首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have demonstrated that microRNAs (miRNAs) play important roles in the pathogenesis of neuropathic pain. In the present study, we found that miR-32-5p was significantly upregulated in rats after spinal nerve ligation (SNL), specifically in the spinal microglia of rats with SNL. Functional assays showed that knockdown of miR-32-5p greatly suppressed mechanical allodynia and heat hyperalgesia, and decreased inflammatory cytokine (IL-1β, TNF-α and IL-6) protein expression in rats after SNL. Similarly, miR-32-5p knockdown alleviated cytokine production in lipopolysaccharide (LPS)-treated spinal microglial cells, whereas its overexpression had the opposite effect. Mechanistic investigations revealed Dual-specificity phosphatase 5 (Dusp5) as a direct target of miR-32-5p, which is involved in the miR-32-5p-mediated effects on neuropathic pain and neuroinflammation. We demonstrated for the first time that miR-32-5p promotes neuroinflammation and neuropathic pain development through regulation of Dusp5. Our findings highlight a novel contribution of miR-32-5p to the process of neuropathic pain, and suggest possibilities for the development of novel therapeutic options for neuropathic pain.  相似文献   

2.
3.
Neuropathic pain is the most common chronic pain that is caused by nerve injury or disease that influences the nervous system. Increasing evidence suggested that microRNAs (miRNAs) play a crucial role in neuropathic pain and neuroinflammation development. However, the functional role of miR-217 in the development of neuropathic pain remains unknown. In this study, we used rats to establish a neuropathic pain model and showed that the miR-217 expression level was upregulated in the spinal dorsal horn of bilateral sciatic nerve chronic constriction injury (bCCI). However, the expression of miR-217 was not changed in the anterior cingulated cortex (ACC), hippocampus, and dorsal root ganglion (DRG) of bCCI rats. Ectopic expression of miR-217 attenuated neuropathic pain and suppressed neuroinflammation expression in vivo. We identified toll-like receptor 5 (TLR5) as a direct target gene of miR-217 in the PC12 cell. In addition, we demonstrated that the expression level of TLR5 was upregulated in bCCI rats. Moreover, restoration of TLR5 rescued the inhibitory roles induced by miR-217 overexpression on neuropathic pain and neuroinflammation development. These data suggested that miR-217 played a pivotal role in the development of neuropathic pain partly through regulating TLR5 expression.  相似文献   

4.
MicroRNAs (miRNAs) are reported as vital participators in the pathophysiological course of neuropathic pain. However, the underlying mechanisms of the functional roles of miRNAs in neuropathic pain are largely unknown. This study was designed to explore the potential role of miR‐150 in regulating the process of neuropathic pain in a rat model established by chronic sciatic nerve injury (CCI). Overexpression of miR‐150 greatly alleviated neuropathic pain development and reduced inflammatory cytokine expression, including COX‐2, interleukin IL‐6, and tumor necrosis factor (TNF)‐α in CCI rats. By bioinformatic analysis, 3′‐untranslated region (UTR) of Toll‐like receptor (TLR5) was predicted to be a target of miR‐150. TLR5 commonly serves as an important regulator of inflammation. Overexpression of miR‐150 significantly suppressed the expression of TLR5 in vitro and in vivo. Furthermore, upregulation of TLR5 decreased the miR‐150 expression and downregulation of TLR5 increased miR‐150, respectively. Overexpression of TLR5 significantly reversed the miR‐150‐induced suppressive effects on neuropathic pain. In conclusion, our current study indicates that miR‐150 may inhibit neuropathic pain development of CCI rats through inhibiting TLR5‐mediated neuroinflammation. Our findings suggest that miR‐150 may provide a novel therapeutic target for neuropathic pain treatment.  相似文献   

5.
MicroRNAs have been implicated in nerve injury and neuropathic pain. In the previous study we had shown that miR-96 can attenuate neuropathic pain through inhibition of Nav1.3. In this study, we investigated the role of miR-183, a same cluster member of microRNA with miR-96, in neuropathic pain and its potential mechanisms. We found that the expression level of miR-183-5p in dorsal root ganglion was decreased with the development of neuropathic pain induced by chronic constriction sciatic nerve injury (CCI). By contrast, the TREK-1, a K+ channel, was increased. Further investigation identified that intrathecal injection of miR-183-5p mimic efficiently ameliorated neuropathic pain and inhibited the expression of TREK-1, a predicted target gene of miR-183-5p. Luciferase assays confirmed the binding of miR-183-5p and TREK-1. In addition, over-expression of TREK-1 blocked the roles of miR-183-5p in neuropathic pain. Our findings suggested that miR-183-5P participated in the regulation of CCI-induced neuropathic pain through inhibiting the expression of TREK-1.  相似文献   

6.
Neuropathic pain is a kind of chronic pain because of dysfunctions of somatosensory nerve system. Recently, many studies have demonstrated that microRNAs (miRs) play crucial roles in neuropathic pain development. This study was designed to investigate the effects of miR-134-5p on the process of neuropathic pain progression in a rat model established by chronic sciatic nerve injury (CCI). First, we observed that miR-134-5p was significantly decreased in CCI rat models. Overexpression of miR-134-5p strongly alleviated neuropathic pain behaviors including mechanical and thermal hyperalgesia. Meanwhile, inflammatory cytokine expression, such as IL-6, IL-1β and TNF-α in CCI rats were greatly repressed by upregulation of miR-134-5p. Twist1 has been widely regarded as a poor prognosis biomarker in diverse diseases. Here, by using bioinformatic analysis, 3′-untranslated region (UTR) of Twist1 was predicted to be a downstream target of miR-134-5p in our study. Here, we found that overexpression of miR-134-5p was able to suppress Twist1 dramatically. Furthermore, it was exhibited that Twist1 was increased in CCI rats time-dependently and Twist1 was inhibited in vivo. Subsequently, downregulation of Twist1 in CCI rats could depress neuropathic pain progression via inhibiting neuroinflammation. In conclusion, our current study indicated that miR-134-5p may inhibit neuropathic pain development through targeting Twist1. Our findings suggested that miR-134-5p might provide a novel therapeutic target for neuropathic pain.  相似文献   

7.
AMD3100 is a specific C-X-C chemokine receptor type 4 (CXCR4) antagonist which blocks the interaction between CXCR4 and CXCL12. Multiple lines of evidence suggest that AMD3100 has analgesic effects on many pathological pain states, including peripheral neuropathic pain. However, little is known about the underlying mechanisms. In the current study, we investigated the effect of different doses of AMD3100 on neuropathic pain in rats after L5 spinal nerve ligation. We used naloxone methiodide (NLXM) to further determine whether AMD3100-mediated analgesic effect was opioid-dependent. Behavioral study showed that early repeated administration of AMD3100 (2 and 5 mg/kg, i.p.) dose-dependently alleviates peripheral neuropathic pain. Flow cytometry, immunofluorescence and NLXM experiments showed that AMD3100 alleviates neuropathic pain partially by augmenting leukocyte-derived endogenous opioid secretion. Furthermore, we found that pro-inflammatory cytokines were down-regulated by AMD3100 using Enzyme-linked Immunosorbent Assay. Our data indicate that AMD3100 dose-dependently alleviates neuropathic pain partially by augmenting leukocyte-derived endogenous opioid secretion. This finding suggests that AMD3100 may be a viable pharmacotherapeutic strategy for the treatment of neuropathic pain.  相似文献   

8.
Cellular and Molecular Neurobiology - The efficacy of µ-opioid receptors (MOR) in neuropathic pain is low and with numerous side effects that limited their use. Chronic neuropathic pain is...  相似文献   

9.
Neuropathic pain caused by somatosensory nervous system dysfunction is a serious public health problem. Some long noncoding RNAs (lncRNAs) can participate in physiological processes involved in neuropathic pain. However, the effects of lncRNA DGCR5 in neuropathic pain have not been explored. Therefore, in our current study, we concentrated on the biological roles of DGCR5 in neuropathic pain. Here, it was observed that DGCR5 was significantly decreased in chronic sciatic nerve injury (CCI) rat models. DGCR5 overexpression was able to alleviate neuropathic pain development including mechanical and thermal hyperalgesia. In addition, the current understanding of miR-330-3p function in neuropathic pain remains largely incomplete. Here, we found that miR-330-3p was greatly increased in CCI rats and DGCR5 can modulate miR-330-3p expression negatively. Upregulation of DGCR5 repressed inflammation-correlated biomarkers including interleukin 6 (IL-6), tumor necrosis factor α, and IL-1β in CCI rats by sponging miR-330-3p. The negative correlation between DGCR5 and miR-330-3p was confirmed in our current study. Inhibition of miR-330-3p suppressed neuropathic pain progression by restraining neuroinflammation in vivo. In addition, PDCD4 was predicted as a downstream target of miR-330-3p. Furthermore, PDCD4 was significantly increased in CCI rats and DGCR5 regulated PDCD4 expression through sponging miR-330-3p in CCI rat models. Taken these together, it was implied that DGCR5/miR-330-3p/PDCD4 axis participated in neuropathic pain treatment.  相似文献   

10.
目的:探讨胸外科手术术后神经病理性疼痛的发生情况及相关危险因素。方法:回顾性分析2015年至2016年就诊于我院行胸外科手术的患者的临床资料,包括患者的年龄、性别、吸烟史、BMI、术前是否使用催眠药物、术前诊断、手术侧别、手术方式、是否为微创、硬膜外自控镇痛泵使用情况、术中失血量、手术持续时间、引流管引流时间及是否发生神经病理性疼痛,对比分析是否发生神经病理性疼痛患者的临床资料,对有差异的临床资料进行多因素Logistic回归分析探讨发生神经病理性疼痛的危险因素。结果:共有123例患者纳入研究,33例(26.8%)患者的患者术后出现神经病理性疼痛,6例(4.9%)患者在术后一年仍有持续性神经性病理疼痛,术后出现神经病理性疼痛的平均时间为术后第7天,平均持续时间为75天,发生神经病理性疼痛的患者吸烟比例(81.8%)、术前使用催眠药比例(57.6%)、开胸手术比例(81.8%)、术中失血量(185 mL)、手术时间(196分钟)、术后引流时间(2.5天)均高于没有发生神经病理性疼痛的患者。多因素分析显示术前使用催眠药(OR=2.322,P<0.001)、手术时间延长(OR=3.703,P<0.001)和术后引流时间延长(OR=2.675,P=0.002)均是神经病理性疼痛发生的危险因素,电视辅助胸腔镜手术方式是保护性因素(OR=0.453,P=0.002)。结论:术前使用催眠药物、延长的手术时间及术后引流时间增加了神经病理性疼痛发生的风险,电视辅助胸腔镜技术可减少其发生率。  相似文献   

11.
Qiu  Y.  Chen  W. Y.  Wang  Z. Y.  Liu  F.  Wei  M.  Ma  C.  Huang  Y. G. 《Neurochemical research》2016,41(9):2457-2469

Neuropathic pain occurs due to deleterious changes in the nervous system caused by a lesion or dysfunction. Currently, neuropathic pain management is unsatisfactory and remains a challenge in clinical practice. Studies have suggested that actin cytoskeleton remodeling may be associated with neural plasticity and may involve a nociceptive mechanism. Here, we found that the RhoA/LIM kinase (LIMK)/cofilin pathway, which regulates actin dynamics, was activated after chronic constriction injury (CCI) of the sciatic nerve. Treatments that reduced RhoA/LIMK/cofilin pathway activity, including simvastatin, the Rho kinase inhibitor Y-27632, and the synthetic peptide Tat-S3, attenuated actin filament disruption in the dorsal root ganglion and CCI-induced neuropathic pain. Over-activation of the cytoskeleton caused by RhoA/LIMK/cofilin pathway activation may produce a scaffold for the trafficking of nociceptive signaling factors, leading to chronic neuropathic pain. Here, we found that simvastatin significantly decreased the ratio of membrane/cytosolic RhoA, which was significantly increased after CCI, by inhibiting the RhoA/LIMK/cofilin pathway. This effect was highly dependent on the function of the cytoskeleton as a scaffold for signal trafficking. We conclude that simvastatin attenuated neuropathic pain in rats subjected to CCI by inhibiting actin-mediated intracellular trafficking to suppress RhoA/LIMK/cofilin pathway activity.

  相似文献   

12.
13.
MicroRNAs (miRNA) play important roles in neuroinflammation and neuropathic pain development; however, the underlying mechanism requires further investigation. The expression of miR-21-5p was remarkably upregulated in chronic constrictive injury (CCI) rat model. A significant alleviated neuropathic pain development and reduced the expression of cytokines was observed in CCI rat after exogenous injection of miR-21-5p mimic. The dual-luciferase analysis revealed that tissue inhibitor of metalloproteinase-3 (TIMP3) and chemokines C-C motif ligand 1 (CCL1) was direct downstream target of miR-21-5p. Moreover, silencing of TIMP3 and CCL1 could rescue mechanical allodynia, thermal hyperalgesia and cytokine release in CCI rat, suggesting that TIMP3 and CCL1 exert their function by mediating neuroinflammation in neuropathic pain development. Therefore, we have identified a novel miR-21-5p–CCL1/TIMP3-cytokine axis in regulation of neuropathic pain development in CCI rat model, which is valuable for enhancing our understanding of neuropathic pain and developing miRNAs as potential therapeutic options in the future.  相似文献   

14.
神经病理性疼痛是一种临床的常见疾病,严重影响了患者及家属的生活质量,给社会带来了沉重的负担。神经病理性疼痛的发病机制及有效治疗仍在探索中。中枢神经系统内有三种胶质细胞,包括小胶质细胞、星形胶质细胞以及少突胶质细胞。近来有研究发现,这三种胶质细胞可通过活化、产生和释放细胞因子等途径参与神经病理性疼痛的调节。探索神经胶质细胞的多种复杂功能或作用机制来充分认识胶质细胞的特点,为今后神经病理性疼痛的临床治疗提供新的思路。本文通过研究小胶质细胞、星形胶质细胞以及少突胶质细胞的特点及其对神经病理性疼痛的影响,并分析中枢神经系统胶质细胞与疼痛治疗之间的相关性,旨在总结神经病理性疼痛的发生和发展过程中小胶质细胞、星状胶质细胞及少突胶质细胞的调节作用。  相似文献   

15.

Background

Increased neuronal excitability and spontaneous firing are hallmark characteristics of injured sensory neurons. Changes in expression of various voltage-gated Na+ channels (VGSCs) have been observed under neuropathic conditions and there is evidence for the involvement of protein kinase C (PKC) in sensory hyperexcitability. Here we demonstrate the contribution of PKC to P2X-evoked VGSC activation in dorsal root ganglion (DRG) neurons in neuropathic conditions.

Results

Using the spinal nerve ligation (SNL) model of neuropathic pain and whole-cell patch clamp recordings of dissociated DRG neurons, we examined changes in excitability of sensory neurons after nerve injury and observed that P2X3 purinoceptor-mediated currents induced by α,β-meATP triggered activation of TTX-sensitive VGSCs in neuropathic nociceptors only. Treatment of neuropathic DRGs with the PKC blocker staurosporine or calphostin C decreased the α,β-meATP-induced Na+ channels activity and reversed neuronal hypersensitivity. In current clamp mode, α,β-meATP was able to evoke action-potentials more frequently in neuropathic neurons than in controls. Pretreatment with calphostin C significantly decreased the proportion of sensitized neurons that generated action potentials in response to α,β-meATP. Recordings measuring VGSC activity in neuropathic neurons show significant change in amplitude and voltage dependence of sodium currents. In situ hybridization data indicate a dramatic increase in expression of embryonic Nav1.3 channels in neuropathic DRG neurons. In a CHO cell line stably expressing the Nav1.3 subunit, PKC inhibition caused both a significant shift in voltage-dependence of the channel in the depolarizing direction and a decrease in current amplitude.

Conclusion

Neuropathic injury causes primary sensory neurons to become hyperexcitable to ATP-evoked P2X receptor-mediated depolarization, a phenotypic switch sensitive to PKC modulation and mediated by increased activity of TTX-sensitive VGSCs. Upregulation in VGSC activity after injury is likely mediated by increased expression of the Nav1.3 subunit, and the function of the Nav1.3 channel is regulated by PKC.  相似文献   

16.
Neuropathic pain that occurs after peripheral nerve injury is poorly controlled by current therapies. Increasing evidence shows that mitogen-activated protein kinase (MAPK) play an important role in the induction and maintenance of neuropathic pain. Here we show that activation of extracellular signal-regulated protein kinases 5 (ERK5), also known as big MAPK1, participates in pain hypersensitivity caused by nerve injury. Nerve injury increased ERK5 phosphorylation in spinal microglia and in both damaged and undamaged dorsal root ganglion (DRG) neurons. Antisense knockdown of ERK5 suppressed nerve injury-induced neuropathic pain and decreased microglial activation. Furthermore, inhibition of ERK5 blocked the induction of transient receptor potential channels and brain-derived neurotrophic factor expression in DRG neurons. Our results show that ERK5 activated in spinal microglia and DRG neurons contributes to the development of neuropathic pain. Thus, blocking ERK5 signaling in the spinal cord and primary afferents has potential for preventing pain after nerve damage.  相似文献   

17.
Neuropathic pain refers to chronic pain that results from injury to the nervous system. The mechanisms involved in neuropathic pain are complex and involve both peripheral and central phenomena. Although numerous pharmacological agents are available for the treatment of neuropathic pain, definitive drug therapy has remained elusive. Recent drug discovery efforts have identified an original neurobiological approach to the pathophysiology of neuropathic pain. The development of innovative pharmacological strategies has led to the identification of new promising pharmacological targets, including glutamate antagonists, microglia inhibitors and, interestingly, endogenous ligands of cannabinoids and the transient receptor potential vanilloid type 1 (TRPV1). Endocannabinoids (ECs), endovanilloids and the enzymes that regulate their metabolism represent promising pharmacological targets for the development of a successful pain treatment. This review is an update of the relationship between cannabinoid receptors (CB1) and TRPV1 channels and their possible implications for neuropathic pain. The data are focused on endogenous spinal mechanisms of pain control by anandamide, and the current and emerging pharmacotherapeutic approaches that benefit from the pharmacological modulation of spinal EC and/or endovanilloid systems under chronic pain conditions will be discussed.  相似文献   

18.
Phosphatidylinositol-3-kinase (PI3K) has been identified in the expression of central sensitization after noxious inflammatory stimuli. However, its contribution in neuropathic pain remains to be determined. Here we address the role of PI3K signaling in central sensitization in a model of neuropathic pain, and propose a novel potential drug target for neuropathic pain. Chronic constriction injury (CCI) rat model was used in the study as the model for neuropathic pain. Western blotting, whole-cell patch clamp, and von Frey assay were performed to study biochemical, electrical, and behavioral changes in CCI rats, respectively. A steroid metabolite of the fungi (wortmannin) was used to block PI3K signaling and its effects on CCI rats were tested. PI3K/Akt signaling increased in the spinal cord L4–L6 sections in the CCI rats. CCI also facilitated miniature excitatory postsynaptic potential of dorsal horn substantia gelatinosa neurons, increased phosphorylation of glutamate receptor subunit GluA1 and synapsin at the synapse, and induced mechanic allodynia. Wortmannin reversed biochemical, electrical, and behavioral changes in CCI rats. This study is the first to show PI3K/Akt signaling is required for spinal central sensitization in the CCI neuropathic pain model.  相似文献   

19.
Lysophosphatidic acid (LPA) is a bioactive lipid that serves as an extracellular signaling molecule acting through cognate G protein-coupled receptors designated LPA(1-6) that mediate a wide range of both normal and pathological effects. Previously, LPA(1), a G(αi)-coupled receptor (which also couples to other G(α) proteins) to reduce cAMP, was shown to be essential for the initiation of neuropathic pain in the partial sciatic nerve ligation (PSNL) mouse model. Subsequent gene expression studies identified LPA(5), a G(α12/13)- and G(q)-coupled receptor that increases cAMP, in a subset of dorsal root ganglion neurons and also within neurons of the spinal cord dorsal horn in a pattern complementing, yet distinct from LPA(1), suggesting its possible involvement in neuropathic pain. We therefore generated an Lpar5 null mutant by targeted deletion followed by PSNL challenge. Homozygous null mutants did not show obvious base-line phenotypic defects. However, following PSNL, LPA(5)-deficient mice were protected from developing neuropathic pain. They also showed reduced phosphorylated cAMP response element-binding protein expression within neurons of the dorsal horn despite continued up-regulation of the characteristic pain-related markers Caα(2)δ(1) and glial fibrillary acidic protein, results that were distinct from those previously observed for LPA(1) deletion. These data expand the influences of LPA signaling in neuropathic pain through a second LPA receptor subtype, LPA(5), involving a mechanistically distinct downstream signaling pathway compared with LPA(1).  相似文献   

20.
Jiang WX  Zhang LC 《生理学报》2008,60(2):243-248
本文旨在探讨大鼠脑实质内远位触液神经元中5-HT1A受体的分布及其在神经病理性痛中的作用.慢性结扎损伤坐骨神经建立大鼠神经病理性痛模型,分别以缩足潜伏期(paw withdrawal latency,PWL)和缩足阈值(paw withdrawal threshold,PWT)对大鼠热痛敏和机械触诱发痛反应进行评分,以可靠CB-HRP(cholera toxin subunit B with horseradish peroxidase)法追踪标记脑实质内远位触液神经元,用CB-HRP/5-HT1A受体免疫组织化学双重标记技术定位、鉴别5-HT1A受体在远位触液神经元中的表达,并计数分析5-HT1A受体分布和表达变化与痛行为表现之间的关系.结果表明,在神经病理性痛第1、3、A7、14天,大鼠的PWL分别为19.37±2.74、12.04±1.77、8.74±1.15、12.31±1.94,PWT分别为18.58±3.62、13.05±1.81、6.66±1.43、1 1.55±2.01.CB-HRP标记细胞出现的位置和数量恒定.每只动物CB-HRP/5-HT1A受体双重标记的细胞数量分别为276.14±36.00、161.72±28.41、108.64±6.8l、139.76±44.64,分别占该动物CB-HRP标记细胞总数的95%、60%、40%和55%.与对照组相比,神经病理性痛大鼠PWL、PWT及CB.HRP/5-HT1A受体双标细胞数均有显著性差异(P<0.01).结果提示,大鼠脑实质的特定部位恒定存在远位触液神经元,该类神经元大多含有5-HT1A受体,该受体的表达与神经病理性痛行为表现之间呈负相关关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号