首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
White spot syndrome virus (WSSV), a unique member within the virus family Nimaviridae, is the most notorious aquatic virus infecting shrimp and other crustaceans and has caused enormous economic losses in the shrimp farming industry worldwide. Therefore, a comprehensive understanding of WSSV morphogenesis, structural proteins, and replication is essential for developing prevention measures of this serious parasite. The viral genome is approximately 300kb and contains more than 180 open reading frames (ORF). However, most of proteins encoded by these ORF have not been characterized. Due to the importance of WSSV structural proteins in the composition of the virion structure, infection process and interaction with host cells, knowledge of structural proteins is essential to understanding WSSV entry and infection as well as for exploring effective prevention measures. This review article summarizes mainly current investigations on WSSV structural proteins including the relative quantities, localization, function and protein-protein interactions. Traditional proteomic studies of 1D or 2D gel electrophoresis separations and mass spectrometry (MS) followed by database searches have identified a total of 39 structural proteins. Shotgun proteomics and iTRAQ were initiated to identify more structural proteins. To date, it is estimated that WSSV is assembled by at least 59 structural proteins, among them 35 are defined as the envelope fraction (including tegument proteins) and 9 as nucleocapsid proteins. Furthermore, the interaction within several major structural proteins has also been investigated. This identitification and characterization of WSSV protein components should help in the understanding of the viral assembly process and elucidate the roles of several major structural proteins.  相似文献   

3.
白斑综合症病毒(white spot syndrome virus,WSSV)是危害对虾的主要病原,给全球水产养殖业带来了巨大经济损失,但至今仍未发现有效的防治方法。研究病毒与宿主的相互作用对于深入了解病毒的致病机理和宿主的免疫机制,从而寻找合适的抗病毒措施具有非常重要的理论意义和实际应用价值。该文主要介绍了蛋白质相互作用的研究方法,以及WSSV病毒蛋白之间、病毒—宿主蛋白之间和宿主蛋白之间相互作用的研究进展,为有效地防治WSSV及相关科研提供参考。  相似文献   

4.
通过差速离心和蔗糖密度梯度离心,从感染了白斑综合症病毒(WSSV)的病虾头胸部分离了WSSV,利用地高辛对病毒蛋白进行了标记(DIG-WSSV),以体外培养的对虾血淋巴细胞为吸附基底,观察和分析了病毒与细胞间的结合现象及特性。以NBT/BCIP为酶反应显色底物观察到在细胞周围形成许多暗紫色颗粒,证实病毒与细胞间存在着稳定的结合。以OPD为酶反应显色底物分析了结合反应的特性:当DIG-WSSV维持恒定值时,随着血淋巴细胞数量的增加结合显色增强,细胞数量达到1.2104cells/孔,492nm处的吸光值达到饱和;当血淋巴细胞数量维持恒定值时,随着DIG-WSSV蛋白含量的增加显色增强,且在DIG-WSSV的蛋白浓度达到4g/孔时,492nm处的吸光值达到饱和;未标记WSSV可竞争抑制血淋巴细胞与DIG-WSSV间的结合作用。进一步的研究得出:4℃下,随着结合时间的延长显色增强,但继续延长结合时间显色反而减弱;缓冲液的渗透压对结合结果影响甚微,而酸性条件利于病毒与细胞间的结合。37℃孵育对病毒结合活性影响不大,55℃和70℃孵育可显著影响病毒的结合活性;短时间超声波处理病毒可增加病毒结合能力,长时间超声波处理可破坏病毒结合能力;有机溶剂处理同样可破坏病毒结合能力,其中尤以氯仿/甲醇的处理更为激烈;不同的去垢剂对病毒结合活性的影响结果不同:SDS和脱氧胆酸钠可以降低病毒的结合活性,而Triton X-100和NP-40可以提高病毒的结合活性。    相似文献   

5.
To test the possibility that shrimp pond rotifer resting eggs and hatched rotifers could transmit white spot syndrome virus (WSSV) to crayfish (Procambarus clarkii), we injected crayfish with rotifer and resting egg inocula that were WSSV-positive only by dot-blot analysis of PCR products. No crayfish became WSSV-positive after challenge with the resting egg inoculum. However, 1/15 crayfish became WSSV-positive after challenge with the rotifer inoculum. The results demonstrated that rotifers constitute a potential risk for WSSV transmission to crayfish and other cultivated crustaceans. However, the actual quantitative risk of transmission in an aquaculture setting depends on many variables that remain untested.  相似文献   

6.
We studied the possible role that marine microalgae may play during the outbreaks of WSS (white spot syndrome). In order to elucidate the possibility of marine microalgae carrying WSSV (white spot syndrome virus), six marine microalgae (Isochrysis galbana, Skeletonema costatum, Chlorella sp., Heterosigma akashiwo, Scrippsiella trochoidea, Dunaliella salina) were co-cultured with adult Marsupenaeus japonicus infected with WSSV and were assayed daily by nested-PCR to study whether they could carry WSSV. Further experiments were conducted to investigate whether the virus carried by microalgae could re-infect juvenile M. japonicus. Results showed that all of the experimental microalgae, except H. akashiwo could carry WSSV, and among them, Chlorella sp. and S. trochoidea had the strongest WSSV-carrying ability. Unlike other invertebrate carriers of WSSV, the WSSV detections in microalgae, which were positive after 1 and 3 days, were negative after 10days of incubation. WSSV detection results in juvenile M. japonicus showed that the juvenile shrimp were re-infected by co-cultured Chlorella sp., although the juvenile M. japonicus carried so small an amount of WSSV that it could only be detected by nested-PCR. The results of this experiment suggest that microalgae might be one possible horizontal transmission pathway for WSSV. Further research, however, is required to better understand the factors behind the different carrying abilities and virus-carrying mechanisms of different microalgae.  相似文献   

7.
The envelope proteins of White spot syndrome virus (WSSV) are very fragile and easy to be destroyed during purification. It was difficult to obtain a large quantity of intact virions by routine sucrose gradient centrifugation. After modifying the sucrose gradient by adding citrate sodium, we can obtain a large quantity of intact virions and nucleocapsids. This purified virions and nucleocapsids were subsequently used for analyzing viral structural proteins and DNA extraction. The result showed that this modified techniaue is very efficient for virus purification.  相似文献   

8.
白斑综合症病毒实时荧光LAMP检测方法的建立及应用   总被引:1,自引:0,他引:1  
研究利用ESE-Quant tube scanner检测平台, 建立了一套基于环介导等温扩增技术(Loop-Mediated Isothermal Amplification, LAMP)的实时荧光检测方法, 用于白斑综合征病毒(White Spot Syndrome Virus, WSSV)的检测; 并在此基础上, 与巢式PCR、Real-time PCR和其他已发表的4种LAMP方法在检测灵敏度、实际应用方面进行比较. 结果显示, 研究建立的实时荧光LAMP检测方法在63℃恒温反应30min可检测到最低为105倍稀释的基因组DNA模板, 与Real-time PCR检测方法的灵敏度相当, 高于巢式PCR和其他已发表的4种LAMP方法的检测灵敏度; 而且特异性较好, 与传染性皮下及造血组织坏死病毒等5种常见对虾病原DNA均无交叉反应. 通过构建质粒进一步进行灵敏度测试显示, 本研究建立的实时荧光LAMP检测方法最低检测限度为24个拷贝质粒DNA, 检出时间亦为30min. 通过对66份待检样品的检测结果显示, 实时荧光LAMP检测方法的检出阳性率为7.57%, 准确率为100%, 高于其他WSSV的检测方法. 因此, 研究建立的WSSV实时荧光LAMP检测方法, 操作简单, 反应速度快, 特异性好, 灵敏度高, 成本低廉, 可以直观、实时地观察反应的进行情况, 适合对虾养殖现场及诊断实验室的WSSV快速检测.    相似文献   

9.
【目的】研究对虾白斑综合征病毒(White spot syndrome virus,WSSV)囊膜蛋白sVP53B克隆、表达、纯化及抗血清制备。【方法】根据WSSV囊膜蛋白基因序列,设计引物,PCR扩增出功能序列(Svp53B),构建到pET-16b载体后,转化至大肠杆菌Rosetta 2诱导表达,用SDS-PAGE、Western blotting检测优化表达。表达产物采用Ni-NTA琼脂糖磁珠进行纯化、割胶回收融合蛋白,以纯化的Svp53B-his为抗原,免疫兔子获得多克隆抗体,通过间接ELISA检测抗体的效价。【结果】构建重组质粒pET-16b-Svp53B,在大肠杆菌Rosetta 2中以1 mmol/L IPTG诱导表达量最高,主要以包涵体形式表达。纯化包涵体蛋白免疫兔子,获得多克隆血清,效价达到1:150 000。【结论】原核表达并纯化得到高纯度的WSSV囊膜蛋白sVP53B,制备的兔源多克隆血清亲和力高、特异性好,这对后期进一步研究VP53B与经口侵染相关功能奠定了基础。  相似文献   

10.
吕利群  徐鸿绪  王浩 《微生物学报》2009,49(9):1253-1258
摘要:【目的】构建携带有受杆状病毒多角体启动子控制的疱疹性口腔炎病毒糖蛋白(vesicular stomatitis virus glycoprotein, VSV G)和受白斑综合症病毒极早期基因(immediately-early gene 1,ie1)启动子控制的绿色荧光蛋白(enhanced green fluorescent protein, EGFP)两个表达阅读框的新型重组病毒vAc-G-EGFP,分析其在无脊椎动物和脊椎动物细胞系中表达报道基因的能力。【方法】 利用Bac-To-Bac 系统构建重组杆状病毒,利用病毒感染或转导实验介导报道基因在待测细胞系中的表达,用荧光显微镜和免疫印迹技术分析报道基因在待测细胞系中的实时表达情况。 【结果】成功构建了分别含VSV G 和 ie1启动子两个阅读框的重组杆状病毒vAc-G-EGFP,发现vAc-G-EGFP可以在无脊椎和脊椎动物细胞系中有效表达报道基因EGFP,免疫印迹实验显示,在不同时间点EGFP于这两类细胞中的表达存在差异。【结论】 基于白斑综合症病毒ie1启动子并携带有VSV G表达框的单一杆状病毒载体可以实现同时在不同种类细胞系中有效表达外源基因。本文构建的新型杆状病毒表达载体有希望普遍应用于基础和应用生物学研究。  相似文献   

11.
White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate ‘vaccines’, WSSV envelope protein VP28 and formalin‐inactivated WSSV, can provide short‐lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live‐WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV‐intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune‐related, intracellular organelle part, intracellular calcium‐binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV‐intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.  相似文献   

12.
The nucleocapsid protein VP15 of white spot syndrome virus (WSSV) is a basic DNA-binding protein. Three canonical bipartite nuclear localization signals (NLSs), called NLS1 (aa 11-27), NLS2 (aa 33-49) and NLS3 (44-60), have been detected in this protein, using the ScanProsite computer program. To determine the nuclear localization sequence of VP15, the full-length open reading frame, or the sequence of one of the three NLSs, was fused to the green fluorescent protein (GFP) gene, and transiently expressed in insect Sf9 cells. Transfection with full-length VP15 resulted in GFP fluorescence being distributed exclusively in the nucleus. NLS 1 alone could also direct GFP to the nucleus, but less efficiently. Neither of the other two NLSs (NLS2 and 3) was functional when expressed alone, but exhibited similar activity to NLS1 when they were expressed as a fusion peptide. Furthermore, a mutated VP15, in which the two basic amino acids (11RR12) of NLSI were changed to two alanines (11AA12), caused GFP to be localized only in the cytoplasm of Sf9 cells. These results demonstrated that VP15, as a nuclear localization protein, needs cooperation between its three NLSs, and that the two residues (11RR12) of NLS1 play a key role in transporting the protein to the nucleus.  相似文献   

13.
Sulfated galactans (SG) were isolated from the red seaweed Gracilaria fisheri (G. fisheri). Chemical analysis revealed SG contains sulfate (12.7%) and total carbohydrate (42.2%) with an estimated molecular mass of 100 kDa. Structure analysis by NMR and FT-IR spectroscopy revealed that SG is a complex structure with a linear backbone of alternating 3-linked β-d-galactopyranose and 4-linked 3,6-anhydrogalactose units with partial 6-O-methylate-β-d-galactopyranose and with sulfation occurring on C4 of d-galactopyranose and C6 of l-galactopyranose units. SG treatment enhanced immune parameters including total haemocytes, phenoloxidase activity, superoxide anions and superoxide dismutase in shrimp Penaeus monodon. Shrimp fed with Artemia salina enriched with SG (100 and 200 μg ml−1) and inoculated with white spot syndrome virus (WSSV) showed a significantly lower mortality rate and lower viral VP 28 amplification and expression than control. The results suggest that SG from G. fisheri exhibits immune stimulatory and antiviral activities that could protect P. monodon from WSSV infection.  相似文献   

14.
White spot syndrome virus (WSSV) is devastating shrimp aquaculture throughout the world, but despite its economic importance no work has been done on modeling epidemics of this pathogen. Therefore we developed a Reed-Frost epidemic model for WSSV in Litopenaeus vannamei. The model includes uninfected susceptible, latently infected, acutely infected, and dead infected shrimp. The source of new infections during an outbreak is considered to be dead infected shrimp. The transmission coefficient, patency coefficient, virulence coefficient, and removal coefficient (disappearance of dead infected shrimp) control the dynamics of the model. In addition, an explicit area parameter is included to help to clarify the distinction between density and absolute shrimp population size. An analysis of the model finds that as number of shrimp, initial dose, transmission coefficient, patency coefficient, virulence coefficient, or removal coefficient changes, the speed of the epidemic changes. The model predicts that a threshold density of susceptible shrimp exists below which an outbreak of WSSV will not occur. Only initial dose, transmission coefficient, removal coefficient, and area coefficient affect the predicted threshold density. Increases in the transmission coefficient reduce the threshold value, whereas increases in the other factors cause the threshold value to increase. Epidemic models may prove useful to the shrimp aquaculture industry by suggesting testable hypotheses, some of which may contribute to the eventual control of WSSV outbreaks.  相似文献   

15.
在对虾白斑综合征病毒(White spot syndrome virus,WSSV)的基因组中发现一个具有细胞因子受体特征的开放阅读框,该阅读框全长2022个核苷酸,编码674个氨基酸,蛋白质理论分子量为76kDa。该基因含有真核生物细胞因子gp130受体特征序列。为了研究该基因的功能,采用PCR方法从病毒基因组中扩增出基因片段,克隆到pGEM-T Easy载体中,经BamH I和Sal I双酶切后插入pET28b表达载体中。重组质粒转化到大肠杆菌BL21中,IPTG诱导后,经SDS-PAGE电泳表明在。76kDa处有目的蛋白表达。用冰浴超声波对诱导后的菌液进行处理以获得初步纯化的蛋白,作为抗原人工免疫实验兔子以获得含特异性抗体的抗血清。该基因的表达成功,为其功能的进一步深入研究奠定了基础。  相似文献   

16.
17.
Although invertebrates lack a true adaptive immune response, the potential to vaccinate Penaeus monodon shrimp against white spot syndrome virus (WSSV) using the WSSV envelope proteins VP19 and VP28 was evaluated. Both structural WSSV proteins were N-terminally fused to the maltose binding protein (MBP) and purified after expression in bacteria. Shrimp were vaccinated by intramuscular injection of the purified WSSV proteins and challenged 2 and 25 days after vaccination to assess the onset and duration of protection. As controls, purified MBP- and mock-vaccinated shrimp were included. VP19-vaccinated shrimp showed a significantly better survival (p<0.05) as compared to the MBP-vaccinated control shrimp with a relative percent survival (RPS) of 33% and 57% at 2 and 25 days after vaccination, respectively. Also, the groups vaccinated with VP28 and a mixture of VP19 and VP28 showed a significantly better survival when challenged two days after vaccination (RPS of 44% and 33%, respectively), but not after 25 days. These results show that protection can be generated in shrimp against WSSV using its structural proteins as a subunit vaccine. This suggests that the shrimp immune system is able to specifically recognize and react to proteins. This study further shows that vaccination of shrimp may be possible despite the absence of a true adaptive immune system, opening the way to new strategies to control viral diseases in shrimp and other crustaceans.  相似文献   

18.
BALB/c mice were immunized with purified White spot syndrome virus (WSSV). Six monoclonal antibody cell lines were selected by ELISA with VP28 protein expressed in E. coli. in vitro neutralization experiments showed that 4 of them could inhibit the virus infection in crayfish. Western-blot suggested that all these monoclonal antibodies were against the conformational structure of VP28. The monoclonal antibody 7B4 was labeled with colloidal gold particles and used to locate the VP28 on virus envelope by immunogold labeling. These monoclonal antibodies could be used to develop immunological diagnosis methods for WSSV infection.  相似文献   

19.
Testicular cell culture of crab, Scylla serrata (Forskal) was used to study the effects of White spot syndrome virus (WSSV). We are showing the susceptibility of cell culture of crabs to WSSV. The proliferating cell culture of testes were maintained for more than 4 months in a medium prepared from L15 and crab saline supplemented with epidermal growth factor. The cell cultures inoculated with different concentrations of virus showed distinct cytopathic effects such as change in cell appearance, shrinkage and cell lysis. WSSV infection of cultured cells was confirmed by Nested PCR technique. The incorporation of viral DNA in cultured cells was shown by RAPD profile generated using 10-mer primers. The controls that were not exposed to WSSV did not show cytopathic effects. This work shows the usefulness of proliferating testicular cell culture for studying WSSV infection using molecular tools. Thus, this report gains significance as it opens new vistas for diagnostics and drugs for WSSV.  相似文献   

20.
The concept of polymicrobial disease is well accepted in human and veterinary medicine but has received very little attention in the field of aquaculture. This study was conducted to investigate the synergistic effect of white spot syndrome virus (WSSV) and Vibrio campbellii on development of disease in specific pathogen-free (SPF) shrimp Litopenaeus vannamei. The juvenile shrimp were first injected with WSSV at a dose of 30 SID(50) shrimp(-1) (SID(50) = shrimp infectious dose with 50% endpoint) and 24 h later with 10(6) colony-forming units (cfu) of V. campbellii shrimp(-1). Controls receiving just one of the pathogens or negative inocula were included. In the treatment with WSSV only, shrimp started to die at 48-108 h post injection (hpi) and cumulative mortality reached 100% at 268-336 hpi. In the treatment with only V. campbellii injection (10(6) cfu shrimp(-1)), cumulative mortality reached 16.7%. Shrimp in the dual treatment died very quickly after V. campbellii injection and 100% cumulative mortality was obtained at 72-96 hpi. When WSSV-injected shrimp were given sonicated V. campbellii instead of live V. campbellii, no synergistic effect was observed. Density of V. campbellii in the haemolymph of co-infected moribund shrimp collected 10 h after V. campbellii injection was significantly higher than in shrimp injected with V. campbellii only (P < 0.01). However, there was no difference in WSSV replication between shrimp inoculated with WSSV only compared with dually inoculated ones. This study revealed that prior infection with WSSV enhances the multiplication and disease inducing capacity of V. campbellii in shrimp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号