dependent patterning is linked to a directional flow of auxin, a cell-to-cell transport described by a modified chemiosmotic model (Lomax et al., 1995). The self-amplification of cell polarity by a polar auxin flow has been linked with directional intracellular traffic. Positive feedback of auxin on this traffic in combination with mutual competition of neighboring cells for free auxin are central for pattern formation (Merks et al., 2007). This so-called auxin canalization model has been originally deduced from an analysis of vascular bundles in regenerating stems (Sachs, 1969) but was successfully applied to venation in developing leaves (Sachs, 2000) and the patterning of leaf primordia (Reinhard et al., 2000). Thus, patterning would ultimately depend on the directionality of auxin transport.In the meantime, several plant-specific pin-formed (PIN) proteins have been identified as candidates for auxin-efflux carriers (for review, see Chen and Masson, 2006), and despite a long debate on the actual function of these proteins, the most recent results show that they are in fact rate-limiting for auxin efflux (Petrášek et al., 2006). PIN proteins undergo constitutive recycling between plasma membranes and endosomal compartments (Geldner et al., 2001; Paciorek et al., 2005). This recycling seems to be under control of small GTPases, the ADP-ribosylation factors (ARFs), and their associated guanine nucleotide exchange factors (Geldner et al., 2003). Mutation of one of these guanine nucleotide exchange factors is responsible for the phenotype of the Arabidopsis (Arabidopsis thaliana) mutant gnom causing a mislocalization of PIN1 that becomes trapped in intracellular compartments. This cellular mutant phenotype can be phenocopied by treatment of the wild type with brefeldin A, a fungal toxin that selectively blocks ARF-guanine nucleotide exchange factors (Geldner et al., 2001). This suggests that ARF-dependent vesicle trafficking is involved in the polar distribution of PIN proteins and, thus, in cell polarity.The internalization of PIN1 caused by brefeldin A is arrested by the actin inhibitor cytochalasin D (Geldner et al., 2001). Conversely, PIN3 is rapidly internalized upon treatment with cytochalasin (Friml et al., 2002). Moreover, the potent actin inhibitor latrunculin B (LatB) impaired the polar localization of PIN1 in protophloem cells, and with even higher sensitivity, of the auxin-efflux carrier AUX1 (Kleine-Vehn et al., 2006), and inhibition of myosin function with butane-2,3 monoxime inhibited basipetal auxin transport in flower stalks of Arabidopsis (Holweg, 2007). These findings suggest that actin participates in the cycling of some of the PIN proteins.The relation between actin and auxin seems to be bidirectional but complex; as early as 1937, Sweeney and Thimann (1937) demonstrated that auxin stimulates cytoplasmic streaming in oat (Avena sativa) coleoptiles. However, when streaming was inhibited by cytochalasin B, this delayed the onset of auxin transport but left the rate of auxin transport unaltered (Cande et al., 1973). The stimulation of coleoptile growth by auxin is accompanied by a debundling of actin bundles into finer strands (Waller et al., 2002; Holweg et al., 2004).Inhibition of auxin transport impaired the organization of actin in zygotes of the brown alga Fucus and inhibited signal-induced developmental polarity (Sun et al., 2004). Since the cycling of PIN proteins is regulated by auxin itself (Paciorek et al., 2005), there might be a feedback loop between actin and auxin. Consistent with this view, binding sites for 1-N-naphthylphthalamic acid (NPA), an inhibitor of polar auxin transport, have been found to cosediment with actin (Butler et al., 1998).However, models that link the polar localization of the PIN proteins to actin-dependent transport (Muday and Murphy, 2002; Blakeslee et al., 2005) are challenged by experiments where PIN proteins maintained their polar localization, although actin filaments had been eliminated (for instance, by cytochalasin D [Geldner et al., 2001], by low concentrations of LatB [Kleine-Vehn et al., 2006], or by the phytotropin NPA or artificial auxin 2,4-dichlorophenoxyacetic acid [2,4-D; Rahman et al., 2007]).On the other hand, a recent report (Dhonukshe et al., 2008) demonstrated that 2,3,5-triiodobenzoic acid (TIBA) and the phytotropin 2-(1-pyrenoyl) benzoic acid induced actin bundling not only in plants, but also in mammalian and yeast cells, i.e. in cells that are not to be expected to use auxin as signaling compound. This was interpreted as supportive evidence for a role of actin filaments in polar auxin transport. However, it was mentioned in the same work that NPA failed to cause actin bundling in nonplant cells, suggesting that its mode of action must be different. This is consistent with classical work demonstrating that different phytotropins act on different targets (for review, see Rubery, 1990). Summarizing, although actin seems to play a role for the polarity of auxin fluxes, this issue is, first, not simple and, second, far from being understood.The relationship between actin and auxin was studied in the context of patterned cell division using the tobacco (Nicotiana tabacum) cell line BY-2 (Maisch and Nick, 2007). In this cell line, cell division is partially synchronized within a cell file, leading to higher frequencies of files with even cell numbers compared with files with uneven cell numbers. This synchrony can be interrupted by low concentrations of NPA, an inhibitor of polar auxin flux. To address the role of actin in this synchrony, the actin-binding protein mouse talin was overexpressed in those cells, resulting in a bundled configuration of actin and a loss of synchrony similar to the effect of NPA (indicative for a reduced auxin transport). By addition of auxins that are transported in a polar fashion (but not auxin per se), both the normal organization of actin (with fine strands) and the synchrony of cell division could be restored. This demonstrated that debundled actin strands are necessary and sufficient for the synchrony of cell division. However, although being indicative for a functional auxin transport, this synchrony is not a direct measure of auxin transport.To measure auxin transport directly, it would be necessary to administer radioactively labeled auxin to one pole of the file and to quantify the radioactivity recovered in the opposite pole of the file. This is not possible in a tobacco cell culture that has to be cultivated as suspension in a liquid medium. We therefore have returned to the classical Graminean coleoptile system (for a classical review, see Goldsmith, 1977), where auxin has been discovered originally by its polar transport and where auxin transport can be easily measured by following the distribution of radioactively labeled indole-3-acetic acid (IAA) fed to the coleoptile apex. We generated transgenic rice (Oryza sativa) lines expressing the actin-binding protein talin to variable levels. In those lines, as a consequence of talin overexpression, actin filaments were bundled to variable extent. The bundling of actin filaments was accompanied by a reduced polar transport of auxin. We could restore a debundled configuration of actin by addition of exogenous auxin, and by this treatment we were able to restore auxin transport. This rescue was mediated by transportable auxin species, but not by the artificial auxin 2,4-D that lacks polar transport. Using this approach, we can now probe the causal relationship between actin configuration and polar auxin transport directly.  相似文献   

10.
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins mediate cellular membrane fusion events and provide a level of specificity to donor-acceptor membrane interactions. However, the trafficking pathways by which individual SNARE proteins are targeted to specific membrane compartments are not well understood. In neuroendocrine cells, synaptosome-associated protein of 25 kDa (SNAP25) is localized to the plasma membrane where it functions in regulated secretory vesicle exocytosis, but it is also found on intracellular membranes. We identified a dynamic recycling pathway for SNAP25 in PC12 cells through which plasma membrane SNAP25 recycles in approximately 3 h. Approximately 20% of the SNAP25 resides in a perinuclear recycling endosome-trans-Golgi network (TGN) compartment from which it recycles back to the plasma membrane. SNAP25 internalization occurs by constitutive, dynamin-independent endocytosis that is distinct from the dynamin-dependent endocytosis that retrieves secretory vesicle constituents after exocytosis. Endocytosis of SNAP25 is regulated by ADP-ribosylation factor (ARF)6 (through phosphatidylinositol bisphosphate synthesis) and is dependent upon F-actin. SNAP25 endosomes, which exclude the plasma membrane SNARE syntaxin 1A, merge with those derived from clathrin-dependent endocytosis containing endosomal syntaxin 13. Our results characterize a robust ARF6-dependent internalization mechanism that maintains an intracellular pool of SNAP25, which is compatible with possible intracellular roles for SNAP25 in neuroendocrine cells.  相似文献   

11.
The lipid polyunsaturated fatty acids are highly enriched in synaptic membranes, including synaptic vesicles, but their precise function there is unknown. Caenorhabditis elegans fat-3 mutants lack long-chain polyunsaturated fatty acids (LC-PUFAs); they release abnormally low levels of serotonin and acetylcholine and are depleted of synaptic vesicles, but the mechanistic basis of these defects is unclear. Here we demonstrate that synaptic vesicle endocytosis is impaired in the mutants: the synaptic vesicle protein synaptobrevin is not efficiently retrieved after synaptic vesicles fuse with the presynaptic membrane, and the presynaptic terminals contain abnormally large endosomal-like compartments and synaptic vesicles. Moreover, the mutants have abnormally low levels of the phosphoinositide phosphatase synaptojanin at release sites and accumulate the main synaptojanin substrate phosphatidylinositol 4,5-bisphosphate at these sites. Both synaptobrevin and synaptojanin mislocalization can be rescued by providing exogenous arachidonic acid, an LC-PUFA, suggesting that the endocytosis defect is caused by LC-PUFA depletion. By showing that the genes fat-3 and synaptojanin act in the same endocytic pathway at synapses, our findings suggest that LC-PUFAs are required for efficient synaptic vesicle recycling, probably by modulating synaptojanin localization at synapses.  相似文献   

12.
Endocytosis and vesicle recycling via secretory endosomes are essential for many processes in multicellular organisms. Recently, higher plants have provided useful experimental model systems to study these processes. Endocytosis and secretory endosomes in plants play crucial roles in polar tip growth, a process in which secretory and endocytic pathways are integrated closely. Plant endocytosis and endosomes are important for auxin-mediated cell-cell communication, gravitropic responses, stomatal movements, cytokinesis and cell wall morphogenesis. There is also evidence that F-actin is essential for endocytosis and that plant-specific myosin VIII is an endocytic motor in plants. Last, recent results indicate that the trans Golgi network in plants should be considered an integral part of the endocytic network.  相似文献   

13.

Background

Auxin binding protein 1 (ABP1) is a putative auxin receptor and its function is indispensable for plant growth and development. ABP1 has been shown to be involved in auxin-dependent regulation of cell division and expansion, in plasma-membrane-related processes such as changes in transmembrane potential, and in the regulation of clathrin-dependent endocytosis. However, the ABP1-regulated downstream pathway remains elusive.

Methodology/Principal Findings

Using auxin transport assays and quantitative analysis of cellular morphology we show that ABP1 regulates auxin efflux from tobacco BY-2 cells. The overexpression of ABP1can counterbalance increased auxin efflux and auxin starvation phenotypes caused by the overexpression of PIN auxin efflux carrier. Relevant mechanism involves the ABP1-controlled vesicle trafficking processes, including positive regulation of endocytosis of PIN auxin efflux carriers, as indicated by fluorescence recovery after photobleaching (FRAP) and pharmacological manipulations.

Conclusions/Significance

The findings indicate the involvement of ABP1 in control of rate of auxin transport across plasma membrane emphasizing the role of ABP1 in regulation of PIN activity at the plasma membrane, and highlighting the relevance of ABP1 for the formation of developmentally important, PIN-dependent auxin gradients.  相似文献   

14.
Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling of the AMPA-type glutamate receptor (AMPAR) subunit GLR-1 in C. elegans neurons. Here we show that RAB-6.2 and a close paralog, RAB-6.1, together regulate retrograde transport in both neurons and non-neuronal tissue. Mutants for rab-6.1 or rab-6.2 fail to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. Loss of both rab-6.1 and rab-6.2 results in an additive effect on GLR-1 retrograde recycling, indicating that these two C. elegans Rab6 isoforms have overlapping functions. MIG-14 (Wntless) protein, which undergoes retrograde recycling, undergoes a similar degradation in intestinal epithelia in both rab-6.1 and rab-6.2 mutants, suggesting a broader role for these proteins in retrograde transport. Surprisingly, MIG-14 is localized to separate, spatially segregated endosomal compartments in rab-6.1 mutants compared to rab-6.2 mutants. Our results indicate that RAB-6.1 and RAB-6.2 have partially redundant functions in overall retrograde transport, but also have their own unique cellular- and subcellular functions.  相似文献   

15.
Polar auxin transport (PAT) plays a critical role in the regulation of plant growth and development. Auxin influx carrier AUX1 is predominantly localized to the upper side of specific root cells in Arabidopsis. Overexpression of OsAGAP, an ARF-GTPase activating protein in rice, could induce the accumulation of AUX1. But the mechanism is poorly known. Here we reported that over-expression of ARF-GAP could reduce the thickness and bundling of microfilament (MF) which possibly could greatly interfere with the endocytosis of AUX1 early endosome; but not the exocytosis of AUX1 recycling endosome. Therefore, AFR-GAP over-expression suppressed-MF bundling is likely involved in regulating endocytosis of Auxin influx carrier AUX1 and in mediating auxin dependent plant development.      相似文献   

16.
Once adherens junctions (AJs) are formed between polarized epithelial cells they must be maintained because AJs are constantly remodeled in dynamic epithelia. AJ maintenance involves endocytosis and subsequent recycling of E-cadherin to a precise location along the basolateral membrane. In the Drosophila pupal eye epithelium, Rho1 GTPase regulates AJ remodeling through Drosophila E-cadherin (DE-cadherin) endocytosis by limiting Cdc42/Par6/aPKC complex activity. We demonstrate that Rho1 also influences AJ remodeling by regulating the formation of DE-cadherin–containing, Rab11-positive recycling endosomes in Drosophila postmitotic pupal eye epithelia. This effect of Rho1 is mediated through Rok-dependent, but not MLCK-dependent, stimulation of myosin II activity yet independent of its effects upon actin remodeling. Both Rho1 and pMLC localize on endosomal vesicles, suggesting that Rho1 might regulate the formation of recycling endosomes through localized myosin II activation. This work identifies spatially distinct functions for Rho1 in the regulation of DE-cadherin–containing vesicular trafficking during AJ remodeling in live epithelia.  相似文献   

17.
Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles.  相似文献   

18.
In this article, we investigate the contributions of actin filaments and accessory proteins to apical clathrin-mediated endocytosis in primary rabbit lacrimal acini. Confocal fluorescence and electron microscopy revealed that cytochalasin D promoted apical accumulation of clathrin, alpha-adaptin, dynamin, and F-actin and increased the amounts of coated pits and vesicles at the apical plasma membrane. Sorbitol density gradient analysis of membrane compartments showed that cytochalasin D increased [14C]dextran association with apical membranes from stimulated acini, consistent with functional inhibition of apical endocytosis. Recombinant syndapin SH3 domains interacted with lacrimal acinar dynamin, neuronal Wiskott-Aldrich Syndrome protein (N-WASP), and synaptojanin; their introduction by electroporation elicited remarkable accumulation of clathrin, accessory proteins, and coated pits at the apical plasma membrane. These SH3 domains also significantly (p 相似文献   

19.
Rab GTPases play an important regulatory role in early endocytosis. We recently demonstrated that epitope-tagged Rab15 (HArab15) co-localizes with Rab4, -5, and -11 on early endosomal membranes in CHO cells (Zuk, P. A., and Elferink, L. A. (1999) J. Biol. Chem. 274, 22303-22312). To characterize the role of Rab15 in endocytosis, we prepared functional mutants of HArab15 and examined their effects on early endocytic trafficking. Wild-type HArab15 and its constitutively active, GTP-bound mutant (Q67L) reduce fluid phase and receptor-mediated endocytosis without affecting the rate of recycling from early endosomal compartments. Inhibition of early endocytosis appears to be due to a reduction in the rate of homotypic early endosome fusion. Conversely, mutations that constitutively inactivate HArab15 stimulate early endocytosis and the homotypic fusion of early endosomes in vitro. Unlike active forms of HArab15, constitutively inactive HArab15 mutants also affect recycling from early endosomal compartments. Moreover, the two constitutively inactive mutants, GDP-bound HArab15-T22N and the non-nucleotide binding mutant HArab15-N121I, differentially regulate the transit of fluid phase and receptor-mediated endocytic tracers through early/sorting endosomes. Together, these data suggest that HArab15 may counteract the reported stimulatory effect of Rab5 on early endocytosis. Consistent with this, overexpression of constitutively active HArab15-Q67L attenuates Rab5-stimulated endocytosis, whereas Rab5-stimulated endocytosis is augmented in cells overexpressing a constitutively inactive HArab15 mutant defective in guanine nucleotide binding (N121I). Our data indicate that HArab15 differentially regulates distinct steps in membrane trafficking through early/sorting and pericentriolar recycling endosomes.  相似文献   

20.
Visualization of actin dynamics during macropinocytosis and exocytosis   总被引:5,自引:1,他引:4  
Macropinocytosis of newly formed resides and exocytosis of post-lysosomes have been visualized using a green fluorescent protein probe that binds specifically to F-actin filaments. F-actin association with macropinocytosis begins as a V-shaped infolding of the membrane. Vesicle enlargement occurs through an inward movement of the proximal point of the V as well as an outward protrusion at the tip of the V to form an elongated invagination. The protrusion eventually closes at its distal margin to become a vesicle and is moved centripetally while recovering its circular shape. The vesicle loses its actin coat within 1 min after internalization. One hour later, post-lysosomal vesicles became weakly surrounded by actin while still cytoplasmic. Some of these vesicles moved to the plasma membrane, docked, and then expelled their contents. Slightly before the vesicle content began to disappear, an increase in F-actin association with the vesicle was observed. This was followed by rapid contraction of the vesicle and then disappearance of the actin signal once the internal content was released. These results show that dynamic changes in actin filament association with the vesicle membrane accompany both endocytosis and exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号