首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Excitotoxicity, which is mediated via glutamate receptors, is also a phenomenon of the enteric nervous system. Whether enteric glial cells (EGCs), which resemble astrocytes of the central nervous system, express glutamate receptors and hence are involved in gut excitotoxicity is not yet known. To investigate glutamate receptor subunit expression in EGCs, primary EGC cultures of the myenteric plexus were analyzed by real-time PCR and Western blotting. These studies indeed showed that in EGC cultures, mRNA of the glutamate receptor subunits NR1, NR2A/B, GluR1, GluR3, and GluR5 and the protein bands of the glutamate receptor subunits NR2A/B, GluR1, GluR3, and GluR5 could be detected. Thus, in the enteric nervous system, glutamate receptor subunits are also expressed by EGCs, indicating that these cells might be involved in gut excitotoxicity.  相似文献   

2.
The enteric nervous system arises from neural crest-derived cells (ENCCs) that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase in the expression of numerous ion channel genes between E11.5 and E14.5, which coincides with ENCC migration and the first extension of neurites by enteric neurons. Previous studies have shown that a variety of ion channels regulates neurite extension and migration of many cell types. Pharmacological inhibition of a range of chloride or calcium channels had no effect on ENCC migration in cultured explants or neuritogenesis in vitro. The non-selective potassium channel inhibitors, TEA and 4-AP, retarded ENCC migration and neuritogenesis, but only at concentrations that also resulted in cell death. In summary, a large range of ion channels is expressed while ENCCs are colonizing the gut, but we found no evidence that ENCC migration or neuritogenesis requires chloride, calcium or potassium channel activity. Many of the ion channels are likely to be involved in the development of electrical excitability of enteric neurons.  相似文献   

3.
N Gao  J Luo  K Uray  A Qian  S Yin  G Wang  X Wang  Y Xia  JD Wood  H Hu 《PloS one》2012,7(8):e44426

Background

Ca2+/calmodulin-dependent protein kinases (CaMKs) are major downstream mediators of neuronal calcium signaling that regulate multiple neuronal functions. CaMKII, one of the key CaMKs, plays a significant role in mediating cellular responses to external signaling molecules. Although calcium signaling plays an essential role in the enteric nervous system (ENS), the role of CaMKII in neurogenic intestinal function has not been determined. In this study, we investigated the function and expression pattern of CaMKII in the ENS across several mammalian species.

Methodology/Principal Findings

CaMKII expression was characterized by immunofluorescence analyses and Western Blot. CaMKII function was examined by intracellular recordings and by assays of colonic contractile activity. Immunoreactivity for CaMKII was detected in the ENS of guinea pig, mouse, rat and human preparations. In guinea pig ENS, CaMKII immunoreactivity was enriched in both nitric oxide synthase (NOS)- and calretinin-containing myenteric plexus neurons and non-cholinergic secretomotor/vasodilator neurons in the submucosal plexus. CaMKII immunoreactivity was also expressed in both cholinergic and non-cholinergic neurons in the ENS of mouse, rat and human. The selective CaMKII inhibitor, KN-62, suppressed stimulus-evoked purinergic slow EPSPs and ATP-induced slow EPSP-like response in guinea pig submucosal plexus, suggesting that CaMKII activity is required for some metabotropic synaptic transmissions in the ENS. More importantly, KN-62 significantly suppressed tetrodotoxin-induced contractile response in mouse colon, which suggests that CaMKII activity is a major determinant of the tonic neurogenic inhibition of this tissue.

Conclusion

ENS neurons across multiple mammalian species express CaMKII. CaMKII signaling constitutes an important molecular mechanism for controlling intestinal motility and secretion by regulating the excitability of musculomotor and secretomotor neurons. These findings revealed a fundamental role of CaMKII in the ENS and provide clues for the treatment of intestinal dysfunctions.  相似文献   

4.
Primary diffuse large B-cell lymphoma of the central nervous system (CNS DLBCL) is a rare, aggressive subtype of DLBCL, the biology of which is poorly understood. Recent studies have suggested a prognostic role of MYC protein expression in systemic DLBCL, but little is known about the frequency and significance of MYC protein expression in CNS DLBCL. Hence, we investigated MYC protein expression profiles of CNS DLBCL and assessed the relationship between MYC expression and a variety of histopathologic, immunophenotypic, genetic, and clinical features. Fifty-nine CNS DLBCL diagnosed at our institution over the past 13 years were evaluated. The majority of cases (80%) showed centroblastic morphology, and 12 (20%) displayed a perivascular pattern of infiltration. According to the Hans criteria, 41 (69%) cases had a non-germinal center B-cell and 18 (31%) had a germinal center B-cell cell-of-origin (COO) phenotype. Mean MYC protein expression was 50% (median: 50%, range: 10-80%). Forty-three cases (73%) showed MYC overexpression (≥40%), and 35 (60%) showed MYC/BCL2 coexpression. MYC overexpression was seen in the single case harboring MYC translocation and in the cases showing increased copies of MYC (27%); however, no significant difference in mean MYC expression was seen between groups harboring or lacking MYC aberrations. In our series, age was associated with a significantly increased risk of death, and the perivascular pattern of infiltration was associated with a significantly increased risk of disease progression. Neither MYC expression (with or without BCL2 coexpression) nor other variables, including COO subtype were predictive of clinical outcome. Our findings indicate that the proportion of CNS DLBCL overexpressing MYC is higher compared to systemic DLBCL, and MYC overexpression appears to be independent of genetic MYC abnormalities. Thus, MYC expression and other immunophenotypic markers used for prognostication of systemic DLBCL might not apply to CNS DLBCL due to differences in disease biology.  相似文献   

5.
Chemokines are small secreted proteins that are essential for the recruitment and activation of specific leukocyte subsets at sites of inflammation and for the development and homeostasis of lymphoid and nonlymphoid tissues. During the past decade, chemokines and their receptors have also emerged as key signaling molecules in neuroinflammatory processes and in the development and functioning of the central nervous system. Neurons and glial cells, including astrocytes, oligodendrocytes, and microglia, have been identified as cellular sources and/or targets of chemokines produced in the central nervous system in physiological and pathological conditions. In this article, we provide an update of chemokines and chemokine receptors expressed by glial cells focusing on their biological functions and implications in neurological diseases.  相似文献   

6.
7.
Primary demyelination is an important component of a number of human diseases and toxic neuropathies. Animal models of primary demyelination are useful for isolating processes involved in myelin breakdown and remyelination because the complicating events associated with axonal degeneration and regeneration are not present. The tellurium neuropathy model has proven especially useful in this respect. Tellurium specifically blocks synthesis of cholesterol, a major component of PNS myelin. The resulting cholesterol deficit in myelin-producing Schwann cells rapidly leads to synchronous primary demyelination of the sciatic nerve, which is followed by rapid synchronous remyelination when tellurium exposure is discontinued. Known alterations in gene expression for myelin proteins and for other proteins involved in the sequence of events associated with demyelination and subsequent remyelination in the PNS are reviewed, and new data regarding gene expression changes during tellurium neuropathy are presented and discussed.  相似文献   

8.
9.
Junquera  C.  Martínez-Ciriano  C.  Blasco  J.  Aisa  J.  Peg  M. T.  Azanza  M. J. 《Neurochemical research》1998,23(10):1233-1240
Nitric oxide (NO) has been proposed as an inhibitory transmitter in gastrointestinal muscle relaxation. We analyzed the distribution of nitric-oxide producing neurons in the rabbit intestine through nicotinamide-adenine-dinucleotide-phosphate-diaphorase histochemistry. By this reliable and convenient method, we visualized neuronal nitric-oxide-synthase, the enzyme responsible for nitric oxide generation, in the rabbit intestine. In the ileum and rectum, nitric-oxide-synthase-related diaphorase activity was present in the myenteric plexus ganglion cells, and in the nerve fibers in the internodal strand, secondary, and tertiary plexuses. These fibers were particularly abundant in the deep circular rather than in the outer longitudinal muscle layer. In the inner submucosal plexus, we found scarce labeled neurons. Labeled neural somata showed a range of sizes and shapes suggesting different functional roles. The present basic information is required to use the rabbit as an experimental animal in neurochemical NO enteric research.  相似文献   

10.
This study provides a general approach to the presence and possible role of orexins and their receptors in the gut (three gastric chambers and intestine) of confined environment bottlenose dolphin. The expression of prepro-orexin, orexin A and B and orexin 1 and 2 receptors were investigated by single immunostaining and western blot analysis. The co-localization of vasoactive intestinal peptide and orexin 1 receptor in the enteric nervous system was examined by double immunostaining. Also, orexin A concentration were measured in plasma samples to assess the possible diurnal variation of the plasma level of peptide in this species. Our results showed that the orexin system is widely distributed in bottlenose dolphin enteric nervous system of the all gastrointestinal tract examined. They are very peculiar and partially differs from that of terrestrial mammals. Orexin peptides and prepro-orexin were expressed in the main stomach, pyloric stomach and proximal intestine; while orexin receptors were expressed in the all examined tracts, with the exception of main stomach where found no evidence of orexin 2 receptor. Co-localization of vasoactive intestinal peptide and orexin 1 receptor were more evident in the pyloric stomach and proximal intestine. These data could suggest a possible role of orexin system on the contractility of bottlenose dolphin gastrointestinal districts. Finally, in agreement with several reports, bottlenose dolphin orexin A plasma level was higher in the morning during fasting. Our results emphasize some common features between bottlenose dolphin and terrestrial mammals. Certainly, further functional investigations may help to better explain the role of the orexin system in the energy balance of bottlenose dolphin and the complex interaction between feeding and digestive physiology.  相似文献   

11.
The plant lectin, IB4, binds to primary afferent neurons of dorsal root and trigeminal ganglia, where it is selective for nociceptive neurons. In the enteric nervous system of the guinea-pig IB4 labels intrinsic primary afferent neurons, which are believed to have roles as nociceptors. Here we investigate whether IB4 binding is also a marker of intrinsic primary afferent neurons in the mouse. Neurons that bound IB4 were common in the enteric plexuses of the small intestine and colon. Labeled neurons were rare in the stomach, and absent from the esophagus and gallbladder. Binding was to the cell surface, initial parts of axons and to clumps in the cytoplasm. Similar binding occurred on small and medium sized neurons of dorsal root, nodose and trigeminal ganglia. In the enteric nervous system, IB4 revealed large round or oval (type II) neurons, type I neurons with prominent laminar dendrites and small neurons of myenteric ganglia. The type II neurons were immunoreactive for calretinin, and some type I neurons were immunoreactive for nitric oxide synthase. Most neurons in the submucosal ganglia bound IB4, and some of these were vasoactive intestinal peptide immunoreactive. Thus IB4 binds to specific subgroups of enteric neurons in the mouse. These include intrinsic primary afferent neurons, but other neurons, including secretomotor neurons, are labeled. The results suggest that IB4 is not a specific label for enteric nociceptive neurons.  相似文献   

12.
13.
We have investigated the expression patterns of a basic helix–loop–helix regulatory gene,neuroD,in primary cultures of murine cerebral cortical neurons. The differentiation states of neurons in primary cultures were determined by the sensitivity of neurons to glutamate toxicity and the expression of specific proteins such as the phosphorylated form of a 200-kDa neurofilament, HPC-1/syntaxin 1A, and cell adhesion molecule L1. The expression of neuroD was determined by RT-PCR analysis andin situhybridization. The experimental results thus obtained revealed that neuronal maturation is initiated between Day 7 and Day 11 in the culture as already known, and that the expression of neuroD decreases with increasing days in culture. Based on these findings, it was concluded that neuroD is expressed in immature neurons but not in mature ones.  相似文献   

14.
Abstract: Several sulfated lipids were detected in the ganglioside fraction isolated from a cell line of oligodendrocyte progenitors that had been metabolically labeled with [35S]sulfate. Separation of the ganglioside fraction by two-dimensional TLC showed that, except for galactosylceramide-sulfate, none of the sulfate-labeled lipids comigrated with those glycosphingolipids visualized by orcinol staining, indicating that these sulfolipids were quantitatively minor components. At least eight sulfate-labeled lipid bands were susceptible to desialylation by Arthrobacter ureafaciens neuraminidase, which resulted in the formation of three new bands that retained the labeled sulfate. Six of the sulfate-labeled lipid bands containing sialic acid were also susceptible to Vibrio cholerae neuraminidase, which generated two labeled bands that appeared identical to the two major products formed after treatment with A. ureafaciens neuraminidase. In vivo labeling of lipids from 14-day-old rat brain with [35S]sulfate demonstrated that the synthesis of sulfated lipids containing sialic acid also occurred in intact brain tissue. These results show that sulfated gangliosides are synthesized in the CNS and that oligodendrocytes are one cell type that contributes to this synthesis.  相似文献   

15.
MicroRNAs (miRNAs) are evolutionarily conserved non-coding RNAs of ∼22 nucleotides that regulate gene expression at the level of translation and play vital roles in hippocampal neuron development, function and plasticity. Here, we performed a systematic and in-depth analysis of miRNA expression profiles in cultured hippocampal neurons during development and after induction of neuronal activity. MiRNA profiling of primary hippocampal cultures was carried out using locked nucleic-acid-based miRNA arrays. The expression of 264 different miRNAs was tested in young neurons, at various developmental stages (stage 2–4) and in mature fully differentiated neurons (stage 5) following the induction of neuronal activity using chemical stimulation protocols. We identified 210 miRNAs in mature hippocampal neurons; the expression of most neuronal miRNAs is low at early stages of development and steadily increases during neuronal differentiation. We found a specific subset of 14 miRNAs with reduced expression at stage 3 and showed that sustained expression of these miRNAs stimulates axonal outgrowth. Expression profiling following induction of neuronal activity demonstrates that 51 miRNAs, including miR-134, miR-146, miR-181, miR-185, miR-191 and miR-200a show altered patterns of expression after NMDA receptor-dependent plasticity, and 31 miRNAs, including miR-107, miR-134, miR-470 and miR-546 were upregulated by homeostatic plasticity protocols. Our results indicate that specific miRNA expression profiles correlate with changes in neuronal development and neuronal activity. Identification and characterization of miRNA targets may further elucidate translational control mechanisms involved in hippocampal development, differentiation and activity-depended processes.  相似文献   

16.
17.
Glycogen represents the major brain energy reserve though its precise functions are still under debate. Glycogen has also been found in different cell types of the enteric nervous system (ENS), the largest and most complex component of the peripheral nervous system. In the present work we have demonstrated, by application of isozyme-specific antibodies, the presence of isozymes of glycogen phosphorylase (GP), one of the major control sites in glycogen metabolism, in the rat ENS. Immunohistochemistry revealed that isoform BB (brain) is the predominant isozyme expressed in enteric glial cells (EGC) and rare neurons of the myenteric and submucosal plexuses. Isoform MM (muscle) appears in cells which are, according to their location and morphology, probably interstitial cells of Cajal (ICC). In addition, both GP isoforms are expressed in longitudinal and circular intestinal smooth muscle layers. As GP BB is mainly regulated by the cellular AMP level, a special function of glycogen in the energy supply of neural gut functions is suggested.  相似文献   

18.
Primary cultures of avian muscle cells express both globular and asymmetric molecular forms of acetylcholinesterase (AChE) when grown in a simple defined culture medium. Under these conditions, we analyzed the role of various agents interfering with muscular activity: tetrodotoxin (TTX) and veratridine, as well as a depolarizing concentration of KCl. These treatments caused the complete cessation of contractions in mature myotubes. We observed no influence on cellular AChE activity. The paralyzing treatments induced different effects on AChE secretion: TTX increased the secretion by approximately 25%, whereas KCl and veratridine reduced it by approximately 30%. The proportions of secreted molecular forms (mostly hydrophilic G4 and G2) were not modified significantly. TTX did not affect the pattern of molecular forms of cellular AChE (in particular, the proportion of A forms was not changed). Depolarization by veratridine or KCl induced an increase in the proportion of A forms in mature myotubes by a factor of 2-3. Similar results were obtained with quail myotubes cultured under the same conditions. This study shows that, in avian muscle cultures, the ionic balance across myotube membranes, rather than muscular activity per se, can regulate the level of A forms and the rate of AChE secretion. These results do not exclude the possible involvement of other factors, such as Ca2+ and/or peptidic factors. In addition, taking together our results and data from the literature. we conclude that the expression of AChE molecular forms depends both on the species and on the culture conditions used.  相似文献   

19.
Therapeutic and mechanistic studies of the presynaptically targeted clostridial neurotoxins (CNTs) have been limited by the need for a scalable, cell-based model that produces functioning synapses and undergoes physiological responses to intoxication. Here we describe a simple and robust method to efficiently differentiate murine embryonic stem cells (ESCs) into defined lineages of synaptically active, networked neurons. Following an 8 day differentiation protocol, mouse embryonic stem cell-derived neurons (ESNs) rapidly express and compartmentalize neurotypic proteins, form neuronal morphologies and develop intrinsic electrical responses. By 18 days after differentiation (DIV 18), ESNs exhibit active glutamatergic and γ-aminobutyric acid (GABA)ergic synapses and emergent network behaviors characterized by an excitatory:inhibitory balance. To determine whether intoxication with CNTs functionally antagonizes synaptic neurotransmission, thereby replicating the in vivo pathophysiology that is responsible for clinical manifestations of botulism or tetanus, whole-cell patch clamp electrophysiology was used to quantify spontaneous miniature excitatory post-synaptic currents (mEPSCs) in ESNs exposed to tetanus neurotoxin (TeNT) or botulinum neurotoxin (BoNT) serotypes /A-/G. In all cases, ESNs exhibited near-complete loss of synaptic activity within 20 hr. Intoxicated neurons remained viable, as demonstrated by unchanged resting membrane potentials and intrinsic electrical responses. To further characterize the sensitivity of this approach, dose-dependent effects of intoxication on synaptic activity were measured 20 hr after addition of BoNT/A. Intoxication with 0.005 pM BoNT/A resulted in a significant decrement in mEPSCs, with a median inhibitory concentration (IC50) of 0.013 pM. Comparisons of median doses indicate that functional measurements of synaptic inhibition are faster, more specific and more sensitive than SNARE cleavage assays or the mouse lethality assay. These data validate the use of synaptically coupled, stem cell-derived neurons for the highly specific and sensitive detection of CNTs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号