首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Hypomyelinating leukodystrophy 17 is an autosomal recessive disease affecting myelin-forming oligodendroglial cells in the central nervous system. The gene responsible for HLD17 encodes aminoacyl-tRNA synthase complex-interacting multifunctional protein 2, whose product proteins form a scaffold that supports aminoacyl-tRNA synthetases throughout the cell body. Here we show that the HLD17-associated nonsense mutation (Tyr35-to-Ter [Y35X]) of AIMP2 localizes AIMP2 proteins as aggregates into the Golgi bodies in mouse oligodendroglial FBD-102b cells. Wild type AIMP2 proteins, in contrast, are distributed throughout the cell body. Expression of the Y35X mutant proteins, but not the wild type proteins, in cells upregulates Golgi stress signaling involving caspase-2 activation. Cells expressing the wild type proteins exhibit differentiated phenotypes with web-like structures bearing many processes following the induction of differentiation, whereas cells expressing the Y35X mutant proteins fail to differentiate. Furthermore, CASP2 knockdown but not control knockdown reverses the phenotypes of cells expressing the mutant proteins. These results suggest that HLD17-associated AIMP2 mutant proteins are localized in the Golgi bodies where their proteins stimulate Golgi stress-responsive CASP2 to inhibit differentiation; this effect is ameliorated by knockdown of CASP2. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD17 and possible approaches to ameliorating the disease’s effects.

  相似文献   

2.
3.
Seeds of the lethal embryo 1 (lem1) mutant in maize (Zea mays) display a non-concordant lethal phenotype: whereas the embryo aborts very early, before the transition stage, the endosperm develops almost normally. The mutant was identified in a collection of maize lines that carried the transposon Activation (Ac) at different locations in the genome. Co-segregation and reversion analysis showed that lem1 was tagged by Ac. The lem1 gene encodes a protein that is highly similar to the rice plastid 30S ribosomal protein S9 (PRPS9). lem1 maps to chromosome 1L and appears to be the only copy of prps9 in the maize genome. Green fluorescent protein (GFP) fusion constructs containing only the putative transit peptide (TP) of LEM1 localize exclusively to the plastids, confirming that the LEM1 protein is a PRP. In contrast, GFP fusion constructs containing the entire LEM1 protein co-localize to the plastids and to the nucleus, suggesting a possible dual function for this protein. Two alternative, although not mutually exclusive, explanations are considered for the lem phenotype of the lem1 mutant: (i) functional plastids are required for normal embryo development; and (ii) the PRPS9 has an extra-ribosomal function required for embryogenesis.  相似文献   

4.
Mutations of the genes encoding aminoacyl-t RNA synthetases are highly associated with various central nervous system disorders. Recurrent mutations, including c.5 AG, p.D2 G; c.1367 CT, p.S456 L; c.1535 GA, p.R512 Q and c.1846_1847 del, p.Y616 Lfs*6 of RARS1 gene, which encodes two forms of human cytoplasmic arginyl-t RNA synthetase(h Arg RS), are linked to Pelizaeus-Merzbacher-like disease(PMLD) with unclear pathogenesis. Among these mutations, c.5 AG is the most extensively reported mutation, leading to a p.D2 G mutation in the N-terminal extension of the long-form h Arg RS. Here, we showed the detrimental effects of R512 Q substitution and ΔC mutations on the structure and function of h Arg RS, while the most frequent mutation c.5 AG, p.D2 G acted in a different manner without impairing h Arg RS activity. The nucleotide substitution c.5 AG reduced translation of h Arg RS m RNA, and an upstream open reading frame contributed to the suppressed translation of the downstream main ORF. Taken together, our results elucidated distinct pathogenic mechanisms of various RARS1 mutations in PMLD.  相似文献   

5.
6.
7.
8.
During maintenance of L-cell cultures persistently infected with reovirus, mutations are selected in viruses and cells. Cells cured of persistent infection support growth of viruses isolated from persistently infected cultures (PI viruses) significantly better than that of wild-type (wt) viruses. In a previous study, the capacity of PI virus strain L/C to grow better than wt strain type 1 Lang (T1L) in cured cells was mapped genetically to the S1 gene (R. S. Kauffman, R. Ahmed, and B. N. Fields, Virology 131:79-87, 1983), which encodes viral attachment protein sigma1. To investigate mechanisms by which mutations in S1 confer growth of PI viruses in cured cells, we determined the S1 gene nucleotide sequences of L/C virus and six additional PI viruses isolated from independent persistently infected L-cell cultures. The S1 sequences of these viruses contained from one to three mutations, and with the exception of PI 2A1 mutations in each S1 gene resulted in changes in the deduced amino acid sequence of sigma1 protein. Using electrophoresis conditions that favor migration of sigma1 oligomers, we found that sigma1 proteins of L/C, PI 1A1, PI 3-1, and PI 5-1 migrated as monomers, whereas sigma1 proteins of wt reovirus and PI 2A1 migrated as oligomers. These findings suggest that mutations in sigma1 protein affecting stability of sigma1 oligomers are important for the capacity of PI viruses to infect mutant cells selected during persistent infection. Since no mutation was found in the deduced amino acid sequence of PI 2A1 sigma1 protein, we used T1L X PI 2A1 reassortant viruses to identify viral genes associated with the capacity of this PI virus to grow better than wt in cured cells. The capacity of PI 2A1 to grow better than T1L in cured cells was mapped to the S4 gene, which encodes outer-capsid protein sigma3. This finding suggests that in some cases, mutations in sigma3 protein in the absence of sigma1 mutations confer growth of PI viruses in mutant cells. To confirm the importance of the S1 gene in PI virus growth in cured cells, we used T1L X PI 3-1 reassortant viruses to genetically map the capacity of this PI virus to grow better than wt in cured cells. In contrast to our results using PI 2A1, we found that growth of PI 3-1 in cured cells was determined by the sigma1-encoding S1 gene. Given that the sigma1 and sigma3 proteins play important roles in reovirus disassembly, findings made in this study suggest that stability of the viral outer capsid is an important determinant of the capacity of reoviruses to adapt to host cells during persistent infection.  相似文献   

9.
10.
11.
Poon AP  Roizman B 《Journal of virology》2005,79(13):8470-8479
The U(S)3 open reading frame of herpes simplex virus 1 (HSV-1) was reported to encode two mRNAs each directing the synthesis of the same protein. We report that the U(S)3 gene encodes two proteins. The predominant U(S)3 protein is made in wild-type HSV-1-infected cells. The truncated mRNA and a truncated protein designated U(S)3.5 and initiating from methionine 77 were preeminent in cells infected with a mutant lacking the gene encoding ICP22. Both the wild-type and truncated proteins also accumulated in cells transduced with a baculovirus carrying the entire U(S)3 open reading frame. The U(S)3.5 protein accumulating in cells infected with the mutant lacking the gene encoding ICP22 mediated the phosphorylation of histone deacetylase 1, a function of U(S)3 protein, but failed to block apoptosis of the infected cells. The U(S)3.5 and U(S)3 proteins differ with respect to the range of functions they exhibit.  相似文献   

12.
The replication of positive-strand RNA viruses involves not only viral proteins but also multiple cellular proteins and intracellular membranes. In both plant cells and the yeast Saccharomyces cerevisiae, brome mosaic virus (BMV), a member of the alphavirus-like superfamily, replicates its RNA in endoplasmic reticulum (ER)-associated complexes containing viral 1a and 2a proteins. Prior to negative-strand RNA synthesis, 1a localizes to ER membranes and recruits both positive-strand BMV RNA templates and the polymerase-like 2a protein to ER membranes. Here, we show that BMV RNA replication in S. cerevisiae is markedly inhibited by a mutation in the host YDJ1 gene, which encodes a chaperone Ydj1p related to Escherichia coli DnaJ. In the ydj1 mutant, negative-strand RNA accumulation was inhibited even though 1a protein associated with membranes and the positive-strand RNA3 replication template and 2a protein were recruited to membranes as in wild-type cells. In addition, we found that in ydj1 mutant cells but not wild-type cells, a fraction of 2a protein accumulated in a membrane-free but insoluble, rapidly sedimenting form. These and other results show that Ydj1p is involved in forming BMV replication complexes active in negative-strand RNA synthesis and suggest that a chaperone system involving Ydj1p participates in 2a protein folding or assembly into the active replication complex.  相似文献   

13.
Xylans constitute the main non-cellulosic polysaccharide in the secondary cell walls of plants. Several genes predicted to encode glycosyltransferases are required for the synthesis of the xylan backbone even though it is a homopolymer consisting entirely of β-1,4-linked xylose residues. The putative glycosyltransferases IRX9, IRX14, and IRX10 (or the paralogs IRX9L, IRX14L, and IRX10L) are required for xylan backbone synthesis in Arabidopsis. To investigate the function of IRX9, IRX9L, and IRX14, we identified amino acid residues known to be essential for catalytic function in homologous mammalian proteins and generated modified cDNA clones encoding proteins where these residues would be mutated. The mutated gene constructs were used to transform wild-type Arabidopsis plants and the irx9 and irx14 mutants, which are deficient in xylan synthesis. The ability of the mutated proteins to complement the mutants was investigated by measuring growth, determining cell wall composition, and microscopic analysis of stem cross-sections of the transgenic plants. The six different mutated versions of IRX9 and IRX9-L were all able to complement the irx9 mutant phenotype, indicating that residues known to be essential for glycosyltransferases function in homologous proteins are not essential for the biological function of IRX9/IRX9L. Two out of three mutated IRX14 complemented the irx14 mutant, including a mutant in the predicted catalytic amino acid. A IRX14 protein mutated in the substrate-binding DxD motif did not complement the irx14 mutant. Thus, substrate binding is important for IRX14 function but catalytic activity may not be essential for the function of the protein. The data indicate that IRX9/IRX9L have an essential structural function, most likely by interacting with the IRX10/IRX10L proteins, but do not have an essential catalytic function. Most likely IRX14 also has primarily a structural role, but it cannot be excluded that the protein has an important enzymatic activity.  相似文献   

14.
Refractory Anemia with Ring Sideroblasts (RARS) is an acquired myelodysplastic syndrome (MDS) characterized by an excess iron accumulation in the mitochondria of erythroblasts. The pathogenesis of RARS and the cause of this unusual pattern of iron deposition remain unknown. We considered that the inherited X-linked sideroblastic anemia with ataxia (XLSA/A) might be informative for the acquired disorder, RARS. XLSA/A is caused by partial inactivating mutations of the ABCB7 ATP-binding cassette transporter gene, which functions to enable transport of iron from the mitochondria to the cytoplasm. Furthermore, ABCB7 gene silencing in HeLa cells causes an accumulation of iron in the mitochondria. We have studied the role of ABCB7 in RARS by DNA sequencing, methylation studies, and gene expression studies in primary CD34+ cells and in cultured erythroblasts. The DNA sequence of the ABCB7 gene is normal in patients with RARS. We have investigated ABCB7 gene expression levels in the CD34+ cells of 122 MDS cases, comprising 35 patients with refractory anemia (RA), 33 patients with RARS and 54 patients with RA with excess blasts (RAEB), and in the CD34+ cells of 16 healthy controls. We found that the expression levels of ABCB7 are significantly lower in the RARS group. RARS is thus characterized by lower levels of ABCB7 gene expression in comparison to other MDS subtypes. Moreover, we find a strong relationship between increasing percentage of bone marrow ring sideroblasts and decreasing ABCB7 gene expression levels. Erythroblast cell cultures confirm the low levels of ABCB7 gene expression levels in RARS. These data provide an important link between inherited and acquired forms of sideroblastic anemia and indicate that ABCB7 is a strong candidate gene for RARS.  相似文献   

15.
Ribosome biogenesis requires >300 assembly factors in Saccharomyces cerevisiae. Ribosome assembly factors Imp3, Mrt4, Rlp7 and Rlp24 have sequence similarity to ribosomal proteins S9, P0, L7 and L24, suggesting that these pre-ribosomal factors could be placeholders that prevent premature assembly of the corresponding ribosomal proteins to nascent ribosomes. However, we found L7 to be a highly specific component of Rlp7-associated complexes, revealing that the two proteins can bind simultaneously to pre-ribosomal particles. Cross-linking and cDNA analysis experiments showed that Rlp7 binds to the ITS2 region of 27S pre-rRNAs, at two sites, in helix III and in a region adjacent to the pre-rRNA processing sites C1 and E. However, L7 binds to mature 25S and 5S rRNAs and cross-linked predominantly to helix ES7Lb within 25S rRNA. Thus, despite their predicted structural similarity, our data show that Rlp7 and L7 clearly bind at different positions on the same pre-60S particles. Our results also suggest that Rlp7 facilitates the formation of the hairpin structure of ITS2 during 60S ribosomal subunit maturation.  相似文献   

16.
The relative proportions of four myelin basic proteins (preL, L, preS,S) were determined in myelin subfractions prepared from the forebrains of quaking and littermate control mice. The distribution pattern of each protein was similar in both mutant and control fractions. The S component was the only basic protein present in low amounts in myelin from the mutant.  相似文献   

17.
LytB of Escherichia coli is an essential gene involved in penicillin tolerance and the stringent response. The lytB gene of Campylobacter jejuni was cloned and characterized. It could complement a temperature-sensitive E. coli lytB mutant. The C. jejuni lytB gene encodes a protein of 277 amino acids that has 34, 36 and 40% amino acid identity with the LytB proteins of E. coli, Haemophilus influenzae, and Synechocystis sp. PCC6803, respectively. The lytB gene is situated between the aroA gene and a gene that encodes ribosomal protein S1.  相似文献   

18.
P0 constitutes 50–60% of protein in peripheral nerve myelin and is essential for its structure and stability. Mutations within the P0 gene (MPZ) underlie a variety of hereditary neuropathies. MpzS63C transgenic mice encode a P0 with a serine to cysteine substitution at position 34 in the extracellular domain of mature P0 (P0S34C), associated with the hypomyelinating Déjérine-Sottas syndrome in human. S63C mice develop a dysmyelinating neuropathy, with packing defects in peripheral myelin. Here, we used x-ray diffraction to examine time-dependent packing defects in unfixed myelin. At ∼7 h post-dissection, WT and S63C(+/+) myelin showed native periods (175 Å) with the latter developing at most a few percent swollen myelin, whereas up to ∼50% of S63C(+/−) (mutant P0 on heterozygous P0 null background) or P0(+/−) myelin swelled to periods of ∼205 Å. In the same time frame, S63C(−/−) myelin was stable, remaining swollen at ∼210 Å. Surprisingly, treatment of whole S63C(−/−) nerves with a reducing agent completely reverted swollen arrays to native spacing and also normalized the swollen arrays that had formed in S63C(+/−) myelin, the genotype most closely related to the human disorder. Western blot revealed P0-positive bands at ∼27 and ∼50 kDa, and MALDI-TOF mass spectrometry showed these bands consisted of Ser34-containing peptides or P0 dimers having oxidized Cys34 residues. We propose that P0S34C forms ectopic disulfide bonds in trans between apposed Cys34 side chains that retard wrapping during myelin formation causing hypomyelination. Moreover, the new bonds create a packing defect by stabilizing swollen membrane arrays that leads to demyelination.  相似文献   

19.
The mammalian tumor susceptibility gene tsg101 encodes the homologue of Vps23p, a class E Vps protein essential for normal membrane trafficking in the late endosome/multivesicular body of yeast. Both proteins assemble into large (∼350 kDa) cytosolic protein complexes and we show that the yeast complex contains another class E Vps protein, Vps28p. tsg101 mutant cells exhibit defects in sorting and proteolytic maturation of the lysosomal hydrolase cathepsin D, as well as in the steady-state distribution of the mannose-6-phosphate receptor. Additionally, endocytosed EGF receptors that are normally sorted to the lysosome are instead rapidly recycled back to the cell surface in tsg101 mutant cells. We propose that tsg101 mutant cells are defective in the delivery of cargo proteins to late endosomal compartments. One consequence of this endosomal trafficking defect is the delayed down-regulation/degradation of activated cell surface receptors, resulting in prolonged signaling. This may contribute to the tumorigenic phenotype exhibited by the tsg101 mutant fibroblasts.  相似文献   

20.
X-linked adrenoleukodystrophy (X-ALD), the most frequent peroxisomal disorder, is associated with mutation in the ABCD1 gene which encodes a peroxisomal ATP-binding cassette transporter for very long-chain fatty acids (VLCFA). The biochemical hallmark of the disease is the accumulation of VLCFA. Peroxisomal defect in microglia being now considered a priming event in the pathology, we have therefore generated murine microglial cells mutated in the Abcd1 gene and its closest homolog, the Abcd2 gene. Using CRISPR/Cas9 gene editing strategy, we obtained 3 cell clones with a single or double deficiency. As expected, only the combined absence of ABCD1 and ABCD2 proteins resulted in the accumulation of VLCFA. Ultrastructural analysis by electron microscopy revealed in the double mutant cells the presence of lipid inclusions similar to those observed in brain macrophages of patients. These observations are likely related to the increased level of cholesterol and the accumulation of neutral lipids that we noticed in mutant cells. A preliminary characterization of the impact of peroxisomal defects on the expression of key microglial genes such as Trem2 suggests profound changes in microglial functions related to inflammation and phagocytosis. The expression levels of presumed modifier genes have also been found modified in mutant cells, making these novel cell lines relevant for use as in vitro models to better understand the physiopathogenesis of X-ALD and to discover new therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号