首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The LDL receptor-related protein 1 (LRP1) partakes in metabolic and signaling events regulated in a tissue-specific manner. The function of LRP1 in airways has not been studied. We aimed to study the function of LRP1 in smoke-induced disease. We found that bronchial epithelium of patients with chronic obstructive pulmonary disease and airway epithelium of mice exposed to smoke had increased LRP1 expression. We then knocked out LRP1 in human bronchial epithelial cells in vitro and in airway epithelial club cells in mice. In vitro, LRP1 knockdown decreased cell migration and increased transforming growth factor β activation. Tamoxifen-inducible airway-specific LRP1 knockout mice (club Lrp1?/?) induced after complete lung development had increased inflammation in the bronchoalveolar space and lung parenchyma at baseline. After 6 months of smoke exposure, club Lrp1?/? mice showed a combined restrictive and obstructive phenotype, with lower compliance, inspiratory capacity, and forced expiratory volume0.05/forced vital capacity than WT smoke-exposed mice. This was associated with increased values of Ashcroft fibrotic index. Proteomic analysis of room air exposed-club Lrp1?/? mice showed significantly decreased levels of proteins involved in cytoskeleton signaling and xenobiotic detoxification as well as decreased levels of glutathione. The proteome fingerprint created by smoke eclipsed many of the original differences, but club Lrp1?/? mice continued to have decreased lung glutathione levels and increased protein oxidative damage and airway cell proliferation. Therefore, LRP1 deficiency leads to greater lung inflammation and damage and exacerbates smoke-induced lung disease.  相似文献   

2.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with limited treatment options. To guide the design of more effective immunotherapy strategies, mass cytometry was employed to characterize the cellular composition of the PDAC-infiltrating immune cells. The expression of 33 protein markers was examined at the single-cell level in more than two million immune cells from four types of clinical samples, including PDAC tumors, normal pancreatic tissues, chronic pancreatitis tissues, and peripheral blood. Based on the analyses, we identified 23 distinct T-cell phenotypes, with some cell clusters exhibiting aberrant frequencies in the tumors. Programmed cell death protein 1 (PD-1) was extensively expressed in CD4+ and CD8+ T cells and coexpressed with both stimulatory and inhibitory immune markers. In addition, we observed elevated levels of functional markers, such as CD137L and CD69, in PDAC-infiltrating immune cells. Moreover, the combination of PD-1 and CD8 was used to stratify PDAC tumors from The Cancer Genome Atlas database into three immune subtypes, with S1 (PD-1+CD8+) exhibiting the best prognosis. Further analysis suggested distinct molecular mechanisms for immune exclusion in different subtypes. Taken together, the single-cell protein expression data depicted a detailed cell atlas of the PDAC-infiltrating immune cells and revealed clinically relevant information regarding useful cell phenotypes and targets for immunotherapy development.  相似文献   

3.
4.
Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture–based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.  相似文献   

5.
Neuronal growth regulator 1 (NEGR1) is a glycosylphosphatidylinositol-anchored membrane protein associated with several human pathologies, including obesity, depression, and autism. Recently, significantly enlarged white adipose tissue, hepatic lipid accumulation, and decreased muscle capacity were reported in Negr1-deficient mice. However, the mechanism behind these phenotypes was not clear. In the present study, we found NEGR1 to interact with cluster of differentiation 36 (CD36), the major fatty acid translocase in the plasma membrane. Binding assays with a soluble form of NEGR1 and in situ proximal ligation assays indicated that NEGR1-CD36 interaction occurs at the outer leaflet of the cell membrane. Furthermore, we show that NEGR1 overexpression induced CD36 protein destabilization in vitro. Both mRNA and protein levels of CD36 were significantly elevated in the white adipose tissue and liver tissues of Negr1?/? mice. Accordingly, fatty acid uptake rate increased in NEGR1-deficient primary adipocytes. Finally, we demonstrated that Negr1?/? mouse embryonic fibroblasts showed elevated reactive oxygen species levels and decreased adenosine monophosphate-activated protein kinase activation compared with control mouse embryonic fibroblasts. Based on these results, we propose that NEGR1 regulates cellular fat content by controlling the expression of CD36.  相似文献   

6.
Regenerating islet-derived protein (Reg)3β belongs to a member of the Reg family of proteins and has pleiotropic functions, including antimicrobial activity and tissue repair. However, whether Reg3β plays a protective role in the development of colitis and ileitis has not been fully investigated. We generated transgenic mice expressing a short form of cellular FLICE-inhibitory protein (cFLIPs) that promotes necroptosis, a regulated form of cell death. cFLIPs transgenic (CFLARs Tg) mice develop severe ileitis in utero. Although Reg3β is undetectable in the small intestine of wild-type embryos, its expression is aberrantly elevated in the small intestine of CFLARs Tg embryos. To test whether elevated Reg3β attenuates or exacerbates ileitis in CFLARs Tg mice, we generated a Reg3b?/? strain. Reg3b?/? mice grew to adulthood without apparent abnormalities. Deletion of Reg3b in CFLARs Tg mice exacerbated the embryonic lethality of CFLARs Tg mice. Dextran sulfate sodium-induced colitis, characterized by body weight loss and infiltration of neutrophils, was exacerbated in Reg3b?/? compared to wild-type mice. Moreover, the expression of Interleukin 6, an inflammatory cytokine and Chitinase-like 3, a marker for tissue repair macrophages was elevated in the colon of Reg3b?/? mice compared to wild-type mice after DSS treatment. Together, these results suggest that attenuation of colitis and ileitis is a result of Reg3β′s real function.  相似文献   

7.
Transient receptor potential vanilloid 1 (TRPV1) is known as a receptor of capsaicin, a spicy ingredient of chili peppers. It is also sensitive to a variety of pungent compounds and is involved in nociception. Here, we focused on the structural characteristics of capsaicin, and investigated whether vanillylmanderic acid (VMA), vanillic acid (VAcid), vanillyl alcohol (VAlc), vanillyl butyl ether (VBE), and vanillin, containing a vanillyl skeleton similar to capsaicin, affected the TRPV1 activities. For detection of TRPV1 activity, intracellular Ca2+ concentration ([Ca2+]i) was measured in HEK 293 cells heterologously expressing mouse TRPV1 (mTRPV1-HEK) and in mouse sensory neurons. Except for vanillin, four vanilloid analogues dose-dependently increased [Ca2+]i in mTRPV1-HEK. The solutions that dissolved VMA, VAcid and vanillin at high concentrations were acidic, whereas those of VAlc and VBE were neutral. Neutralized VAcid evoked [Ca2+]i increases but neutralized VMA did not. Mutation of capsaicin-sensing sites diminished [Ca2+]i responses to VAcid, VAlc and VBE. VAcid, VMA, and vanillin suppressed the activation of TRPV1 induced by capsaicin. VAcid and VMA also inhibited the acid-induced TRPV1 activation. In sensory neurons, VMA diminished TRPV1 activation by capsaicin or acids. The present data indicate that these structural characteristics of chemical compounds on TRPV1 may provide strategies for the development of novel analgesic drugs targeting nociceptive TRPV1.  相似文献   

8.
BackgroundAltered epigenetic reprogramming and events contribute to breast cancer (Bca) progression and metastasis. How the epigenetic histone demethylases modulate breast cancer progression remains poorly defined. We aimed to elucidate the biological roles of KDM4A in driving Notch1 activation and Bca progression.MethodsThe KDM4A expression in Bca specimens was analyzed using quantitative PCR and immunohistochemical assays. The biological roles of KDM4A were evaluated using wound-healing assays and an in vivo metastasis model. The Chromatin Immunoprecipitation (ChIP)-qPCR assay was used to determine the role of KDM4A in Notch1 regulation.ResultsHere, we screened that targeting KDM4A could induce notable cell growth suppression. KDM4A is required for the growth and progression of Bca cells. High KDM4A enhances tumor migration abilities and in vivo lung metastasis. Bioinformatic analysis suggested that KDM4A was highly expressed in tumors and high KDM4A correlates with poor survival outcomes. KDM4A activates Notch1 expressions via directly binding to the promoters and demethylating H3K9me3 modifications. KDM4A inhibition reduces expressions of a list of Notch1 downstream targets, and ectopic expressions of ICN1 could restore the corresponding levels. KDM4A relies on Notch1 signaling to maintain cell growth, migration and self-renewal capacities. Lastly, we divided a panel of cell lines into KDM4Ahigh and KDM4Alow groups. Targeting Notch1 using specific LY3039478 could efficiently suppress cell growth and colony formation abilities of KDM4Ahigh Bca.ConclusionTaken together, KDM4A could drive Bca progression via triggering the activation of Notch1 pathway by decreasing H3K9me3 levels, highlighting a promising therapeutic target for Bca.  相似文献   

9.
Pulmonary fibrosis (PF) is a disease that is characterized by abnormal epithelial-mesenchymal transition (EMT) and persistent inflammatory injury, with high mortality and poor prognosis, but the current therapies are accompanied by certain adverse side effects. In this study, we investigated the role of galangin (GA), an anti-inflammatory and anti-tumoral phytochemical extracted from galangal, in preventing and curing bleomycin (BLM)-induced pulmonary fibrosis and the underlying mechanism. Histopathological staining confirmed that GA dramatically moderated bleomycin-induced pulmonary fibrosis in mice. Compared with the vehicle treatment, GA treatment inhibited the expression of vimentin and increased the expression of E-cadherin. The expression of α-Smooth muscle actin (α-SMA), which is a myofibroblast marker, was also suppressed. In addition, GA diminished the increase in the numbers of CD4+CD69+ and CD8+CD69+ T cells and dendritic cells induced by bleomycin, and reduced the residence of inflammatory cells in the lung tissues. Notably, GA inhibited the TGF-β1-induced EMT and fibroblast differentiation in vitro, which further confirmed the potential protective effect of GA on pulmonary fibrosis. Taken together, our results suggest that GA exerts a beneficial effect on bleomycin-induced pulmonary fibrosis by attenuating EMT and inflammatory damage and may have prevent potential of pulmonary fibrosis.  相似文献   

10.
Inflammatory bowel disease (IBD) is an immune-mediated chronic inflammation of the intestine, which can present in the form of ulcerative colitis (UC) or as Crohn’s disease (CD). Biomarkers are needed for reliable diagnosis and disease monitoring in IBD, especially in pediatric patients. Plasma samples from a pediatric IBD cohort were interrogated using an aptamer-based screen of 1322 proteins. The elevated biomarkers identified using the aptamer screen were further validated by ELISA using an independent cohort of 76 pediatric plasma samples, drawn from 30 CD, 30 UC, and 16 healthy controls. Of the 1322 proteins screened in plasma from IBD patients, 129 proteins were significantly elevated when compared with healthy controls. Of these 15 proteins had a fold change greater than 2 and 28 proteins had a fold change >1.5. Neutrophil and extracellular vesicle signatures were detected among the elevated plasma biomarkers. When seven of these proteins were validated by ELISA, resistin was the only protein that was significantly higher in both UC and CD (p < 0.01), with receiver operating characteristic area under the curve value of 0.82 and 0.77, respectively, and the only protein that exhibited high sensitivity and specificity for both CD and UC. The next most discriminatory plasma proteins were elastase and lactoferrin, particularly for UC, with receiver operating characteristic area under the curve values of 0.74 and 0.69, respectively. We have identified circulating resistin, elastase, and lactoferrin as potential plasma biomarkers of IBD in pediatric patients using two independent diagnostic platforms and two independent patient cohorts.  相似文献   

11.
《Endocrine practice》2021,27(5):471-477
ObjectiveTo examine demographic, clinical, and biochemical differences in patients with adrenocorticotropin (ACTH)-dependent Cushing syndrome (CS) based on etiology, sex, and tumor size.MethodsThis was a single-center study of 211 patients with ACTH-dependent CS followed for 35 years. Patients were stratified into 3 groups based on etiology: Cushing disease (CD)/transsphenoidal surgery, Cushing disease/total bilateral adrenalectomy (CD/TBA), and ectopic ACTH secretion (EAS). Patients were also stratified based on sex and tumor size (nonvisualized, microadenoma, and macroadenoma).ResultsCD was the commonest cause of ACTH-dependent CS (190; 90%). Most patients presented in the third decade (median age, 29 years). Clinical features, cortisol, and ACTH were significantly greater in the EAS group. The CD/TBA group had more nonvisualized tumors (22% vs 8%; P = .000) and smaller tumor size (4 vs 6 mm; P = .001) compared with the CD/transsphenoidal surgery group. There was female predominance in CD (2.06:1) and male predominance in EAS (2:1). Men had shorter duration of symptoms (2 years; P = .014), were younger (23 years; P = .001), had lower body mass index (25.1 kg/m2; P = .000), and had more severe disease (low bone mineral density, hypokalemia). Macroadenomas were frequent (46; 24.2%), and ACTH correlated with tumor size in CD (r = 0.226; P = .005).ConclusionOur cohort presented at an earlier age than the Western population with a distinct, but slightly lower, female predilection. Patients with CD undergoing TBA had frequent negative imaging. Men had a clinical profile suggesting aggressive disease. Microadenoma and macroadenoma were difficult to distinguish on a clinicobiochemical basis.  相似文献   

12.
RNA N6-methyladenosine (m6A) modification is abundant in eukaryotes, bacteria and archaea. It is an RNA modification mainly existing in messenger RNA (mRNAs) and has a significant effect on the metabolism and function of mRNAs. m6A modification is controlled by three types of proteins, namely methyltransferase as the “writers”, demethylase as the “erasers”, and specific m6A recognized protein (YTHDF1–3) as the “readers”. Recent studies have shown that m6A modification plays an important role in cancer, viral infection and autoimmune diseases. In this review, we will elaborate on the m6A modifications in the homeostasis and differentiation of T cells. Then we will further summarize the effects of m6A modification on the T cell responses and T cell-mediated autoimmune diseases. This will advance T cell epigenetics research and provide potential biomarkers and therapeutic targets for autoimmune diseases.  相似文献   

13.
In Birt–Hogg–Dubé (BHD) syndrome, germline loss-of-function mutations in the Folliculin (FLCN) gene lead to an increased risk of renal cancer. To address how FLCN inactivation affects cellular kinase signaling pathways, we analyzed comprehensive phosphoproteomic profiles of FLCNPOS and FLCNNEG human renal tubular epithelial cells (RPTEC/TERT1). In total, 15,744 phosphorylated peptides were identified from 4329 phosphorylated proteins. INKA analysis revealed that FLCN loss alters the activity of numerous kinases, including tyrosine kinases EGFR, MET, and the Ephrin receptor subfamily (EPHA2 and EPHB1), as well their downstream targets MAPK1/3. Validation experiments in the BHD renal tumor cell line UOK257 confirmed that FLCN loss contributes to enhanced MAPK1/3 and downstream RPS6K1/3 signaling. The clinically available MAPK inhibitor Ulixertinib showed enhanced toxicity in FLCNNEG cells. Interestingly, FLCN inactivation induced the phosphorylation of PIK3CD (Tyr524) without altering the phosphorylation of canonical Akt1/Akt2/mTOR/EIF4EBP1 phosphosites. Also, we identified that FLCN inactivation resulted in dephosphorylation of TFEB Ser109, Ser114, and Ser122, which may be linked to increased oxidative stress levels in FLCNNEG cells. Together, our study highlights differential phosphorylation of specific kinases and substrates in FLCNNEG renal cells. This provides insight into BHD-associated renal tumorigenesis and may point to several novel candidates for targeted therapies.  相似文献   

14.
《Endocrine practice》2021,27(9):956-965
ObjectiveCushing disease (CD) is characterized by chronic hypercortisolism caused by an adrenocorticotropic hormone-secreting pituitary adenoma. Surgery remains the first-line treatment option; however, medical therapy is essential if surgery is contraindicated or fails to achieve remission or when recurrence occurs after surgical remission. Osilodrostat (Isturisa), a novel steroidogenic inhibitor, is now approved for the treatment of CD in the United States and Cushing syndrome in Europe. Herein, we review pharmacology and data on the efficacy, safety, and clinical use of osilodrostat and provide guidance on its use in treating patients with CD.MethodsWe reviewed the literature and published clinical trial data of osilodrostat use in patients with Cushing syndrome. Detailed information related to the clinical assessment of osilodrostat use, potential drug-to-drug interactions, drug initiation, dose titration, and the monitoring of drug tolerability were discussed.ResultsClinical trial data demonstrated that osilodrostat, by virtue of inhibiting 11-β hydroxylase, potently and rapidly decreased the 24-hour urinary free cortisol levels and sustained these reductions, with improved glycemia, blood pressure, body weight, and quality of life as well as lessened depression. Osilodrostat may interact with certain drugs, resulting in QT prolongation, which requires careful assessment of concomitant medications and periodic monitoring using electrocardiogram, respectively. The common adverse effects include adrenal insufficiency, hypokalemia, edema, and hyperandrogenic symptoms, which can be minimized using a slower up-titration dosing regimen.ConclusionOsilodrostat is an effective, new treatment option for CD, with positive effects on cardiovascular and quality of life parameters as well as tolerable adverse effects. This article provides a review of the pharmacology of osilodrostat and offers practical recommendations on the use of osilodrostat to treat CD.  相似文献   

15.
AMP-activated protein kinase alpha 2 (AMPKα2) regulates energy metabolism, protein synthesis, and glucolipid metabolism myocardial cells. Ketone bodies produced by fatty acid β-oxidation, especially β-hydroxybutyrate, are fatty energy–supplying substances for the heart, brain, and other organs during fasting and long-term exercise. They also regulate metabolic signaling for multiple cellular functions. Lysine β-hydroxybutyrylation (Kbhb) is a β-hydroxybutyrate–mediated protein posttranslational modification. Histone Kbhb has been identified in yeast, mouse, and human cells. However, whether AMPK regulates protein Kbhb is yet unclear. Hence, the present study explored the changes in proteomics and Kbhb modification omics in the hearts of AMPKα2 knockout mice using a comprehensive quantitative proteomic analysis. Based on mass spectrometry (LC-MS/MS) analysis, the number of 1181 Kbhb modified sites in 455 proteins were quantified between AMPKα2 knockout mice and wildtype mice; 244 Kbhb sites in 142 proteins decreased or increased after AMPKα2 knockout (fold change >1.5 or <1/1.5, p < 0.05). The regulation of Kbhb sites in 26 key enzymes of fatty acid degradation and tricarboxylic acid cycle was noted in AMPKα2 knockout mouse cardiomyocytes. These findings, for the first time, identified proteomic features and Kbhb modification of cardiomyocytes after AMPKα2 knockout, suggesting that AMPKα2 regulates energy metabolism by modifying protein Kbhb.  相似文献   

16.
《Endocrine practice》2022,28(12):1210-1215
ObjectiveTo identify factors associated with radioactive iodine (RAI)-acquired nasolacrimal duct obstruction (NLDO).MethodsRetrospective chart review and telephone surveys of patients who received RAI therapy for thyroid carcinoma at an academic institution were conducted. Telephone surveys were used to screen for post-RAI NLDO diagnoses. Databases were reviewed for documented NLDO, demographics, RAI dose, total number of RAI treatments, and sialadenitis. Routine post-RAI whole-body scintigraphy (WBS) images were analyzed for the presence or absence of 131I sodium iodide (I-131) in the nasolacrimal duct. Intranasal I-131 activity was graded as none, low, moderate, and high; those with moderate or high activity were considered to have “increased” activity. Logistic and ordinal logistic regression models were used to evaluate the associations with NLDO while adjusting for I-131 dose.ResultsOf the 209 patients who completed the survey, 15 (7%) had NLDO diagnoses. Increased intranasal I-131 activity on WBS, presence of nasolacrimal I-131 WBS activity, presence of documented post-RAI sialadenitis, and history of >1 RAI treatment were associated with the development of NLDO from univariate analyses (P ≤ .013). After adjusting for the administered dose of I-131, the presence of sialadenitis and nasolacrimal I-131 activity on WBS were the remaining 2 factors significantly associated with NLDO development (P < .001 and P = .01, respectively).ConclusionsThe presence of sialadenitis and nasolacrimal I-131 activity on WBS are I-131 dose-independent correlative factors for RAI-associated NLDO. Patients with these characteristics should be counseled on their increased risk of NLDO after RAI therapy for thyroid carcinoma.  相似文献   

17.
IntroductionBreastmilk contains proteins and cells which have stem cell properties. The human breastmilk stem cell mimick mesenchymal stem cells and expresses pluripotency genes. The protein level of breastmilk is high in colostrum and gradually subsides in the first year of lactation. The mesenchymal stem cells from breastmilk can be an alternative source of stem cells that can potentially affect cardiovascular therapy. This study aimed to identify the proteomic analysis of secretome mesenchymal stem-like cells under hypoxia compared to non-hypoxia from human breastmilk stem cells.Material and methodsThe human breastmilk was collected from six healthy breastfeeding women and transported to the laboratory under aseptic conditions. The breastmilk cells were isolated then cultured. After 72 h, the human breastmilk stem cells reached confluence then cleaned up and isolated in serum-free media (spheroid) to allow serial passaging every 48 h. The acquisition stem cell was made with flow cytometry. The cells were divided into hBSC secretomes under hypoxia (A) and non-hypoxia (B) and analyzed for LC-MS to identify the peptide structure.ResultsThe human breastmilk cells contained several mesenchymal stem-like cells in density 2.4 × 106 cell/mL for hypoxia and 2 × 106 cell/mL for non-hypoxia conditions. The human breastmilk stem cell surface markers derived from the third cell passage process were 93.77% for CD44, 98.69% for CD73, 88.45% for CD90, and 96.30% for CD105. The protein level of secretome mesenchymal stem -like cells under hypoxia was measured at 5.56 μg/mL and 4.28 μg/mL for non-hypoxia. The liquid chromatography-mass spectrometry analysis identified 130 and 59 peptides from hypoxia and non-hypoxia of the human breastmilk stem cell secretome sequentially. Some important proteomics structures were found in the hypoxic human breastmilk stem cell secretome, such as transforming growth factor-β, VE-cadherin, and caspase.ConclusionThe human breastmilk cells contain mesenchymal stem-like cells and a high concentration of CD44, CD73, CD90, and CD105 as surface markers at third passage culture. The hypoxic hBSC secretome produces a higher protein level compare to non-hypoxia. The transforming growth factor -β was found in the hypoxic hBSC secretome as a modulator of VEGF-mediated angiogenesis.  相似文献   

18.
《Endocrine practice》2021,27(6):545-551
ObjectiveMany youth do not use the hybrid closed-loop system for type 1 diabetes effectively. This study evaluated the impact of financial incentives for diabetes-related tasks on use of the 670G hybrid closed-loop system and on glycemia.MethodsAt auto mode initiation and for 16 weeks thereafter, participants received a flat rate for wearing and calibrating the sensor ($1/day), administering at least 3 mealtime insulin boluses per day ($1/day), and uploading ($5/week). Weekly bonuses were given for maintaining at least 70% of the time in auto mode, which were increased for persistent auto mode use from $3/week to a maximum of $13/week. If a participant failed to maintain auto mode for a week, the rewards were reset to baseline. Data from 17 participants aged 15.9 years ± 2.5 years (baseline hemoglobin A1c [HbA1c] 8.6% ± 1.1%) were collected at 6, 12, and 16 weeks. The reinforcers were withdrawn at 16 weeks, with a follow-up assessment at 24 weeks.ResultsWith reinforcers, the participants administered an average of at least 3 mealtime insulin boluses per day and wore the sensor over 70% of the time. However, auto mode use waned. HbA1c levels decreased by 0.5% after 6 weeks, and this improvement was maintained at 12 and 16 weeks (P < .05). Upon withdrawal of reinforcers, HbA1c levels increased back to baseline at 24 weeks.ConclusionCompensation for diabetes-related tasks was associated with lower HbA1c levels, consistent administration of mealtime insulin boluses, and sustained sensor use. These results support the potential of financial rewards for improving outcomes in youth with type 1 diabetes.  相似文献   

19.
Clostridioides difficile is the leading cause of postantibiotic diarrhea in adults. During infection, the bacterium must rapidly adapt to the host environment by using survival strategies. Protein phosphorylation is a reversible post-translational modification employed ubiquitously for signal transduction and cellular regulation. Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases have emerged as important players in bacterial cell signaling and pathogenicity. C. difficile encodes two STKs (PrkC and CD2148) and one phosphatase. We optimized a titanium dioxide phosphopeptide enrichment approach to determine the phosphoproteome of C. difficile. We identified and quantified 2500 proteins representing 63% of the theoretical proteome. To identify STK and serine/threonine phosphatase targets, we then performed comparative large-scale phosphoproteomics of the WT strain and isogenic ΔprkC, CD2148, Δstp, and prkC CD2148 mutants. We detected 635 proteins containing phosphorylated peptides. We showed that PrkC is phosphorylated on multiple sites in vivo and autophosphorylates in vitro. We were unable to detect a phosphorylation for CD2148 in vivo, whereas this kinase was phosphorylated in vitro only in the presence of PrkC. Forty-one phosphoproteins were identified as phosphorylated under the control of CD2148, whereas 114 proteins were phosphorylated under the control of PrkC including 27 phosphoproteins more phosphorylated in the ?stp mutant. We also observed enrichment for phosphothreonine among the phosphopeptides more phosphorylated in the Δstp mutant. Both kinases targeted pathways required for metabolism, translation, and stress response, whereas cell division and peptidoglycan metabolism were more specifically controlled by PrkC-dependent phosphorylation in agreement with the phenotypes of the ΔprkC mutant. Using a combination of approaches, we confirmed that FtsK was phosphorylated in vivo under the control of PrkC and that Spo0A was a substrate of PrkC in vitro. This study provides a detailed mapping of kinase–substrate relationships in C. difficile, paving the way for the identification of new biomarkers and therapeutic targets.  相似文献   

20.
Paenibacillus polymyxa is a Gram-positive, non-pathogenic soil bacterium that has been extensively investigated for the production of R-,R-2,3-butanediol in exceptionally high enantiomeric purity. Rational metabolic engineering efforts to increase productivity and product titers were restricted due to limited genetic accessibility of the organism up to now. By use of CRISPR-Cas9 mediated genome editing, six metabolic mutant variants were generated and compared in batch fermentations for the first time. Downstream processing was facilitated by completely eliminating exopolysaccharide formation through the combined knockout of the sacB gene and the clu1 region, encoding for the underlying enzymatic machinery of levan and paenan synthesis. Spore formation was inhibited by deletion of spoIIE, thereby disrupting the sporulation cascade of P. polymyxa. Optimization of the carbon flux towards 2,3-butanediol was achieved by deletion of the lactate dehydrogenase ldh1 and decoupling of the butanediol dehydrogenase from its natural regulation via constitutive episomal expression. The improved strain showed 45 % increased productivity, reaching a final concentration of 43.8 g L−1 butanediol. A yield of 0.43 g g−1 glucose was achieved, accounting for 86 % of the theoretical maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号