首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

3.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

4.
5.
6.
Highly active antiretroviral therapy (HAART) can reduce human immunodeficiency virus type 1 (HIV-1) viremia to clinically undetectable levels. Despite this dramatic reduction, some virus is present in the blood. In addition, a long-lived latent reservoir for HIV-1 exists in resting memory CD4+ T cells. This reservoir is believed to be a source of the residual viremia and is the focus of eradication efforts. Here, we use two measures of population structure—analysis of molecular variance and the Slatkin-Maddison test—to demonstrate that the residual viremia is genetically distinct from proviruses in resting CD4+ T cells but that proviruses in resting and activated CD4+ T cells belong to a single population. Residual viremia is genetically distinct from proviruses in activated CD4+ T cells, monocytes, and unfractionated peripheral blood mononuclear cells. The finding that some of the residual viremia in patients on HAART stems from an unidentified cellular source other than CD4+ T cells has implications for eradication efforts.Successful treatment of human immunodeficiency virus type 1 (HIV-1) infection with highly active antiretroviral therapy (HAART) reduces free virus in the blood to levels undetectable by the most sensitive clinical assays (18, 36). However, HIV-1 persists as a latent provirus in resting, memory CD4+ T lymphocytes (6, 9, 12, 16, 48) and perhaps in other cell types (45, 52). The latent reservoir in resting CD4+ T cells represents a barrier to eradication because of its long half-life (15, 37, 40-42) and because specifically targeting and purging this reservoir is inherently difficult (8, 25, 27).In addition to the latent reservoir in resting CD4+ T cells, patients on HAART also have a low amount of free virus in the plasma, typically at levels below the limit of detection of current clinical assays (13, 19, 35, 37). Because free virus has a short half-life (20, 47), residual viremia is indicative of active virus production. The continued presence of free virus in the plasma of patients on HAART indicates either ongoing replication (10, 13, 17, 19), release of virus after reactivation of latently infected CD4+ T cells (22, 24, 31, 50), release from other cellular reservoirs (7, 45, 52), or some combination of these mechanisms. Finding the cellular source of residual viremia is important because it will identify the cells that are still capable of producing virus in patients on HAART, cells that must be targeted in any eradication effort.Detailed analysis of this residual viremia has been hindered by technical challenges involved in working with very low concentrations of virus (13, 19, 35). Recently, new insights into the nature of residual viremia have been obtained through intensive patient sampling and enhanced ultrasensitive sequencing methods (1). In a subset of patients, most of the residual viremia consisted of a small number of viral clones (1, 46) produced by a cell type severely underrepresented in the peripheral circulation (1). These unique viral clones, termed predominant plasma clones (PPCs), persist unchanged for extended periods of time (1). The persistence of PPCs indicates that in some patients there may be another major cellular source of residual viremia (1). However, PPCs were observed in a small group of patients who started HAART with very low CD4 counts, and it has been unclear whether the PPC phenomenon extends beyond this group of patients. More importantly, it has been unclear whether the residual viremia generally consists of distinct virus populations produced by different cell types.Since the HIV-1 infection in most patients is initially established by a single viral clone (23, 51), with subsequent diversification (29), the presence of genetically distinct populations of virus in a single individual can reflect entry of viruses into compartments where replication occurs with limited subsequent intercompartmental mixing (32). Sophisticated genetic tests can detect such population structure in a sample of viral sequences (4, 39, 49). Using two complementary tests of population structure (14, 43), we analyzed viral sequences from multiple sources within individual patients in order to determine whether a source other than circulating resting CD4+ T cells contributes to residual viremia and viral persistence. Our results have important clinical implications for understanding HIV-1 persistence and treatment failure and for improving eradication strategies, which are currently focusing only on the latent CD4+ T-cell reservoir.  相似文献   

7.
Prion strain interference can influence the emergence of a dominant strain from a mixture; however, the mechanisms underlying prion strain interference are poorly understood. In our model of strain interference, inoculation of the sciatic nerve with the drowsy (DY) strain of the transmissible mink encephalopathy (TME) agent prior to superinfection with the hyper (HY) strain of TME can completely block HY TME from causing disease. We show here that the deposition of PrPSc, in the absence of neuronal loss or spongiform change, in the central nervous system corresponds with the ability of DY TME to block HY TME infection. This suggests that DY TME agent-induced damage is not responsible for strain interference but rather prions compete for a cellular resource. We show that protein misfolding cyclic amplification (PMCA) of DY and HY TME maintains the strain-specific properties of PrPSc and replicates infectious agent and that DY TME can interfere, or completely block, the emergence of HY TME. DY PrPSc does not convert all of the available PrPC to PrPSc in PMCA, suggesting the mechanism of prion strain interference is due to the sequestering of PrPC and/or other cellular components required for prion conversion. The emergence of HY TME in PMCA was controlled by the initial ratio of the TME agents. A higher ratio of DY to HY TME agent is required for complete blockage of HY TME in PMCA compared to several previous in vivo studies, suggesting that HY TME persists in animals coinfected with the two strains. This was confirmed by PMCA detection of HY PrPSc in animals where DY TME had completely blocked HY TME from causing disease.Prions are infectious agents of animals, including humans, which are comprised of PrPSc, a misfolded isoform of the noninfectious host encoded protein PrPC (17, 24, 50, 63). Prion diseases of humans are unique neurodegenerative disorders in that they can have either a sporadic, familial, or infectious etiology. Prions cause disease in economically important domestic and wild animal species such as bovine spongiform encephalopathy in cattle and chronic wasting disease in wild and captive cervids (20, 62). Prion diseases can be zoonotic as illustrated by the transmission of bovine spongiform encephalopathy to humans that resulted in the emergence of variant Creutzfeldt-Jacob disease (14, 19, 22, 23, 46, 61, 68). Prion diseases are inevitably fatal and there are currently no effective treatments (21).Prion strains are defined by a characteristic set of features that breed true upon experimental passage (33, 34). Strain-specific differences have been identified in incubation period, clinical signs, agent distribution, overdominance, host range, neuropathology, and biochemical properties of PrPSc (5, 10, 11, 13, 28, 34, 42, 44). Strain-specific conformations of PrPSc are hypothesized to encode prion strain diversity; however, it is not understood how these differences result in the distinct strain properties (11, 19, 40, 47, 59, 66).Prion strain interference may be involved in the emergence of a dominant strain from a mixture as could occur during prion adaptation to a new host species or during prion evolution (4, 36, 43, 48, 56). In the natural prion diseases, there are examples where an individual host may be infected with more than one prion strain (15, 25, 55, 57, 58). Experimentally, coinfection or superinfection of prion strains can result in interference where a blocking, long incubation period strain extends the incubation period or completely blocks a superinfecting, short incubation period strain from causing disease (26, 27). Prion interference has been described in experimental studies of mice and hamsters infected with a wide variety of prion strains and routes of inoculation, suggesting it may be a common property of prion disease (3, 27, 52, 53, 60).It has been proposed that prion strains compete for a shared “replication site”; however, mechanistic details are not known, and it is unclear whether the blocking strain destroys or occupies the replication sites required for the superinfecting strain (28). The transport to and relative onset of replication of interfering strains in a common population of neurons is an important factor that can determine which strain will emerge (8). In the present study, we sought to determine whether the blocking strain disables transport and spread of the superinfecting strain or whether prion interference is due to competition for a cellular resource.  相似文献   

8.
The purpose of the present study was to investigate the inhibition of Vibrio by Roseobacter in a combined liquid-surface system. Exposure of Vibrio anguillarum to surface-attached roseobacters (107 CFU/cm2) resulted in significant reduction or complete killing of the pathogen inoculated at 102 to 104 CFU/ml. The effect was likely associated with the production of tropodithietic acid (TDA), as a TDA-negative mutant did not affect survival or growth of V. anguillarum.Antagonistic interactions among marine bacteria are well documented, and secretion of antagonistic compounds is common among bacteria that colonize particles or surfaces (8, 13, 16, 21, 31). These marine bacteria may be interesting as sources for new antimicrobial drugs or as probiotic bacteria for aquaculture.Aquaculture is a rapidly growing sector, but outbreaks of bacterial diseases are a limiting factor and pose a threat, especially to young fish and invertebrates that cannot be vaccinated. Because regular or prophylactic administration of antibiotics must be avoided, probiotic bacteria are considered an alternative (9, 18, 34, 38, 39, 40). Several microorganisms have been able to reduce bacterial diseases in challenge trials with fish or fish larvae (14, 24, 25, 27, 33, 37, 39, 40). One example is Phaeobacter strain 27-4 (17), which inhibits Vibrio anguillarum and reduces mortality in turbot larvae (27). The antagonism of Phaeobacter 27-4 and the closely related Phaeobacter inhibens is due mainly to the sulfur-containing tropolone derivative tropodithietic acid (TDA) (2, 5), which is also produced by other Phaeobacter strains and Ruegeria mobilis (28). Phaeobacter and Ruegeria strains or their DNA has been commonly found in marine larva-rearing sites (6, 17, 28).Phaeobacter and Ruegeria (Alphaproteobacteria, Roseobacter clade) are efficient surface colonizers (7, 11, 31, 36). They are abundant in coastal and eutrophic zones and are often associated with algae (3, 7, 41). Surface-attached Phaeobacter bacteria may play an important role in determining the species composition of an emerging biofilm, as even low densities of attached Phaeobacter strain SK2.10 bacteria can prevent other marine organisms from colonizing solid surfaces (30, 32).In continuation of the previous research on roseobacters as aquaculture probiotics, the purpose of this study was to determine the antagonistic potential of Phaeobacter and Ruegeria against Vibrio anguillarum in liquid systems that mimic a larva-rearing environment. Since production of TDA in liquid marine broth appears to be highest when roseobacters form an air-liquid biofilm (5), we addressed whether they could be applied as biofilms on solid surfaces.  相似文献   

9.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

10.
We previously reported that CD4C/human immunodeficiency virus (HIV)Nef transgenic (Tg) mice, expressing Nef in CD4+ T cells and cells of the macrophage/dendritic cell (DC) lineage, develop a severe AIDS-like disease, characterized by depletion of CD4+ T cells, as well as lung, heart, and kidney diseases. In order to determine the contribution of distinct populations of hematopoietic cells to the development of this AIDS-like disease, five additional Tg strains expressing Nef through restricted cell-specific regulatory elements were generated. These Tg strains express Nef in CD4+ T cells, DCs, and macrophages (CD4E/HIVNef); in CD4+ T cells and DCs (mCD4/HIVNef and CD4F/HIVNef); in macrophages and DCs (CD68/HIVNef); or mainly in DCs (CD11c/HIVNef). None of these Tg strains developed significant lung and kidney diseases, suggesting the existence of as-yet-unidentified Nef-expressing cell subset(s) that are responsible for inducing organ disease in CD4C/HIVNef Tg mice. Mice from all five strains developed persistent oral carriage of Candida albicans, suggesting an impaired immune function. Only strains expressing Nef in CD4+ T cells showed CD4+ T-cell depletion, activation, and apoptosis. These results demonstrate that expression of Nef in CD4+ T cells is the primary determinant of their depletion. Therefore, the pattern of Nef expression in specific cell population(s) largely determines the nature of the resulting pathological changes.The major cell targets and reservoirs for human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) infection in vivo are CD4+ T lymphocytes and antigen-presenting cells (macrophages and dendritic cells [DC]) (21, 24, 51). The cell specificity of these viruses is largely dependent on the expression of CD4 and of its coreceptors, CCR5 and CXCR-4, at the cell surface (29, 66). Infection of these immune cells leads to the severe disease, AIDS, showing widespread manifestations, including progressive immunodeficiency, immune activation, CD4+ T-cell depletion, wasting, dementia, nephropathy, heart and lung diseases, and susceptibility to opportunistic pathogens, such as Candida albicans (1, 27, 31, 37, 41, 82, 93, 109). It is reasonable to assume that the various pathological changes in AIDS result from the expression of one or many HIV-1/SIV proteins in these immune target cells. However, assigning the contribution of each infected cell subset to each phenotype has been remarkably difficult, despite evidence that AIDS T-cell phenotypes can present very differently depending on the strains of infecting HIV-1 or SIV or on the cells targeted by the virus (4, 39, 49, 52, 72). For example, the T-cell-tropic X4 HIV strains have long been associated with late events and severe CD4+ T-cell depletion (22, 85, 96). However, there are a number of target cell subsets expressing CD4 and CXCR-4, and identifying which one is responsible for this enhanced virulence has not been achieved in vivo. Similarly, the replication of SIV in specific regions of the thymus (cortical versus medullary areas), has been associated with very different outcomes but, unfortunately, the critical target cells of the viruses were not identified either in these studies (60, 80). The task is even more complex, because HIV-1 or SIV can infect several cell subsets within a single cell population. In the thymus, double (CD4 CD8)-negative (DN) or triple (CD3 CD4 CD8)-negative (TN) T cells, as well as double-positive (CD4+ CD8+) (DP) T cells, are infectible by HIV-1 in vitro (9, 28, 74, 84, 98, 99, 110) and in SCID-hu mice (2, 5, 91, 94). In peripheral organs, gut memory CCR5+ CD4+ T cells are primarily infected with R5 SIV, SHIV, or HIV, while circulating CD4+ T cells can be infected by X4 viruses (13, 42, 49, 69, 70, 100, 101, 104). Moreover, some detrimental effects on CD4+ T cells have been postulated to originate from HIV-1/SIV gene expression in bystander cells, such as macrophages or DC, suggesting that other infected target cells may contribute to the loss of CD4+ T cells (6, 7, 32, 36, 64, 90).Similarly, the infected cell population(s) required and sufficient to induce the organ diseases associated with HIV-1/SIV expression (brain, heart, and kidney) have not yet all been identified. For lung or kidney disease, HIV-specific cytotoxic CD8+ T cells (1, 75) or infected podocytes (50, 95), respectively, have been implicated. Activated macrophages have been postulated to play an important role in heart disease (108) and in AIDS dementia (35), although other target cells could be infected by macrophage-tropic viruses and may contribute significantly to the decrease of central nervous system functions (11, 86, 97), as previously pointed out (25).Therefore, because of the widespread nature of HIV-1 infection and the difficulty in extrapolating tropism of HIV-1/SIV in vitro to their cell targeting in vivo (8, 10, 71), alternative approaches are needed to establish the contribution of individual infected cell populations to the multiorgan phenotypes observed in AIDS. To this end, we developed a transgenic (Tg) mouse model of AIDS using a nonreplicating HIV-1 genome expressed through the regulatory sequences of the human CD4 gene (CD4C), in the same murine cells as those targeted by HIV-1 in humans, namely, in immature and mature CD4+ T cells, as well as in cells of the macrophage/DC lineages (47, 48, 77; unpublished data). These CD4C/HIV Tg mice develop a multitude of pathologies closely mimicking those of AIDS patients. These include a gradual destruction of the immune system, characterized among other things by thymic and lymphoid organ atrophy, depletion of mature and immature CD4+ T lymphocytes, activation of CD4+ and CD8+ T cells, susceptibility to mucosal candidiasis, HIV-associated nephropathy, and pulmonary and cardiac complications (26, 43, 44, 57, 76, 77, 79, 106). We demonstrated that Nef is the major determinant of the HIV-1 pathogenicity in CD4C/HIV Tg mice (44). The similarities of the AIDS-like phenotypes of these Tg mice to those in human AIDS strongly suggest that such a Tg mouse approach can be used to investigate the contribution of distinct HIV-1-expressing cell populations to their development.In the present study, we constructed and characterized five additional mouse Tg strains expressing Nef, through distinct regulatory elements, in cell populations more restricted than in CD4C/HIV Tg mice. The aim of this effort was to assess whether, and to what extent, the targeting of Nef in distinct immune cell populations affects disease development and progression.  相似文献   

11.
12.
13.
Methods for rapid detection and quantification of infectious viruses in the environment are urgently needed for public health protection. A fluorescence-activated cell-sorting (FACS) assay was developed to detect infectious adenoviruses (Ads) based on the expression of viral protein during replication in cells. The assay was first developed using recombinant Ad serotype 5 (rAd5) with the E1A gene replaced by a green fluorescent protein (GFP) gene. Cells infected with rAd5 express GFP, which is captured and quantified by FACS. The results showed that rAd5 can be detected at concentrations of 1 to 104 PFU per assay within 3 days, demonstrating a linear correlation between the viral concentration and the number of GFP-positive cells with an r2 value of >0.9. Following the same concept, FACS assays using fluorescently labeled antibodies specific to the E1A and hexon proteins, respectively, were developed. Assays targeting hexon showed greater sensitivity than assays targeting E1A. The results demonstrated that as little as 1 PFU Ads was detected by FACS within 3 days based on hexon protein, with an r2 value greater than 0.9 over a 4-log concentration range. Application of this method to environmental samples indicated positive detection of infectious Ads in 50% of primary sewage samples and 33% of secondary treated sewage samples, but none were found in 12 seawater samples. The infectious Ads ranged in quantity between 10 and 165 PFU/100 ml of sewage samples. The results indicate that the FACS assay is a rapid quantification tool for detecting infectious Ads in environmental samples and also represents a considerable advancement for rapid environmental monitoring of infectious viruses.Waterborne viral infection is one of the most important causes of human morbidity in the world. There are hundreds of different types of human viruses present in human sewage, which, if improperly treated, may become the source of contamination in drinking and recreational waters (6, 12, 19). Furthermore, as water scarcity intensifies in the nation, so has consideration of wastewater reuse as a valid and essential alternative for resolving water shortages (31).Currently, routine viral monitoring is not required for drinking or recreational waters, nor is it required for wastewater that is discharged into the environment. This lack of a monitoring effort is due largely to the lack of methods that can rapidly and sensitively detect infectious viruses in environmental samples. In the past 20 years, tremendous progress has been made in detection of viruses in the environment based on molecular technology (32, 33, 35). PCR and quantitative real-time PCR (qPCR) methods have improved both the speed and sensitivity of viral detection compared with detection by the traditional tissue culture method (2, 11, 17, 18). However, they provide little information on viral infectivity, which is crucial for human health risk assessment (22-24, 35). Our previous work using a real-time PCR assay to detect human adenoviruses (Ads) in sewage could not differentiate the infectious viruses in the secondary treated sewage from those killed by chlorination disinfection (15). In this research, we pursued an innovative approach to detecting infectious viruses in water using fluorescence-activated cell sorting (FACS). This method is rapid and sensitive, with an established record in microbiological research (29, 34, 39).FACS is a specialized type of flow cytometry which provides a method for counting and sorting a heterogeneous mixture of biological cells into two or more kinds, one cell at a time, based upon the specific light-scattering and fluorescent characteristics of each cell (4, 25, 34, 38). It is a useful method since it provides fast and quantitative recording of fluorescent signals from individual cells (14, 16, 34, 47). The FACS viral assay is based on the expression of viral protein inside the recipient cell during viral replication (16). Specific antibody labeled with fluorescence is bound to the target viral protein, which results in fluorescence emission from infected cells. Viral particles outside the cell will not be captured, because the size of virus is below the detection limit of flow cytometry. Therefore, detection of cells, which can be captured with fluorescently labeled viral antibody, is a definitive indication of the presence of infectious virus.This research used human Ads as the target for development of the FACS method. The rationale for this choice is as follows. (i) Ads are important human pathogens that may be transmitted by water consumption and water spray (aerosols) (26, 32). The health hazard associated with exposure to Ads has been demonstrated by epidemiological data and clinical research (1, 7, 9, 35, 40, 43). (ii) Ads are among the most prevalent human viruses identified in human sewage and are frequently detected in marine waters and the Great Lakes (17, 32, 33, 35). (iii) Ads are more resistant to UV disinfection than any other bacteria or viruses (3, 5, 10, 24, 41, 42, 44). Thus, they may survive wastewater treatment as increasing numbers of wastewater treatment facilities switch from chlorination to UV to avoid disinfection by-products. (iv) Some serotypes of Ads, including enteric Ad 40 and 41, are fastidious. They are difficult to detect by plaque assay, and a routine assay of infectivity takes 7 to 14 days (8, 20).In this study, recombinant Ad serotype 5 (rAd5) with the E1A gene (the first transcribed gene after infection) replaced by a green fluorescent protein (GFP) gene was first used to test for sensitivity and speed of the assay. Two other viral proteins were then used as targets for development of FACS assays using Ad serotype 2 (Ad2) and Ad41. This study demonstrated the feasibility, sensitivity, and reliability of the assay for detection of infectious Ads in environmental samples.  相似文献   

14.
Hantaviruses infect endothelial cells and cause 2 vascular permeability-based diseases. Pathogenic hantaviruses enhance the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF). However, the mechanism by which hantaviruses hyperpermeabilize endothelial cells has not been defined. The paracellular permeability of endothelial cells is uniquely determined by the homophilic assembly of vascular endothelial cadherin (VE-cadherin) within adherens junctions, which is regulated by VEGF receptor-2 (VEGFR2) responses. Here, we investigated VEGFR2 phosphorylation and the internalization of VE-cadherin within endothelial cells infected by pathogenic Andes virus (ANDV) and Hantaan virus (HTNV) and nonpathogenic Tula virus (TULV) hantaviruses. We found that VEGF addition to ANDV- and HTNV-infected endothelial cells results in the hyperphosphorylation of VEGFR2, while TULV infection failed to increase VEGFR2 phosphorylation. Concomitant with the VEGFR2 hyperphosphorylation, VE-cadherin was internalized to intracellular vesicles within ANDV- or HTNV-, but not TULV-, infected endothelial cells. Addition of angiopoietin-1 (Ang-1) or sphingosine-1-phosphate (S1P) to ANDV- or HTNV-infected cells blocked VE-cadherin internalization in response to VEGF. These findings are consistent with the ability of Ang-1 and S1P to inhibit hantavirus-induced endothelial cell permeability. Our results suggest that pathogenic hantaviruses disrupt fluid barrier properties of endothelial cell adherens junctions by enhancing VEGFR2-VE-cadherin pathway responses which increase paracellular permeability. These results provide a pathway-specific mechanism for the enhanced permeability of hantavirus-infected endothelial cells and suggest that stabilizing VE-cadherin within adherens junctions is a primary target for regulating endothelial cell permeability during pathogenic hantavirus infection.Hantaviruses cause 2 human diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) (50). HPS and HFRS are multifactorial in nature and cause thrombocytopenia, immune and endothelial cell responses, and hypoxia, which contribute to disease (7, 11, 31, 42, 62). Although these syndromes sound quite different, they share common components which involve the ability of hantaviruses to infect endothelial cells and induce capillary permeability. Edema, which results from capillary leakage of fluid into tissues and organs, is a common finding in both HPS and HFRS patients (4, 7, 11, 31, 42, 62). In fact, both diseases can present with renal or pulmonary sequelae, and the renal or pulmonary focus of hantavirus diseases is likely to result from hantavirus infection of endothelial cells within vast glomerular and pulmonary capillary beds (4, 7, 11, 31, 42, 62). All hantaviruses predominantly infect endothelial cells which line capillaries (31, 42, 44, 61, 62), and endothelial cells have a primary role in maintaining fluid barrier functions of the vasculature (1, 12, 55). Although hantaviruses do not lyse endothelial cells (44, 61), this primary cellular target underlies hantavirus-induced changes in capillary integrity. As a result, understanding altered endothelial cell responses following hantavirus infection is fundamental to defining the mechanism of permeability induced by pathogenic hantaviruses (1, 12, 55).Pathogenic, but not nonpathogenic, hantaviruses use β3 integrins on the surface of endothelial cells and platelets for attachment (19, 21, 23, 39, 46), and β3 integrins play prominent roles in regulating vascular integrity (3, 6, 8, 24, 48). Pathogenic hantaviruses bind to basal, inactive conformations of β3 integrins (35, 46, 53) and days after infection inhibit β3 integrin-directed endothelial cell migration (20, 46). This may be the result of cell-associated virus (19, 20, 22) which keeps β3 in an inactive state but could also occur through additional regulatory processes that have yet to be defined. Interestingly, the nonpathogenic hantaviruses Prospect Hill virus (PHV) and Tula virus (TULV) fail to alter β3 integrin functions, and their entry is consistent with the use of discrete α5β1 integrins (21, 23, 36).On endothelial cells, αvβ3 integrins normally regulate permeabilizing effects of vascular endothelial growth factor receptor-2 (VEGFR2) (3, 24, 48, 51). VEGF was initially identified as an edema-causing vascular permeability factor (VPF) that is 50,000 times more potent than histamine in directing fluid across capillaries (12, 14). VEGF is responsible for disassembling adherens junctions between endothelial cells to permit cellular movement, wound repair, and angiogenesis (8, 10, 12, 13, 17, 26, 57). Extracellular domains of β3 integrins and VEGFR2 reportedly form a coprecipitable complex (3), and knocking out β3 causes capillary permeability that is augmented by VEGF addition (24, 47, 48). Pathogenic hantaviruses inhibit β3 integrin functions days after infection and similarly enhance the permeability of endothelial cells in response to VEGF (22).Adherens junctions form the primary fluid barrier of endothelial cells, and VEGFR2 responses control adherens junction disassembly (10, 17, 34, 57, 63). Vascular endothelial cadherin (VE-cadherin) is an endothelial cell-specific adherens junction protein and the primary determinant of paracellular permeability within the vascular endothelium (30, 33, 34). Activation of VEGFR2, another endothelial cell-specific protein, triggers signaling responses resulting in VE-cadherin disassembly and endocytosis, which increases the permeability of endothelial cell junctions (10, 12, 17, 34). VEGF is induced by hypoxic conditions and released by endothelial cells, platelets, and immune cells (2, 15, 38, 52). VEGF acts locally on endothelial cells through the autocrine or paracrine activation of VEGFR2, and the disassembly of endothelial cell adherens junctions increases the availability of nutrients to tissues and facilitates leukocyte trafficking and diapedesis (10, 12, 17, 55). The importance of endothelial cell barrier integrity is often in conflict with requirements for endothelial cells to move in order to permit angiogenesis and repair or cell and fluid egress, and as a result, VEGF-induced VE-cadherin responses are tightly controlled (10, 17, 18, 32, 33, 59). This limits capillary permeability while dynamically responding to a variety of endothelial cell-specific factors and conditions. However, if unregulated, this process can result in localized capillary permeability and edema (2, 9, 10, 12, 14, 17, 29, 60).Interestingly, tissue edema and hypoxia are common findings in both HPS and HFRS patients (11, 31, 62), and the ability of pathogenic hantaviruses to infect human endothelial cells provides a means for hantaviruses to directly alter normal VEGF-VE-cadherin regulation. In fact, the permeability of endothelial cells infected by pathogenic Andes virus (ANDV) or Hantaan virus (HTNV) is dramatically enhanced in response to VEGF addition (22). This response is absent from endothelial cells comparably infected with the nonpathogenic TULV and suggests that enhanced VEGF-induced endothelial cell permeability is a common underlying response of both HPS- and HFRS-causing hantaviruses (22). In these studies, we comparatively investigate responses of human endothelial cells infected with pathogenic ANDV and HTNV, as well as nonpathogenic TULV.  相似文献   

15.
The human immunodeficiency virus type 1 structural polyprotein Pr55Gag is necessary and sufficient for the assembly of virus-like particles on cellular membranes. Previous studies demonstrated the importance of the capsid C-terminal domain (CA-CTD), nucleocapsid (NC), and membrane association in Gag-Gag interactions, but the relationships between these factors remain unclear. In this study, we systematically altered the CA-CTD, NC, and the ability to bind membrane to determine the relative contributions of, and interplay between, these factors. To directly measure Gag-Gag interactions, we utilized chimeric Gag-fluorescent protein fusion constructs and a fluorescence resonance energy transfer (FRET) stoichiometry method. We found that the CA-CTD is essential for Gag-Gag interactions at the plasma membrane, as the disruption of the CA-CTD has severe impacts on FRET. Data from experiments in which wild-type (WT) and CA-CTD mutant Gag molecules are coexpressed support the idea that the CA-CTD dimerization interface consists of two reciprocal interactions. Mutations in NC have less-severe impacts on FRET between normally myristoylated Gag proteins than do CA-CTD mutations. Notably, when nonmyristoylated Gag interacts with WT Gag, NC is essential for FRET despite the presence of the CA-CTD. In contrast, constitutively enhanced membrane binding eliminates the need for NC to produce a WT level of FRET. These results from cell-based experiments suggest a model in which both membrane binding and NC-RNA interactions serve similar scaffolding functions so that one can functionally compensate for a defect in the other.The human immunodeficiency virus type 1 (HIV-1) structural precursor polyprotein Pr55Gag is necessary and sufficient for the assembly of virus-like particles (VLPs). Gag is composed of four major structural domains, matrix (MA), capsid (CA), nucleocapsid (NC), and p6, as well as two spacer peptides, SP1 and SP2 (3, 30, 94). Following particle assembly and release, cleavage by HIV-1 protease separates these domains. However, these domains must work together in the context of the full-length Gag polyprotein to drive particle assembly.Previous studies have mapped two major functional domains involved in the early steps of assembly: first, Gag associates with cellular membranes via basic residues and N-terminal myristoylation of the MA domain (10, 17, 20, 35, 39, 87, 91, 106); second, the Gag-Gag interaction domains that span the CA C-terminal domain (CA-CTD) and NC domain promote Gag multimerization (3, 11, 14, 16, 18, 23, 27, 29, 30, 33, 36, 46, 64, 88, 94, 102, 103). Structural and genetic studies have identified two residues (W184 and M185) within a dimerization interface in the CA-CTD that are critical to CA-CA interactions (33, 51, 74, 96). Analytical ultracentrifugation of heterodimers formed between wild-type (WT) Gag and Gag mutants with changes at these residues suggests that the dimerization interface consists of two reciprocal interactions, one of which can be disrupted to form a “half-interface” (22).In addition to the CA-CTD, NC contributes to assembly via 15 basic residues (8, 9, 11, 14, 18, 23, 25, 28, 34, 40, 43, 54, 57, 58, 74, 79, 88, 97, 104, 105), although some researchers have suggested that NC instead contributes to the stability of mature virions after assembly (75, 98, 99). It is thought that the contribution of NC to assembly is due to its ability to bind RNA, since the addition of RNA promotes the formation of particles in vitro (14-16, 37, 46), and RNase treatment disrupts Gag-Gag interactions (11) and immature viral cores (67). However, RNA is not necessary per se, since dimerization motifs can substitute for NC (1, 4, 19, 49, 105). This suggests a model in which RNA serves a structural role, such as a scaffold, to promote Gag-Gag interactions through NC. Based on in vitro studies, it has been suggested that this RNA scaffolding interaction facilitates the low-order Gag multimerization mediated by CA-CTD dimerization (4, 37, 49, 62, 63, 85). Despite a wealth of biochemical data, the relative contributions of the CA-CTD and NC to Gag multimerization leading to assembly are yet to be determined in cells.Mutations in Gag interaction domains alter membrane binding in addition to affecting Gag multimerization. In particular, mutations or truncations of CA reduce membrane binding (21, 74, 82), and others previously reported that mutations or truncations of NC affect membrane binding (13, 78, 89, 107). These findings are consistent with a myristoyl switch model of membrane binding in which Gag can switch between high- and low-membrane-affinity states (38, 71, 76, 83, 86, 87, 92, 95, 107). Many have proposed, and some have provided direct evidence (95), that Gag multimerization mediated by CA or NC interactions promotes the exposure of the myristoyl moiety to facilitate membrane associations.Gag membrane binding and multimerization appear to be interrelated steps of virus assembly, since membrane binding also facilitates Gag multimerization. Unlike betaretroviruses that fully assemble prior to membrane targeting and envelopment (type B/D), lentiviruses, such as HIV, assemble only on cellular membranes at normal Gag expression levels (type C), although non-membrane-bound Gag complexes exist (45, 58, 60, 61, 65). Consistent with this finding, mutations that reduce Gag membrane associations cause a defect in Gag multimerization (59, 74). Therefore, in addition to their primary effects on Gag-Gag interactions, mutations in Gag interaction domains cause a defect in membrane binding, which, in turn, causes a secondary multimerization defect. To determine the relative contributions of the CA-CTD and the NC domain to Gag-Gag interactions at the plasma membrane, it is essential to eliminate secondary effects due to a modulation of membrane binding.Except for studies using a His-tag-mediated membrane binding system (5, 46), biochemical studies of C-type Gag multimerization typically lack membranes. Therefore, these studies do not fully represent particle assembly, which occurs on biological membranes in cells. Furthermore, many biochemical and structural approaches are limited to isolated domains or truncated Gag constructs. Thus, some of these studies are perhaps more relevant to the behavior of protease-cleaved Gag in mature virions. With few exceptions (47, 74), cell-based studies of Gag multimerization have typically been limited to measuring how well mutant Gag is incorporated into VLPs when coexpressed or not with WT Gag. Since VLP production is a complex multistep process, effects of mutations on other steps in the process can confound this indirect measure. For example, NC contributes to VLP production by both promoting multimerization and interacting with the host factor ALIX to promote VLP release (26, 80). To directly assay Gag multimerization in cells, several groups (24, 45, 52, 56) developed microscopy assays based on fluorescence resonance energy transfer (FRET). These assays measure the transfer of energy between donor and acceptor fluorescent molecules that are brought within ∼5 nm by the association of the proteins to which they are attached (41, 48, 90). However, these microscopy-based Gag FRET assays have not been used to fully elucidate several fundamental aspects of HIV-1 Gag multimerization at the plasma membrane of cells, such as the relative contributions of the CA-CTD and NC and the effect of membrane binding on Gag-Gag interactions. In this study, we used a FRET stoichiometry method based on calibrated spectral analysis of fluorescence microscopy images (41). This algorithm determines the fractions of both donor and acceptor fluorescent protein-tagged Gag molecules participating in FRET. For cells expressing Gag molecules tagged with donor (cyan fluorescent protein [CFP]) and acceptor (yellow fluorescent protein [YFP]) molecules, this method measures the apparent FRET efficiency, which is proportional to the mole fraction of Gag constructs in complex. By measuring apparent FRET efficiencies, quantitative estimates of the mole fractions of interacting proteins can be obtained.Using this FRET-based assay, we aim to answer two questions: (i) what are the relative contributions of CA-CTD and NC domains to Gag multimerization when secondary effects via membrane binding are held constant, and (ii) what is the effect of modulating membrane binding on the ability of Gag mutants to interact with WT Gag?Our data demonstrate that the CA-CTD dimerization interface is essential for Gag multimerization at the plasma membrane, as fully disrupting the CA-CTD interaction abolishes FRET, whereas a modest level of FRET is still detected in the absence of NC. We also present evidence that the CA-CTD dimerization interface consists of two reciprocal interactions, allowing the formation of a half-interface that can still contribute to Gag multimerization. Notably, when Gag derivatives with an intact CA-CTD were coexpressed with WT Gag, either membrane binding ability or NC was required for the Gag mutants to interact with WT Gag, suggesting functional compensation between these factors.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

17.
18.
19.
The p6 region of HIV-1 Gag contains two late (L) domains, PTAP and LYPXnL, that bind Tsg101 and Alix, respectively. Interactions with these two cellular proteins recruit members of the host''s fission machinery (ESCRT) to facilitate HIV-1 release. Other retroviruses gain access to the host ESCRT components by utilizing a PPXY-type L domain that interacts with cellular Nedd4-like ubiquitin ligases. Despite the absence of a PPXY motif in HIV-1 Gag, interaction with the ubiquitin ligase Nedd4-2 was recently shown to stimulate HIV-1 release. We show here that another Nedd4-like ubiquitin ligase, Nedd4-1, corrected release defects resulting from the disruption of PTAP (PTAP), suggesting that HIV-1 Gag also recruits Nedd4-1 to facilitate virus release. Notably, Nedd4-1 remediation of HIV-1 PTAP budding defects is independent of cellular Tsg101, implying that Nedd4-1''s function in HIV-1 release does not involve ESCRT-I components and is therefore distinct from that of Nedd4-2. Consistent with this finding, deletion of the p6 region decreased Nedd4-1-Gag interaction, and disruption of the LYPXnL motif eliminated Nedd4-1-mediated restoration of HIV-1 PTAP. This result indicated that both Nedd4-1 interaction with Gag and function in virus release occur through the Alix-binding LYPXnL motif. Mutations of basic residues located in the NC domain of Gag that are critical for Alix''s facilitation of HIV-1 release, also disrupted release mediated by Nedd4-1, further confirming a Nedd4-1-Alix functional interdependence. In fact we found that Nedd4-1 binds Alix in both immunoprecipitation and yeast-two-hybrid assays. In addition, Nedd4-1 requires its catalytic activity to promote virus release. Remarkably, RNAi knockdown of cellular Nedd4-1 eliminated Alix ubiquitination in the cell and impeded its ability to function in HIV-1 release. Together our data support a model in which Alix recruits Nedd4-1 to facilitate HIV-1 release mediated through the LYPXnL/Alix budding pathway via a mechanism that involves Alix ubiquitination.Retroviral Gag polyproteins bear short conserved sequences that control virus budding and release. As such, these motifs have been dubbed late or L domains (49). Three types of L domains have thus far been characterized: PT/SAP, LYPXnL, and PPPY motifs (5, 9, 32). They recruit host proteins known to function in the vacuolar protein sorting (vps) of cargo proteins and the generation of multivesicular bodies (MVB) compartments (2). It is currently accepted that budding of vesicles into MVB involves the sequential recruitment of endosomal sorting complexes required for transport (ESCRT-I, -II, and -III) and the activity of the VPS4 AAA-ATPase (22). These sorting events are believed to be triggered by recognition of ubiquitin molecules conjugated to cargo proteins (20, 24, 41). For retrovirus budding, L domain motifs are the primary signals in Gag that elicit the recruitment of ESCRT components to facilitate viral budding. Consequently, mutations in L domain motifs or dominant-negative interference with the function of ESCRT-III members or the VPS4 ATPase adversely affect virus release. This indicates that Gag interactions with the ESCRT machinery are necessary for virus budding and separation from the cell (7, 10, 15, 16, 21, 28, 44).Two late domains have been identified within the p6 region of human immunodeficiency virus type 1 (HIV-1) Gag protein: the PTAP and LYPXnL motifs. The PTAP motif binds the cellular protein Tsg101 (15, 39, 40, 47), whereas the LYPXnL motif is the docking site for Alix (44). Tsg101 functions in HIV-1 budding (15) as a member of ESCRT-I (30, 48), a soluble complex required for the generation of MVB. This process is topologically similar to HIV-1 budding and requires the recruitment of ESCRT-III members called the charged-multivesicular body proteins (3, 29, 48) and the activity of the VPS4 AAA-ATPase (4, 48). In addition to binding the LYPXnL motif, Alix also interacts with the nucleocapsid (NC) domain of HIV-1 Gag (13, 38), thus linking Gag to components of ESCRT-III that are critical for virus release (13).Other retroviruses, including the human T-cell leukemia virus (HTLV) and the Moloney murine leukemia virus (MoMLV), utilize the PPPY-type L domain to efficiently release virus (7, 26, 51). The PPPY motif binds members of the Nedd4-like ubiquitin ligase family (6, 7, 16, 19, 25, 43), whose normal cellular function is to ubiquitinate cargo proteins and target them into the MVB sorting pathway (11, 12, 20). Members of the Nedd4-like ubiquitin ligase family include Nedd4-1, Nedd4-2 (also known as Nedd4L), WWP-1/2, and Itch. They contain three distinct domains: an N-terminal membrane binding C2 domain (12), a central PPPY-interacting WW domain (43), and a C-terminal HECT domain that contains the ubiquitin ligase active site (42). The functional requirement for the binding of Nedd4-like ubiquitin ligases to the PPPY motif in virus budding has been demonstrated (7, 16, 18, 19, 25, 26, 28, 50, 51). Overexpression of dominant-negative mutants of Nedd4-like ligases, ESCRT-III components, or VPS4 cause a potent inhibition of PPPY-dependent virus release (7, 19, 29, 31, 52) and induce assembly and budding defects similar to those observed after perturbation of the PPPY motif (26, 51). These observations demonstrated that Nedd4-like ligases connect Gag encoding PPPY motif to ESCRT-III and VPS4 proteins to facilitate virus release.Whereas the role of Nedd4-like ubiquitin ligases in virus budding has been established, the protein interactions that link them to the cell''s ESCRT-III pathway are still unknown. Evidence for associations of Nedd4-like ligases with ESCRT proteins have been previously reported and include: the binding of Nedd4-like ubiquitin ligases LD1 and Nedd4-1 to ESCRT-I member Tsg101 (6, 31), the colocalization of multiple Nedd4-like ubiquitin ligases with endosomal compartments (1, 28), the requirement of the cell''s ESCRT pathway for Itch mediated L domain independent stimulation of MoMLV release (23), and the ubiquitination of ESCRT-I components with a shorter isoform, Nedd4-2s (8). Therefore, Nedd4-like ubiquitin ligase interactions with members of the cell''s ESCRT pathway may provide retroviral Gag with access to the host budding machinery required for virus release.Although HIV-1 Gag does not carry the PPPY canonical sequence known to interact with Nedd4-like ubiquitin ligases, both Nedd4-1 and Nedd4-2 were shown to restore the release of the HIV-1 PTAP mutant, albeit Nedd4-1 with less efficiency than Nedd4-2 (8, 46). These findings suggested that HIV-1 might utilize cellular Nedd4-like ubiquitin ligases to increase virus release. We present here evidence demonstrating that Nedd4-1 interacts with Gag and enhances HIV-1 PTAP virus release. Furthermore, we show that Nedd4-1''s function in HIV-1 release is distinct from that of Nedd4-2 in both its viral and cellular requirements. Notably, we found that Nedd4-1 enhancement of HIV-1 release requires the Alix-binding LYPXnL L domain motif in the p6 region and basic residues in the NC domain. In addition, Alix''s facilitation of HIV-1 release requires cellular Nedd4-1, since mutations in NC that prevented Alix-mediated HIV-1 release also eliminated release by overexpression of Nedd4-1. This suggested a Nedd4-1-Alix physical and functional interdependence. In agreement with this, we found Nedd4-1 to bind and ubiquitinate Alix in the cell. Taken together, these results support a model in which Alix recruits Nedd4-1 to facilitate late steps of HIV-1 release through the LYPXnL L domain motif via a mechanism that involves Alix ubiquitination.  相似文献   

20.
Poxviruses produce complement regulatory proteins to subvert the host''s immune response. Similar to the human pathogen variola virus, ectromelia virus has a limited host range and provides a mouse model where the virus and the host''s immune response have coevolved. We previously demonstrated that multiple components (C3, C4, and factor B) of the classical and alternative pathways are required to survive ectromelia virus infection. Complement''s role in the innate and adaptive immune responses likely drove the evolution of a virus-encoded virulence factor that regulates complement activation. In this study, we characterized the ectromelia virus inhibitor of complement enzymes (EMICE). Recombinant EMICE regulated complement activation on the surface of CHO cells, and it protected complement-sensitive intracellular mature virions (IMV) from neutralization in vitro. It accomplished this by serving as a cofactor for the inactivation of C3b and C4b and by dissociating the catalytic domain of the classical pathway C3 convertase. Infected murine cells initiated synthesis of EMICE within 4 to 6 h postinoculation. The levels were sufficient in the supernatant to protect the IMV, upon release, from complement-mediated neutralization. EMICE on the surface of infected murine cells also reduced complement activation by the alternative pathway. In contrast, classical pathway activation by high-titer antibody overwhelmed EMICE''s regulatory capacity. These results suggest that EMICE''s role is early during infection when it counteracts the innate immune response. In summary, ectromelia virus produced EMICE within a few hours of an infection, and EMICE in turn decreased complement activation on IMV and infected cells.Poxviruses encode in their large double-stranded DNA genomes many factors that modify the immune system (30, 56). The analysis of these molecules has revealed a delicate balance between viral pathogenesis and the host''s immune response (2, 21, 31, 61). Variola, vaccinia, monkeypox, cowpox, and ectromelia (ECTV) viruses each produce an orthologous complement regulatory protein (poxviral inhibitor of complement enzymes [PICE]) that has structural and functional homology to host proteins (14, 29, 34, 38, 41, 45, 54). The loss of the regulatory protein resulted in smaller local lesions with vaccinia virus lacking the vaccinia virus complement control protein (VCP) (29) and in a greater local inflammatory response in the case of cowpox lacking the inflammation-modulatory protein (IMP; the cowpox virus PICE) (35, 45, 46). Additionally, the complete loss of the monkeypox virus inhibitor of complement enzymes (MOPICE) may account for part of the reduced mortality observed in the West African compared to Congo basin strains of monkeypox virus (12).The complement system consists of proteins on the cell surface and in blood that recognize and destroy invading pathogens and infected host cells (36, 52). Viruses protect themselves from the antiviral effects of complement activation in a variety of ways, including hijacking the host''s complement regulatory proteins or producing their own inhibitors (7, 8, 15, 20, 23). Another effective strategy is to incorporate the host''s complement regulators in the outermost viral membrane, which then protects the virus from complement attack (62). The extracellular enveloped virus (EEV) produced by poxviruses acquires a unique outer membrane derived from the Golgi complex or early endosomes that contain the protective host complement regulators (58, 62). Poxviruses have multiple infectious forms, and the most abundant, intracellular mature virions (IMV), are released when infected cells lyse (58). The IMV lacks the outermost membrane found on EEV and is sensitive to complement-mediated neutralization. The multiple strategies viruses have evolved to evade the complement system underscore its importance to innate and adaptive immunity (15, 36).The most well-characterized PICE is VCP (24-29, 34, 49, 50, 53, 55, 59, 60). Originally described as a secreted complement inhibitor (34), VCP also attaches to the surface of infected cells through an interaction with the viral membrane protein A56 that requires an unpaired N-terminal cysteine (26). This extra cysteine also adds to the potency of the inhibitor by forming function-enhancing dimers (41). VCP and the smallpox virus inhibitor of complement enzymes (SPICE) bind heparin in vitro, and this may facilitate cell surface interactions (24, 38, 50, 59). The coevolution of variola virus with its only natural host, humans, likely explains the enhanced activity against human complement observed with SPICE compared to the other PICEs (54, 64).Our recent work with ECTV, the causative agent of mousepox infection, demonstrated that the classical and alternative pathways of the complement system are required for host survival (48). The mouse-specific pathogen ECTV causes severe disease in most strains and has coevolved with its natural host, analogous to variola virus in humans (9). This close host-virus relationship is particularly important for evaluating the role of the complement system, given the species specificity of many complement proteins, receptors, and regulators (10, 47, 62). Additionally, the availability of complement-deficient mice permits dissection of the complement activation pathways involved. Naïve C57BL/6 mouse serum neutralizes the IMV of ECTV in vitro, predominately through opsonization (48). Maximal neutralization requires natural antibody, classical-pathway activation, and amplification by the alternative pathway. C3 deficiency in the normally resistant C57BL/6 strain results in acute mortality, similar to immunodeficiencies in important elements of the antiviral immune response, including CD8+ T cells (19, 32), natural killer cells (18, 51), and gamma interferon (33). During ECTV infection, the complement system acts in the first few hours and days to delay the spread of infection, resulting in lower levels of viremia and viral burden in tissues (48).This study characterized the PICE produced by ECTV, ectromelia virus inhibitor of complement enzymes (EMICE), and assessed its complement regulatory activity. Recombinant EMICE (rEMICE) decreased activation of both human and mouse complement. Murine cells produced EMICE at 4 to 6 h postinfection prior to the release of the majority of the complement-sensitive IMV from infected cells. rEMICE protected ECTV IMV from complement-mediated neutralization. Further, EMICE produced during natural infection inhibited complement deposition on infected cells by the alternative pathway. ECTV likely produces this abundance of EMICE to protect both the IMV and infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号