首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pattern separation (PS) dysfunction is a type of cognitive impairment that presents early during the aging process, and this deficit has been attributed to structural and functional alterations in the dentate gyrus (DG) of the hippocampus. Absent in melanoma 2 (AIM2) is an essential component of the inflammasome. However, whether AIM2 plays a role in aging-associated cognitive dysfunction remains unclear. Here, we found that PS function was impaired in aging mice and was accompanied by marked synaptic loss and increased expression of AIM2 in the DG. Subsequently, we used an AIM2 overexpression virus and mice with AIM2 deletion to investigate the role of AIM2 in regulating PS function and synaptic plasticity and the mechanisms involved. Our study revealed that AIM2 regulates microglial activation during synaptic pruning in the DG region via the complement pathway, leading to impaired synaptic plasticity and PS function in aging mice. These results suggest a critical role for AIM2 in regulating synaptic plasticity and PS function and provide a new direction for ameliorating aging-associated cognitive dysfunction.  相似文献   

2.
Gut microbiota can influence the aging process and may modulate aging‐related changes in cognitive function. Trimethylamine‐N‐oxide (TMAO), a metabolite of intestinal flora, has been shown to be closely associated with cardiovascular disease and other diseases. However, the relationship between TMAO and aging, especially brain aging, has not been fully elucidated. To explore the relationship between TMAO and brain aging, we analysed the plasma levels of TMAO in both humans and mice and administered exogenous TMAO to 24‐week‐old senescence‐accelerated prone mouse strain 8 (SAMP8) and age‐matched senescence‐accelerated mouse resistant 1 (SAMR1) mice for 16 weeks. We found that the plasma levels of TMAO increased in both the elderly and the aged mice. Compared with SAMR1‐control mice, SAMP8‐control mice exhibited a brain aging phenotype characterized by more senescent cells in the hippocampal CA3 region and cognitive dysfunction. Surprisingly, TMAO treatment increased the number of senescent cells, which were primarily neurons, and enhanced the mitochondrial impairments and superoxide production. Moreover, we observed that TMAO treatment increased synaptic damage and reduced the expression levels of synaptic plasticity‐related proteins by inhibiting the mTOR signalling pathway, which induces and aggravates aging‐related cognitive dysfunction in SAMR1 and SAMP8 mice, respectively. Our findings suggested that TMAO could induce brain aging and age‐related cognitive dysfunction in SAMR1 mice and aggravate the cerebral aging process of SAMP8 mice, which might provide new insight into the effects of intestinal microbiota on the brain aging process and help to delay senescence by regulating intestinal flora metabolites.  相似文献   

3.
NAT8L (N-acetyltransferase 8-like) catalyzes the formation of N-acetylaspartate (NAA) from acetyl-CoA and aspartate. In the brain, NAA delivers the acetate moiety for synthesis of acetyl-CoA that is further used for fatty acid generation. However, its function in other tissues remained elusive. Here, we show for the first time that Nat8l is highly expressed in adipose tissues and murine and human adipogenic cell lines and is localized in the mitochondria of brown adipocytes. Stable overexpression of Nat8l in immortalized brown adipogenic cells strongly increases glucose incorporation into neutral lipids, accompanied by increased lipolysis, indicating an accelerated lipid turnover. Additionally, mitochondrial mass and number as well as oxygen consumption are elevated upon Nat8l overexpression. Concordantly, expression levels of brown marker genes, such as Prdm16, Cidea, Pgc1α, Pparα, and particularly UCP1, are markedly elevated in these cells. Treatment with a PPARα antagonist indicates that the increase in UCP1 expression and oxygen consumption is PPARα-dependent. Nat8l knockdown in brown adipocytes has no impact on cellular triglyceride content, lipogenesis, or oxygen consumption, but lipolysis and brown marker gene expression are increased; the latter is also observed in BAT of Nat8l-KO mice. Interestingly, the expression of ATP-citrate lyase is increased in Nat8l-silenced adipocytes and BAT of Nat8l-KO mice, indicating a compensatory mechanism to sustain the acetyl-CoA pool once Nat8l levels are reduced. Taken together, our data show that Nat8l impacts on the brown adipogenic phenotype and suggests the existence of the NAT8L-driven NAA metabolism as a novel pathway to provide cytosolic acetyl-CoA for lipid synthesis in adipocytes.  相似文献   

4.
Cerebrovascular dysfunction and cognitive decline are highly prevalent in aging, but the mechanisms underlying these impairments are unclear. Cerebral blood flow decreases with aging and is one of the earliest events in the pathogenesis of Alzheimer's disease (AD). We have previously shown that the mechanistic/mammalian target of rapamycin (mTOR) drives disease progression in mouse models of AD and in models of cognitive impairment associated with atherosclerosis, closely recapitulating vascular cognitive impairment. In the present studies, we sought to determine whether mTOR plays a role in cerebrovascular dysfunction and cognitive decline during normative aging in rats. Using behavioral tools and MRI‐based functional imaging, together with biochemical and immunohistochemical approaches, we demonstrate that chronic mTOR attenuation with rapamycin ameliorates deficits in learning and memory, prevents neurovascular uncoupling, and restores cerebral perfusion in aged rats. Additionally, morphometric and biochemical analyses of hippocampus and cortex revealed that mTOR drives age‐related declines in synaptic and vascular density during aging. These data indicate that in addition to mediating AD‐like cognitive and cerebrovascular deficits in models of AD and atherosclerosis, mTOR drives cerebrovascular, neuronal, and cognitive deficits associated with normative aging. Thus, inhibitors of mTOR may have potential to treat age‐related cerebrovascular dysfunction and cognitive decline. Since treatment of age‐related cerebrovascular dysfunction in older adults is expected to prevent further deterioration of cerebral perfusion, recently identified as a biomarker for the very early (preclinical) stages of AD, mTOR attenuation may potentially block the initiation and progression of AD.  相似文献   

5.
Age is the main risk factor for the development of neurodegenerative diseases. In the aged brain, axonal degeneration is an early pathological event, preceding neuronal dysfunction, and cognitive disabilities in humans, primates, rodents, and invertebrates. Necroptosis mediates degeneration of injured axons, but whether necroptosis triggers neurodegeneration and cognitive impairment along aging is unknown. Here, we show that the loss of the necroptotic effector Mlkl was sufficient to delay age-associated axonal degeneration and neuroinflammation, protecting against decreased synaptic transmission and memory decline in aged mice. Moreover, short-term pharmacologic inhibition of necroptosis targeting RIPK3 in aged mice, reverted structural and functional hippocampal impairment, both at the electrophysiological and behavioral level. Finally, a quantitative proteomic analysis revealed that necroptosis inhibition leads to an overall improvement of the aged hippocampal proteome, including a subclass of molecular biofunctions associated with brain rejuvenation, such as long-term potentiation and synaptic plasticity. Our results demonstrate that necroptosis contributes to age-dependent brain degeneration, disturbing hippocampal neuronal connectivity, and cognitive function. Therefore, necroptosis inhibition constitutes a potential geroprotective strategy to treat age-related disabilities associated with memory impairment and cognitive decline.  相似文献   

6.
The study of aging is critical for a better understanding of many age-related diseases. The free radical theory of aging, one of the prominent aging hypotheses, holds that during aging, increasing reactive oxygen species in mitochondria causes mutations in the mitochondrial DNA and damages mitochondrial components, resulting in senescence. Understanding a mitochondrial gene expression profile and its relationship to mitochondrial function becomes an important step in understanding aging. The objective of the present study was to determine mRNA expression of mitochondrial-encoded genes in brain slices from C57BL6 mice at four ages (2, 12, 18, and 24 months) and to determine how these altered mitochondrial genes influence age-related changes, including oxidative damage and cytochrome c in apoptosis. Using northern blot analysis, in situ hybridization, and immunofluorescence analyses, we analyzed changes in the expression of mitochondrial RNA encoding the mitochondrial genes, oxidative damage marker, 8-hydroxyguanosine (8-OHG), and cytochrome c in brain slices from the cortex of C57BL6 mice at each of the four ages. Our northern blot analysis revealed an increased expression of mitochondrial-encoded genes in complexes I, III, IV, and V of the respiratory chain in 12- and 18-month-old C57BL6 mice compared to 2-month-old mice, suggesting a compensatory mechanism that allows the production of proteins involved in the electron transport chain. In contrast to the up-regulation of mitochondrial genes in 12- and 18-month-old C57BL6 mice, mRNA expression in 24-month-old C57BL6 mice was decreased, suggesting that compensation maintained by the up-regulated genes cannot be sustained and that the down-regulation of expression results in the later stage of aging. Our in situ hybridization analyses of mitochondrial genes from the hippocampus and the cortex revealed that mitochondrial genes were over-expressed, suggesting that these brain areas are critical for mitochondrial functions. Our immunofluorescence analysis of 8-OHG and cytochrome c revealed increased 8-OHG and cytochrome c in 12-month-old C57BL6 mice, suggesting that age-related mitochondrial oxidative damage and apoptosis are associated with mitochondrial dysfunction. Our double-labeling analysis of in situ hybridization of ATPase 6 and our immunofluorescence analysis of 8-OHG suggest that specific neuronal populations undergo oxidative damage. Further, double-labeling analysis of in situ hybridization of ATPase 6 and immunofluorescence analysis of cytochrome c suggest cytochrome c release is related to mitochondrial dysfunction in the aging C57BL6 mouse brain. This study also suggests that these mitochondrial gene expression changes may relate to the role of mitochondrial dysfunction, oxidative damage, and cytochrome c in aging and in age-related diseases such as Alzheimer's disease and Parkinson's disease.  相似文献   

7.
The decline in neuronal function during aging may result from increases in extracellular glutamate (Glu), Glu-induced neurotoxicity, and altered mitochondrial metabolism. To study metabolic responses to persistently high levels of Glu at synapses during aging, we used transgenic (Tg) mice that over-express the enzyme Glu dehydrogenase (GDH) in brain neurons and release excess Glu in synapses. Mitochondrial GDH is important in amino acid and carbohydrate metabolism and in anaplerotic reactions. We monitored changes in nineteen neurochemicals in the hippocampus and striatum of adult, middle aged, and aged Tg and wild type (wt) mice, in vivo, using proton (1H) magnetic resonance spectroscopy. Significant differences between adult Tg and wt were higher Glu, N-acetyl aspartate (NAA), and NAA + NAA–Glu (NAAG) levels, and lower lactate in the Tg hippocampus and striatum than those of wt. During aging, consistent changes in Tg and wt hippocampus and striatum included increases in myo-inositol and NAAG. The levels of glutamine (Gln), a key neurochemical in the Gln-Glu cycle between neurons and astroglia, increased during aging in both the striatum and hippocampus of Tg mice, but only in the striatum of the wt mice. Age-related increases of Glu were observed only in the striatum of the Tg mice.  相似文献   

8.
随着世界人口的老龄化,与年龄相关认知功能障碍的威胁越来越大.研究年龄相关认知功能损伤的发病机制及寻找有效的防治策略具有重要意义.我们之前的研究表明,衰老小鼠海马中S-亚硝基谷胱甘肽还原酶(S-nitrosoglutathione reductase,GSNOR)显著升高,神经元特异性高表达GSNOR转基因小鼠在行为学检测中表现出认知功能障碍.然而,其分子机制仍不清楚.在本研究中发现,CREB信号通路在GSNOR高表达转基因小鼠及原代培养小鼠海马神经元中均被GSNOR下调.在Y迷宫中检测表明,连续7 d腹腔注射CREB激活剂川陈皮素,能改善GSNOR过表达小鼠的认知损伤.进一步通过恐惧箱实验及Y迷宫测试研究川陈皮素对自然衰老小鼠认知功能的作用,发现川陈皮素能显著提高自然衰老小鼠在Y迷宫测试中的正确选择率以及在恐惧箱中的冻结时间,表明川陈皮素能显著改善衰老相关的认知功能.同样,川陈皮素上调了CREB磷酸化以及PSD95和Glu R1的水平,表明CREB信号上调在改善自然衰老认知功能损伤中发挥了重要作用.本研究为衰老认知功能损伤机制及改善方法提供了新的依据,GSNOR转基因小鼠也可能成为一种新的认知功能损伤模型.  相似文献   

9.
Aging is associated with marked deficiency in circulating IGF‐1, which has been shown to contribute to age‐related cognitive decline. Impairment of moment‐to‐moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age‐related cognitive impairment. To establish the link between IGF‐1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF‐1 deficiency (Igf1f/f‐TBG‐Cre‐AAV8) and accelerated vascular aging. We found that IGF‐1‐deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal‐dependent spatial memory test, mimicking the aging phenotype. IGF‐1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF‐1 deficiency also impaired glutamate‐mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF‐1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment.  相似文献   

10.
Glutamate Dehydrogenase 1 (GDH), encoded by the Glud1 gene in rodents, is a mitochondrial enzyme critical for maintaining glutamate homeostasis at the tripartite synapse. Our previous studies indicate that the hippocampus may be particularly vulnerable to GDH deficiency in central nervous system (CNS). Here, we first asked whether mice with a homozygous deletion of Glud1 in CNS (CNS‐Glud1 ?/? mice) express different levels of glutamate in hippocampus, and found elevated glutamate as well as glutamine in dorsal and ventral hippocampus, and increased glutamine in medial prefrontal cortex (mPFC). l ‐serine and d ‐serine, which contribute to glutamate homeostasis and NMDA receptor function, are increased in ventral but not dorsal hippocampus, and in mPFC. Protein expression levels of the GABA synthesis enzyme glutamate decarboxylase (GAD) GAD67 were decreased in the ventral hippocampus as well. Behavioral analysis revealed deficits in visual, spatial and social novelty recognition abilities, which require intact hippocampal‐prefrontal cortex circuitry. Finally, hippocampus‐dependent contextual fear retrieval was deficient in CNS‐Glud1 ?/? mice, and c‐Fos expression (indicative of neuronal activation) in the CA1 pyramidal layer was reduced immediately following this task. These data point to hippocampal subregion‐dependent disruption in glutamate homeostasis and excitatory/inhibitory balance, and to behavioral deficits that support a decline in hippocampal‐prefrontal cortex connectivity. Together with our previous data, these findings also point to different patterns of basal and activity‐induced hippocampal abnormalities in these mice. In sum, GDH contributes to healthy hippocampal and PFC function; disturbed GDH function is relevant to several psychiatric and neurological disorders.  相似文献   

11.
12.
Post-operative cognitive dysfunction is associated with morbidity and mortality. However, its neuropathogenesis remains largely to be determined. Neuroinflammation and accumulation of β-amyloid (Aβ) have been reported to contribute to cognitive dysfunction in humans and cognitive impairment in animals. Our recent studies have established a pre-clinical model in mice, and have found that the peripheral surgical wounding without the influence of general anesthesia induces an age-dependent Aβ accumulation and cognitive impairment in mice. We therefore set out to assess the effects of peripheral surgical wounding, in the absence of general anesthesia, on neuroinflammation in mice with different ages. Abdominal surgery under local anesthesia was established in 9 and 18 month-old mice. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), Iba1 positive cells (the marker of microglia activation), CD33, and cognitive function in mice were determined. The peripheral surgical wounding increased the levels of TNF-α, IL-6, and Iba1 positive cells in the hippocampus of both 9 and 18 month-old mice, and age potentiated these effects. The peripheral surgical wounding increased the levels of CD33 in the hippocampus of 18, but not 9, month-old mice. Finally, anti-inflammatory drug ibuprofen ameliorated the peripheral surgical wounding-induced cognitive impairment in 18 month-old mice. These data suggested that the peripheral surgical wounding could induce an age-dependent neuroinflammation and elevation of CD33 levels in the hippocampus of mice, which could lead to cognitive impairment in aged mice. Pending further studies, anti-inflammatory therapies may reduce the risk of postoperative cognitive dysfunction in elderly patients.  相似文献   

13.
The purpose of this study was to investigate whether or not the role of docosahexaenoic acid (DHA) supplementation on cognitive capability was related with brain-derived neurotrophic factor (BDNF), nitric oxide (NO) and dopamine (DA) in aged mice. Kunming-line mice were treated with 50 and 100 mg/kg/day of DHA via oral gavage for seven successive weeks. The cognitive ability of mice was assessed by step-through and passageway water maze tests. The levels of NO in hippocampus and striatum tissues were assessed by spectrophotometric method. The levels of DA in hippocampus and striatum tissues were assessed by high-performance liquid chromatography with electrochemical detection. The protein levels of BDNF in hippocampus tissue were assessed by Western blotting. The results showed that the cognitive capability of mice was significantly different between the DHA-treated groups and the control group; the protein level of BDNF was significantly increased in the hippocampus; the levels of NO and DA were significantly increased in hippocampus and striatum tissues. In conclusion, during aging, DHA supplementation can improve the cognitive function in mice and can increase the protein level of BDNF in hippocampus tissue and the levels of NO and DA in hippocampus and striatum tissues. Taken together, our results suggest that DHA supplementation could improve the cognitive dysfunction due to aging, to some extent, and it may have a relationship with increasing the protein level of BDNF and the level of NO and DA.  相似文献   

14.
Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal) overexpression of IGF-1 using the controlled cortical impact (CCI) injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d) hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI.  相似文献   

15.
Regular consumption of food enriched in omega3 polyunsaturated fatty acids (ω3 PUFAs) has been shown to reduce risk of cognitive decline in elderly, and possibly development of Alzheimer's disease. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the most likely active components of ω3-rich PUFAs diets in the brain. We therefore hypothesized that exposing mice to a DHA and EPA enriched diet may reduce neuroinflammation and protect against memory impairment in aged mice. For this purpose, mice were exposed to a control diet throughout life and were further submitted to a diet enriched in EPA and DHA during 2 additional months. Cytokine expression together with a thorough analysis of astrocytes morphology assessed by a 3D reconstruction was measured in the hippocampus of young (3-month-old) and aged (22-month-old) mice. In addition, the effects of EPA and DHA on spatial memory and associated Fos activation in the hippocampus were assessed. We showed that a 2-month EPA/DHA treatment increased these long-chain ω3 PUFAs in the brain, prevented cytokines expression and astrocytes morphology changes in the hippocampus and restored spatial memory deficits and Fos-associated activation in the hippocampus of aged mice. Collectively, these data indicated that diet-induced accumulation of EPA and DHA in the brain protects against neuroinflammation and cognitive impairment linked to aging, further reinforcing the idea that increased EPA and DHA intake may provide protection to the brain of aged subjects.  相似文献   

16.
Neurochemical Research - Alzheimer’s disease (AD) is a type of dementia characterized by the deposition of amyloid β, a causative protein of AD, in the brain. Shati/Nat8l, identified as...  相似文献   

17.
18.
Cellular senescence is characterized by an irreversible cell cycle arrest and a pro‐inflammatory senescence‐associated secretory phenotype (SASP), which is a major contributor to aging and age‐related diseases. Clearance of senescent cells has been shown to improve brain function in mouse models of neurodegenerative diseases. However, it is still unknown whether senescent cell clearance alleviates cognitive dysfunction during the aging process. To investigate this, we first conducted single‐nuclei and single‐cell RNA‐seq in the hippocampus from young and aged mice. We observed an age‐dependent increase in p16Ink4a senescent cells, which was more pronounced in microglia and oligodendrocyte progenitor cells and characterized by a SASP. We then aged INKATTAC mice, in which p16Ink4a‐positive senescent cells can be genetically eliminated upon treatment with the drug AP20187 and treated them either with AP20187 or with the senolytic cocktail Dasatinib and Quercetin. We observed that both strategies resulted in a decrease in p16Ink4a exclusively in the microglial population, resulting in reduced microglial activation and reduced expression of SASP factors. Importantly, both approaches significantly improved cognitive function in aged mice. Our data provide proof‐of‐concept for senolytic interventions'' being a potential therapeutic avenue for alleviating age‐associated cognitive impairment.  相似文献   

19.
The mitochondrial energy transduction system and the aging process   总被引:13,自引:0,他引:13  
Aged mammalian tissues show a decreased capacity to produce ATP by oxidative phosphorylation due to dysfunctional mitochondria. The mitochondrial content of rat brain and liver is not reduced in aging and the impairment of mitochondrial function is due to decreased rates of electron transfer by the selectively diminished activities of complexes I and IV. Inner membrane H+ impermeability and F1-ATP synthase activity are only slightly affected by aging. Dysfunctional mitochondria in aged rodents are characterized, besides decreased electron transfer and O2 uptake, by an increased content of oxidation products of phospholipids, proteins and DNA, a decreased membrane potential, and increased size and fragility. Free radical-mediated oxidations are determining factors of mitochondrial dysfunction and turnover, cell apoptosis, tissue function, and lifespan. Inner membrane enzyme activities, such as those of complexes I and IV and mitochondrial nitric oxide synthase, decrease upon aging and afford aging markers. The activities of these three enzymes in mice brain are linearly correlated with neurological performance, as determined by the tightrope and the T-maze tests. The same enzymatic activities correlated positively with mice survival and negatively with the mitochondrial content of lipid and protein oxidation products. Conditions that increase survival, as vitamin E dietary supplementation, caloric restriction, high spontaneous neurological activity, and moderate physical exercise, ameliorate mitochondrial dysfunction in aged brain and liver. The pleiotropic signaling of mitochondrial H2O2 and nitric oxide diffusion to the cytosol seems modified in aged animals and to contribute to the decreased mitochondrial biogenesis in old animals. oxidative damage; survival; complexes I and IV; nitric oxide synthase  相似文献   

20.
Yin  Chunping  Zhang  Qi  Zhao  Juan  Li  Yanan  Yu  Jiaxu  Li  Wei  Wang  Qiujun 《Neurochemical research》2022,47(4):1060-1072

Postoperative cognitive dysfunction (POCD) induced by anesthesia or surgery has become a common complication in the aged population. Sevoflurane, a clinical inhalation anesthetic, could stimulate calcium overload and necroptosis to POCD. In addition, necroptosis inhibitor necrostatin-1 (Nec-1) alleviated cognitive impairment caused by multiple causes, including postoperative cognitive impairment. However, whether Nec-1 exerts a neuroprotective effect on POCD via calcium and necroptosis remains unclear. We anesthetized Sprague–Dawley rats with sevoflurane to construct the POCD model and to explore the mechanism underlying neuroprotective effects of Nec-1 in POCD. Rats were treated with Nec-1 (6.25 mg/kg) 1 h prior to anesthesia. Open field test and Morris water maze were employed to detect the cognitive function. In this study, rats exposed to sevoflurane displayed cognitive dysfunction without changes in spontaneous activity; however, the sevoflurane-induced POCD could be relieved by Nec-1 pretreatment. Nec-1 decreased sevoflurane-induced calcium overload and calpain activity in the hippocampus. In addition, Nec-1 alleviated the expression of p-RIPK1, RIPK1, p-RIPK3, RIPK3, p-MLKL and MLKL. Furthermore, Nec-1 remarkably increased BDNF and p-TrkB/TrkB expression in the hippocampus of aged rats. Ultimately, our research manifests evidence that Nec-1 may play a neuroprotective role against sevoflurane-induced cognitive impairment via the increase of BDNF/TrkB and suppression of necroptosis-related pathway.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号