首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Excitatory amino acid transporters (EAATs) regulate glutamate concentrations in the brain to maintain normal excitatory synaptic transmission. A widely accepted view of transporters is that they consist of a pore with alternating access to the intracellular and extracellular solutions, which serves to couple ion movement to the movement of substrate. However, recent observations that EAATs, and also a number of other neurotransmitter transporters, can also function as ligand-gated chloride channels have blurred the distinctions between transporters and ion channels. Here we show that mutations in the second transmembrane domain (TM2) of EAAT1 alter anion permeation properties without affecting glutamate transport and that a number of TM2 residues are accessible to the external aqueous solution. Furthermore, we demonstrate that the extracellular edge of TM2 is in close proximity to a membrane-associated domain that influences glutamate transport. This study will provide the foundation for beginning to understand how transporters can function as both transporters and ion channels.  相似文献   

3.
Saccharomyces cerevisiae uses glucose preferentially to any other carbon source and this preferential use is ensured by control mechanisms triggered by glucose. The consensus is that inactivation of sugar transporters other than glucose transporters is one of these mechanisms. This inactivation is called catabolite inactivation because of its apparent analogy with the catabolite inactivation of gluconeogenic enzymes. Recently, doubt has been cast on the role of the inactivation of the sugar transporters in controlling the use of glucose because this inactivation neither is specifically triggered by glucose nor specifically affects non-glucose sugar transporters. Based on the fact that this inactivation has been almost exclusively investigated using nitrogen-starved cells, it has been proposed that it might be due to the stimulation of the protein turnover that follows nitrogen starvation. The results obtained in this work support this possibility since they show that the presence of a nitrogen source in the medium strongly inhibited the inactivation. It is concluded that, in growing yeast cells, the contribution of the inactivation by glucose of the non-glucose sugar transporters to the preferential use of glucose is much lower than generally believed.  相似文献   

4.
5.
Plant vacuoles play essential roles in many physiological processes, particularly in mineral nutrition, turgor provision and cellular signalling. The vacuolar membrane, the tonoplast, contains many membrane transporters that are critical in the execution of these processes. However, although increasing knowledge is available about the identity of proteins involved in these processes very little is known about the regulation of tonoplast transporters. By studying the phosphoproteome of tonoplast-enriched membranes, we identified 66 phosphorylation sites on 58 membrane proteins. Amongst these, 31 sites were identified in 28 membrane transporters of various families including tonoplast anion transporters of the CLC family, potassium transporters of the KUP family, tonoplast sugar transporters and ABC transporters. In a number of cases, the detected sites were well conserved across isoforms of one family pointing to common mechanisms of regulation. In other cases, isoform-unique sites were present, suggesting regulatory mechanisms tailored to the function of individual proteins. These results provide the basis for future studies to elucidate the mechanistic regulation of tonoplast membrane transporters.  相似文献   

6.
7.
Precise control of monoamine neurotransmitter levels in the extracellular fluids of the brain is critical in maintaining efficient and robust neurotransmission. High affinity transporters in the solute carrier SLC6A family function in removing monoamines from the neurosynaptic cleft. Emerging evidence suggests that these transporters are only one part of a system of transporters that work in concert to maintain brain homeostasis of monoamines. Here we report the cloning and characterization of a new human plasma membrane monoamine transporter, PMAT. The PMAT cDNA encodes a protein of 530 amino acid residues with 10-12 transmembrane segments. PMAT is not homologous to known neurotransmitter transporters but exhibits low homology to members of the equilibrative nucleoside transporter family. When expressed in Madin-Darby canine kidney cells and Xenopus laevis oocytes, PMAT efficiently transports serotonin (K(m) = 114 mum), dopamine (K(m) = 329 mum), and the neurotoxin 1-methyl-4-phenylpyridinium (K(m) = 33 mum). In contrast, there is no significant interaction of PMAT with nucleosides or nucleobases. PMAT-mediated monoamine transport does not require Na(+) or Cl(-) but appears to be sensitive to changes in membrane potential. Northern blot analysis showed that PMAT is predominantly expressed in the human brain and widely distributed in the central nervous system. These studies demonstrate that PMAT may be a novel low affinity transporter for biogenic amines, which, under certain conditions, might supplement the role of the high affinity transporters in the brain.  相似文献   

8.
Membrane transporters play important roles in mediating chemoresistance and chemosensitivity of tumor cells. Five sets of 5 genes were designed to simultaneously detect drug transporter expression in a single reaction tube using multiplex RT-PCR for 25 genes, including 17 ABC transporters, one non-ABC transporter, 4 SLC transporters, 2 copper transporters and one housekeeping gene. We optimized the multiplex RT-PCR conditions using chemosensitive cancer cells and then validated the system using chemoresistant cancer cells. This reliable multiplex RT-PCR assay can be utilized not only to investigate anticancer drug-resistance mechanisms but also to estimate the efficacy of anticancer chemotherapy in the clinic.  相似文献   

9.
We have cloned and characterized the first member of a novel family of ammonium transporters in plants: AtAMT2 from Arabidopsis thaliana. AtAMT2 is more closely related to bacterial ammonium transporters than to plant transporters of the AMT1 family. The protein was expressed and functionally characterized in yeast. AtAMT2 transported ammonium in an energy-dependent manner. In contrast to transporters of the AMT1 family, however, AtAMT2 did not transport the ammonium analogue, methylammonium. AtAMT2 was expressed more highly in shoots than roots and was subject to nitrogen regulation.  相似文献   

10.
11.
Transporters in the human genome are grouped in solute carrier families (SLC). The SLC6 family is one of the biggest transporter families in the human genome comprising 20 members. It is usually referred to as the neurotransmitter transporter family because its founding members encode transporters for the neurotransmitters GABA, noradrenaline, serotonin and dopamine. The family also includes a number of 'orphan' transporters, the function of which has remained elusive until recently. Identification of the broadly specific neutral amino acid transporter SLC6A19 (also called B(0)AT1) suggested that all orphan transporters may in fact be amino acid transporters. This was subsequently confirmed by the identification of SLC6A20 as the long-sought IMINO system, a proline transporter found in kidney, intestine and brain. Very recently, SLC6A15 was identified as the neutral amino acid transporter B(0)AT2. All amino acid transporters appear to cotransport only 1Na(+) together with the amino acid substrate. Both, B(0)AT1 and B(0)AT2 are chloride independent, whereas IMINO is chloride dependent. The amino acid transporters of the SLC6 family are functionally and sequence related to the recently crystallized leucine transporter from Aquifex aeolicus. The structure elegantly explains many of the mechanistic features of the SLC6 amino acid transporters.  相似文献   

12.
ABC (ATP-binding cassette) transporters play an important role in the communication of various substrates across cell membranes. They are ubiquitous in prokaryotes and eukaryotes, and eukaryotic types (EK-types) are distinguished from prokaryotic types (PK-types) in terms of their genes and domain organizations. The EK-types and PK-types mainly consist of exporters and importers, respectively. Prokaryotes have both the EK-types and the PK-types. The EK-types in prokaryotes are usually called "bacterial multidrug ABC transporters," but they are not well characterized in comparison with the multidrug ABC transporters in eukaryotes. Thus, an exhaustive search of the EK-types among diverse organisms and detailed sequence classification and analysis would elucidate the evolutionary history of EK-types. It would also help shed some light on the fundamental repertoires of the wide variety of substrates through which multidrug ABC transporters in eukaryotes communicate. In this work, we have identified the EK-type ABC transporters in 126 prokaryotes using the profiles of the ATP-binding domain (NBD) of the EK-type ABC transporters from 12 eukaryotes. As a result, 11 clusters were identified from 1,046 EK-types ABC transporters. In particular, two large novel clusters emerged, corresponding to the bacterial multidrug ABC transporters related to the ABCB and ABCC families in eukaryotes, respectively. In the genomic context, most of these genes are located alone or adjacent to genes from the same clusters. Additionally, to detect functional divergences in the NBDs, the Kullback-Leibler divergence was measured among these bacterial multidrug transporters. As a result, several putative functional regions were identified, some corresponding to the predicted secondary structures. We also analyzed a phylogeny of the EK-type ABC transporters in both prokaryotes and eukaryotes, which revealed that the EK-type ABC transporters in prokaryotes have certain repertoires corresponding to the conventional ABC protein groups in eukaryotes. On the basis of these findings, we propose an updated evolutionary hypothesis in which the EK-type ABC transporters in both eukaryotes and prokaryotes consisted of several kinds of ABC transporters in putative ancestor cells before the divergence of eukaryotic and prokaryotic cells.  相似文献   

13.
ATP-binding cassette (ABC) transporters play an important role in driving the exchange of multiple molecules across cell membranes. The plant ABC transporter family is among the largest protein families, and recent progress has advanced our understanding of ABC classification. However, the ancestral form and deep origin of plant ABCs remain elusive. In this study, we identified 59 ABC transporters in Mesostigma viride, a unicellular charophyte algae that represents the earliest diverging lineage of streptophytes, and 1034 ABCs in genomes representing a broad taxonomic sampling from distantly related plant evolutionary lineages, including chlorophytes, charophytes, bryophytes, lycophytes, gymnosperms, basal angiosperms, monocots, and eudicots. We classified the plant ABC transporters by comprehensive phylogenetic analysis of each subfamily. Our analysis revealed the ancestral type of ABC proteins as well as duplication and gene loss during plant evolution, contributing to our understanding of the functional conservation and diversity of this family. In summary, this study provides new insight into the origin and evolution of plant ABC transporters.  相似文献   

14.
Structural Features of the Glutamate Transporter Family   总被引:6,自引:0,他引:6       下载免费PDF全文
Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity. The proteins belong to a large and widespread family of secondary transporters, including bacterial glutamate, serine, and C4-dicarboxylate transporters; mammalian neutral-amino-acid transporters; and an increasing number of bacterial, archaeal, and eukaryotic proteins that have not yet been functionally characterized. Sixty members of the glutamate transporter family were found in the databases on the basis of sequence homology. The amino acid sequences of the carriers have diverged enormously. Homology between the members of the family is most apparent in a stretch of approximately 150 residues in the C-terminal part of the proteins. This region contains four reasonably well-conserved sequence motifs, all of which have been suggested to be part of the translocation pore or substrate binding site. Phylogenetic analysis of the C-terminal stretch revealed the presence of five subfamilies with characterized members: (i) the eukaryotic glutamate transporters, (ii) the bacterial glutamate transporters, (iii) the eukaryotic neutral-amino-acid transporters, (iv) the bacterial C4-dicarboxylate transporters, and (v) the bacterial serine transporters. A number of other subfamilies that do not contain characterized members have been defined. In contrast to their amino acid sequences, the hydropathy profiles of the members of the family are extremely well conserved. Analysis of the hydropathy profiles has suggested that the glutamate transporters have a global structure that is unique among secondary transporters. Experimentally, the unique structure of the transporters was recently confirmed by membrane topology studies. Although there is still controversy about part of the topology, the most likely model predicts the presence of eight membrane-spanning α-helices and a loop-pore structure which is unique among secondary transporters but may resemble loop-pores found in ion channels. A second distinctive structural feature is the presence of a highly amphipathic membrane-spanning helix that provides a hydrophilic path through the membrane. Recent data from analysis of site-directed mutants and studies on the mechanism and pharmacology of the transporters are discussed in relation to the structural model.  相似文献   

15.
The PTR family: a new group of peptide transporters   总被引:21,自引:0,他引:21  
The transport of peptides into cells is a well-documented biological phenomenon which is accomplished by specific, energy-dependent transporters found in a number of organisms as diverse as bacteria and humans. Until recently, the majority of peptide transporters cloned and characterized were found to be proteins of the ATP-binding cassette (ABC) family. We report the identification of a new family of peptide transporters, which we call the PTR family. This group of proteins, distinct from the ABC-type peptide transporters, was uncovered by sequence analyses of a number of recently discovered peptide transport proteins. Alignment of these proteins demonstrated a high number of identical and similar residues and identified conserved glycosylation and phosphorylation sites, as well as a structural motif unique to this group of proteins. Cluster analysis among the proteins indicated these sequences were indeed related and could be further divided into two subfamilies. A phylogenetic analysis of these new peptide transport sequences, compared to over 50 other peptide and membrane-bound transporters, showed that these proteins comprise a distinct, separate group of proteins.  相似文献   

16.
Eukaryotic genomes often encode multiple transporters for the same nutrient. For example, budding yeast has 17 hexose transporters (HXTs), all of which potentially transport glucose. Using mathematical modelling, we show that transporters that use either facilitated diffusion or symport can have a rate-affinity tradeoff, where an increase in the maximal rate of transport decreases the transporter’s apparent affinity. These changes affect the import flux non-monotonically, and for a given concentration of extracellular nutrient there is one transporter, characterised by its affinity, that has a higher import flux than any other. Through encoding multiple transporters, cells can therefore mitigate the tradeoff by expressing those transporters with higher affinities in lower concentrations of nutrients. We verify our predictions using fluorescent tagging of seven HXT genes in budding yeast and follow their expression over time in batch culture. Using the known affinities of the corresponding transporters, we show that their regulation in glucose is broadly consistent with a rate-affinity tradeoff: as glucose falls, the levels of the different transporters peak in an order that mostly follows their affinity for glucose. More generally, evolution is constrained by tradeoffs. Our findings indicate that one such tradeoff often occurs in the cellular transport of nutrients.  相似文献   

17.
Algal blooms produce large quantities of organic matter that is subsequently remineralised by bacterial heterotrophs. Polysaccharide is a primary component of algal biomass. It has been hypothesised that individual bacterial heterotrophic niches during algal blooms are in part determined by the available polysaccharide substrates present. Measurement of the expression of TonB-dependent transporters, often specific for polysaccharide uptake, might serve as a proxy for assessing bacterial polysaccharide consumption over time. To investigate this, we present here high-resolution metaproteomic and metagenomic datasets from bacterioplankton of the 2016 spring phytoplankton bloom at Helgoland island in the southern North Sea, and expression profiles of TonB-dependent transporters during the bloom, which demonstrate the importance of both the Gammaproteobacteria and the Bacteroidetes as degraders of algal polysaccharide. TonB-dependent transporters were the most highly expressed protein class, split approximately evenly between the Gammaproteobacteria and Bacteroidetes, and totalling on average 16.7% of all detected proteins during the bloom. About 93% of these were predicted to take up organic matter, and for about 12% of the TonB-dependent transporters, we predicted a specific target polysaccharide class. Most significantly, we observed a change in substrate specificities of the expressed transporters over time, which was not reflected in the corresponding metagenomic data. From this, we conclude that algal cell wall-related compounds containing fucose, mannose, and xylose were mostly utilised in later bloom stages, whereas glucose-based algal and bacterial storage molecules including laminarin, glycogen, and starch were used throughout. Quantification of transporters could therefore be key for understanding marine carbon cycling.Subject terms: Water microbiology, Molecular ecology, Proteomics  相似文献   

18.
Molecular biology of the blood-brain barrier   总被引:1,自引:0,他引:1  
Molecular biological investigations into the brain capillary endothelium and microvasculature, which forms the blood-brain barrier (BBB) in vivo, can provide the platform for the discovery and the molecular cloning of BBB-specific genes. Novel BBB genes can be discovered with either a genomics-based approach such as subtractive suppressive hybridization, or a proteomics approach using subtractive antibody expression cloning. BBB-specific genes are disproportionately transporter genes encoding either for carrier-mediated transporters, active efflux transporters, or receptor-mediated transporters. The discovery of new BBB transporters can lead to the development of new approaches to brain drug delivery using endogenous brain endothelial transporters.  相似文献   

19.
Insulin's effect on glucose transport activity and the subcellular distribution of glucose transporters have been examined in isolated human abdominal adipose cells, by measuring 3-O-methylglucose transport and specific D-glucose-inhibitable cytochalasin B binding to plasma membranes and low-density microsomes, respectively. Insulin appears to stimulate glucose transport in isolated human adipose cell through the translocation of glucose transporters from a large intracellular pool to the plasma membrane as initially postulated for rat adipose and muscle cells.  相似文献   

20.
Electrochemical potential-driven transporters represent a vast array of proteins with varied substrate specificities. While diverse in size and substrate specificity, they are all driven by electrochemical potentials. Over the past five years there have been increasing numbers of X-ray structures reported for this family of transporters. Structural information is available for five subfamilies of electrochemical potential-driven transporters. No structural information exists for the remaining 91 subfamilies. In this review, the various subfamilies of electrochemical potential-driven transporters are discussed. The seven reported structures for the electrochemical potential-driven transporters and the methods for their crystallization are also presented. With a few exceptions, overall crystallization trends have been very similar for the transporters despite their differences in substrate specificity and topology. Also discussed is why the structural studies on these transporters were successful while others are not as fruitful. With the plethora of transporters with unknown structures, this review provides incentive for crystallization of transporters in the remaining subfamilies for which no structural information exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号