首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundWith dry eye, the ratio of cholesteryl ester (CE) to wax ester (WE) decreases substantially in meibum, but the functional and structural consequences of this change are speculative. The aim of this study is to confirm this finding and to bridge this gap in knowledge by investigating the effect of varying CE/WE ratios on lipid structure and thermodynamics.MethodsInfrared spectroscopy was use to quantify CE and WE in human meibum and to measure hydrocarbon chain conformation and thermodynamics in a cholesteryl behenate, stearyl stearate model system.ResultsThe CE/WE molar ratio was 36% lower for meibum from donors with dry eye due to meibomian gland dysfunction compared with meibum from donors without dry eye. CE (5 mol %) dramatically increased the phase transition temperature of pure WE from -0.12 °C to 63 °C in the mixture. Above 5 mol % CB, the phase transition temperature increased linearly, from 68.5 °C to 85 °C. In the ordered state, CE caused an increase in lipid order from about 72% trans rotamers to about 86% trans rotamers. Above 10% CE, the hydrocarbon chains were arranged in a monoclinic geometry.ConclusionsThe CE/WE is lower in meibum from donors with dry eye due to meibomian-gland dysfunction. Major conformational changes in the hydrocarbon chains of wax and cholesteryl ester mixtures begin to occur with just 5% CB and above.General significanceCE-WE interactions may be important for in understanding lipid layer structure and functional relationships on the surface of tears, skin and plants.  相似文献   

2.
The lipophilic yeastsMalassezia furfur andM. pachydermatis show an initial rapid uptake ofl-leucine followed by slower steady-state rates. At least two independent transport systems forl-leucine were present in both species. The high-affinity system forM. furfur had a KT of 0.047 µM with a Jmax of 222 fM/min/106 cells (65 pM/min/mg dry weight), whereas forM. pachydermatis the KT was 0.067 µM with a Jmax of 709 fM/min/106 cells (89 pM/min/dry weight). The low-affinity system forM. furfur had a KT of 646 µM with a Jmax of 1.62 pM/min/106 cells (0.5 nM/min/mg dry weight) and that ofM. pachydermatis had a KT of 3.3 µM with a Jmax of 9.97 pM/min/106 cells (1.3 nM/min/mg dry weight). Both transport systems were energy-dependent. Cells incubated with Tween 80 showedl-leucine uptake via both transport systems. Cells incubated with a combination of glucose (1%) and Tween 80 (0.01%) showed decreased transport rates for the high-affinity system for both species as compared with cells incubated only with glucose. The low-affinity transport system of both species in the presence of glucose plus Tween 80 showed an initial rapid uptake followed by greater efflux than influx ofl-leucine.l-Leucine demonstrated binding to Tween 80, but the major effect of Tween 80 on membrane transport inMalassezia appears to be on the efflux of transported molecules.  相似文献   

3.
The binding of hematoporphyrin derivative to membrane was studied at the molecular level, employing fluorimetric techniques and using liposomes (large unilamellar) to model biological membranes. Two specific issues were probed: (a) the effect of increasing the porphyrin-liposome incubation period (37°C, neutral pH, in the dark) from 2 h up to 24 h, with liposomes composed of PC or PC / cholesterol 7:3 (molar ratio); (b) the effects of membrane lipid composition, in terms of mol% cholesterol in PC / cholesterol liposomes, on the porphyrin-membrane binding equilibrium, for a long incubation period (16 h). The data were processed and found to be in good agreement with the following proposed model: with time (t > 2 h), the porphyrin fractions into three components, two of them binding to membrane with high and low affinities, respectively, the time effect reaching a plateau at 16 h. Linkage was observed between the slow process and changes in the available pools of each fraction. At sufficiently long incubations, the magnitude of each of the two binding the magnitude of the binding constant was found to depend on the lipid composition, that of the high-affinity the magnitude of the binding constant was found to depend on the lipid composition, On the other hand, fractions was found to be (roughly) 30%, independent of the membrane lipid composition. On the other Hand, fraction decreasing from 9000 M−1 for 0% cholesterol, to 3000 M−1 for 40% cholesterol, then increasing back to 5000 M−1 upon further increase in cholesterol (to 50% mol) and that of the low-affinity fraction going from 1000 M−1, to 100 M−1, to 300 M−1 for similar lipid compositions. The origin of the time effect, in terms of porphyrin-specific processes, and the biological relevance of the present findings are discussed.  相似文献   

4.
Old (ca 1920) and recent (1978) diatom assemblages from sixteen pristine moorland pools are compared by analysis of pH-spectra, diversity (Hill's index), (dis)similarity (number of species in common, Dyer dissimilarity) and principal component analysis. The pH-spectra of clear water pools indicate that the formerly wide range of pH (4–6) is very narrow now (3.7–4.6). No significant change of pH (ca 4.5) is observed in brown water moorland pools. Diversity significantly declines in clear water pools and has a tendency to rise in brown water pools. The number of species in common does not change. The Dyer dissimilarity significantly decreases in clear water lakes, no change is found in brown water lakes. The first principal component (PC 1) explains 61% of total variance between samples and is nearly completely determined byEunotia exigua. PC 1 has a strong positive correlation with both the absolute and relative sulfate concentration and other factors related to acidification (Ca2+, Al3+, Mg2+, electrical conductivity). PC1 has a negative correlation with factors characterizing humic acid waters (K MnO4-consumption, Fe, (Na+ + K+)/ (Ca2++Mg2+) etc.). Old samples have low scores on PC 1. Recent samples from clear waters have high scores on PC 1. The original variation, caused by regional factors, is replaced by a sulfate controled variation. The factors which are responsible for the recent differences in sulfate concentrations between pools are discussed (sulfate reduction, accumulation by dry deposition in adjacent pine forests and drought). Some observations contribute to the opinion that acidification may be considered as eutrophication and not as oligotrophication.  相似文献   

5.
Lam SM  Tong L  Yong SS  Li B  Chaurasia SS  Shui G  Wenk MR 《PloS one》2011,6(10):e24339

Background

Previous lipidomic analyses of the human meibum had largely focused on individuals from non-Asian populations, despite the higher prevalence of dysfunctional tear syndrome (DTS) observed across Asia. Information pertaining to the alterations in lipid profiles in relation to DTS onset and progression is also lacking and warrants comprehensive experimental analysis.

Methodologies/Principal Findings

We examined the meibum lipidome of 27 DTS patients and 10 control subjects for a total of 256 lipid species from 12 major lipid classes, including cholesteryl ester (CE), wax ester (WE), triacylglyceride (TAG), (O-acyl)-ω-hydroxy fatty acid (OAHFA), glycerophospholipids (phosphatidylcholine, PC; phosphatidylethanolamine, PE; phosphatidylinositol, PI; phosphatidylglycerol, PG) and sphingolipids (sphingomyelin, SM; ceramide, Cer; glucosylceramide, GluCer; dihexosylceramide, DihexCer). Neutral lipids were analysed using high-performance liquid-chromatography coupled with mass spectrometry (HPLC/MS) and tandem mass spectrometry (MS/MS) was used for the qualitative and quantitative analysis of polar lipid species. DTS patients were classified into three severity groups (i.e. mild, moderate and severe) based on the ocular surface disease index (OSDI). A significantly lower level of TAG (p<0.05) was observed in patients under the moderate category compared to the mild category. Notably, a number of OAHFA species displayed consistently decreasing levels that correlate with increasing disease severity. An attempt was also made to investigate the changes in meibum lipid profiles of DTS patients compared to normal individuals classified based on OSDI score. Several unsaturated TAG and PC species were found at significantly higher levels (p<0.05) in patients than controls.

Conclusion

The current study presents, for the first time, a comprehensive lipidome of meibum from individuals of an Asian ethnicity, which can potentially offer new insights into the higher prevalence of DTS observed amongst Asian populations. This study also represents an attempt towards identification of lipid species in meibum which could serve as marker for DTS.  相似文献   

6.
Abstract: [3H]Ryanodine binding studies of ryanodine receptors in brain membrane preparations typically require the presence of high salt concentrations in assay incubations to yield optimal levels of binding. Here, radioligand binding measurements on rat cerebral cortical tissues were conducted under high (1.0 M KCI) and low (200 mM KCI) salt buffer conditions to determine the effects of ionic strength on receptor binding properties as well as on modulation of ligand binding by Ca2+, Mg2+, β,γ-methylene-adenosine 5′-triphosphate (AMP-PCP), and caffeine. In 1.0 M KCI buffer, labeled titration/equilibrium analyses yielded two classes of binding sites with apparent KD (nM) and Bmax (fmol/mg of protein) values of 2.4 and 34, respectively, for the high-affinity site and 19.9 and 157, respectively, for the low-affinity site. Unlabeled titration/equilibrium measurements gave a single high-affinity site with a KD value of 1.9 nM and a Bmax value of 95 fmol/mg of protein. The apparent KD value derived from association and dissociation studies was 20 pM. Equilibrium binding was activated by Ca2+ (KD/Ca2+= 14 nM), inhibited by Mg2+ (IC60= 5.0 mM), and unaffected by AMP-PCP or caffeine. In 200 mM KCI buffer conditions, labeled titration analyses gave only a single site with a KD value similar to and a Bmax value 1.8-fold greater than those obtained for the low-affinity site in 1.0 M KCI buffer. In unlabeled titration measurements, the KD value was fivefold lower, whereas the Bmax value was unaffected. The KD value derived from association and dissociation analysis was 2.4-fold greater in 200 mM KCI compared with 1.0 M KCI buffer conditions. In 200 mM compared with 1.0 M KCI, the potency with which Mg2+ inhibited binding was increased by 3.8-fold, whereas the affinity of the activation site for Ca2+ was reduced by 13-fold. Addition of caffeine in the presence of low salt increased the affinity of Ca2+ activation by 1.7-fold. The inhibitory effect of Mg2+ on [3H]-ryanodine binding in the presence of 200 mM KCI was reversed by AMP-PCP and caffeine with apparent EC50 values of 0.25 and 7.6 mM, respectively. Taken together, these results indicate that ionic strength is an important consideration in binding studies of brain ryanodine receptors and their interactions with modulatory agents.  相似文献   

7.
The abilities of suspension cultures and intact roots of soybean (Glycine max L. cv. Hawkeye) to reduce ferric chelate were compared. Ferric chelate was supplied as ferric hydroxyethylethylenediaminetriacetic acid (FeHEDTA) and reduction was measured spectrophotometrically using bathophenan-throlinedisulfonic acid (BPDS) as the ferrous scavenger. Ferric chelate reduction by cell suspension cultures showed typical saturation kinetics; however, no difference was observed between cells that had been continuously grown with Fe (+Fe) and those that had been grown for four days without added Fe (–Fe). Values for Km and Vmax, determined from a Lineweaver-Burk plot, were 57 M and nmoles mg-1 dry weight for the +Fe cells and 50 M and 22 nmoles mg-1 dry weight for the -Fe cells, respectively. Ferric chelate reduction by Fe-deficient roots also exhibited saturation kinetics, while roots grown with adequate Fe did not reduce ferric chelate. The Km and Vmax values for Fe-deficient roots were 45 M and 20 nmoles mg-1 dry weight, respectively, and did not differ from values obtained for cells in culture. This study offers strong evidence that the mechanism responsible for the reduction of ferric chelate is the same for cultured cells and roots and that the process is controlled at the cellular level. We propose that suspension cultures can be used as an alternative to intact roots in the study of ferric chelate reduction.  相似文献   

8.
The β2‐adrenergic receptor (ADRB2) mediates obesity, cardiorespiratory fitness, and insulin resistance. We examined the hypothesis that ADRB2 Arg16Gly‐Gln27Glu haplotype is associated with body composition, glucose tolerance, and insulin sensitivity in obese, postmenopausal women. Obese (>35% body fat), postmenopausal (age 45–75 years) women (n = 123) underwent genotyping, dual‐energy X‐ray absorptiometry, and computed tomography scans, exercise testing (VO2max), 2‐h oral glucose tolerance tests (OGTTs), and hyperinsulinemic‐euglycemic clamps (80 mU/m2/min). Analysis of covariance (ANCOVA) tested for differences among haplotypes, with race, % body fat, and VO2max as covariates. We found that ADRB2 haplotype was independently associated with % body fat, abdominal fat distribution, VO2max, insulin sensitivity (M/ΔInsulin), and glucose tolerance (ANOVA, P < 0.05 for all). Women homozygous for Gly16–Gln27 haplotype had the highest % body fat (52.7 ± 1.9%), high abdominal fat, low M/ΔInsulin (0.49 ± 0.08 mg/kg/min/pmol/l/102), and impaired glucose tolerance (IGT) during an OGTT (G120 = 10.2 ± 0.9 mmol/l). Women homozygous for Gly16–Glu27 haplotype also had low M/ΔInsulin (0.51 ± 0.05 mg/kg/min/pmol/l/102) and IGT (G120 = 8.2 ± 0.7 mmol/l). Subjects with Arg16–Gln27/Gly16–Gln27 haplotype combination had the highest VO2max (1.84 ± 0.07 l/min) and M/ΔInsulin (0.7 ± 0.04 mg/kg/min/pmol/l/102), and normal glucose tolerance (G120 = 6.4 ± 0.4 mmol/l), despite being obese. These data show associations of the ADRB2 Arg16Gly‐Gln27Glu haplotype with VO2max and body composition, and an independent association with glucose metabolism, which persists after controlling for body composition and fitness. This suggests that ADRB2 haplotypes may mediate insulin action, glucose tolerance, and potentially risk for type 2 diabetes mellitus (T2DM) in obese, postmenopausal women.  相似文献   

9.
In the present study, we documented the promising role of thyroid hormones status in animals in modulation of Na+–Pi transport activity in intestinal brush border membrane vesicles (BBMV) which was accompanied with alterations in BBM lipid composition and fluidity. Augmentation of net Pi balance in hyperthyroid (Hyper-T) rats was fraternized with accretion of Pi transport across BBMV isolated from intestine of Hyper-T rats as compared to hypothyroid (Hypo-T) and euthyroid (Eu-T) rats while Na+–Pi transport across BBMV was decreased in Hypo-T rats relative to Eu-T rats. Increment in Na+–Pi transport in intestinal BBMV isolated from Hyper-T rats was manifested as an increase in the maximal velocity (Vmax) of Na+–Pi transport system. Furthermore, BBMV lipid composition profile in intestinal BBM from Hyper-T was altered to that of Hypo-T rats and Eu-T rats. The molar ratio of cholesterol/phospholipids was higher in intestinal BBM from Hypo-T rats. Fluorescence anistropy of diphenyl hexatriene (rDPH) and microviscosity were significantly decreased in the intestinal BBM of Hyper-T rats and decreased in Hypo-T rats as compared to Eu-T rats which corroborated with the alteration in membrane fluidity in response to thyroid hormone status of animals. Therefore, thyroid hormone mediated change in membrane fluidity might play an important role in modulating Na+–Pi transport activity of intestinal BBM. (Mol Cell Biochem 278: 195–202, 2005)  相似文献   

10.
Abstract: High-affinity μ-opioid receptors have been solubilized from rat brain membranes. In most experiments, rats were treated for 14 days with naltrexone to increase the density of opioid receptors in brain membranes. Occupancy of the membrane-associated receptors with morphine during solubilization in the detergent 3-[(3-cholamidopropyl)dimethyl]-1-propane sulfonate appeared to stabilize the μ-opioid receptor. After removal of free morphine by Sephadex G50 chromatography and adjustment of the 3-[(3-cholamidopropyl)dimethyl]-1-propane sulfonate concentration to 3 mM, the solubilized opioid receptor bound [3H][d -Ala2,N-Me-Phe4,Gly-ol5]-enkephalin ([3H]DAMGO), a μ-selective opioid agonist, with high affinity (KD = 1.90 ± 0.93 nM; Bmax = 629 ± 162 fmol/mg of protein). Of the membrane-associated [3H]-DAMGO binding sites, 29 ± 7% were recovered in the solubilized fraction. Specific [3H]DAMGO binding was completely abolished in the presence of 10 µM guanosine 5′-O-(3-thiotriphosphate). The solubilized receptor also bound [3H]diprenorphine, a nonselective opioid antagonist, with high affinity (KD = 1.4 ± 0.39 nM, Bmax = 920 ± 154 fmol/mg of protein). Guanosine 5′-O-(3-thiotriphosphate) did not diminish [3H]diprenorphine binding. DAMGO at concentrations between 1 nM and 1 µM competed with [3H]diprenorphine for the solubilized binding sites; in contrast, [d -Pen2,d -Pen5]-enkephalin, a δ-selective opioid agonist, and U50488H, a κ-selective opioid agonist, failed to compete with [3H]diprenorphine for the solubilized binding sites at concentrations of <1 µM. In the absence of guanine nucleotides, the DAMGO displacement curve for [3H]diprenorphine binding sites better fit a two-site than a one-site model with KDhigh = 2.17 ± 1.5 nM, Bmax = 648 ± 110 fmol/mg of protein and KDlow = 468 ± 63 nM, Bmax = 253 ± 84 fmol/mg of protein. In the presence of 10 µM guanosine 5′-O-(3-thiotriphosphate), the DAMGO displacement curve better fit a one- than a two-site model with KD = 815 ± 33 nM, Bmax = 965 ± 124 fmol/mg of protein.  相似文献   

11.
Summary Moorland pools are shallow oligotrophic soft water lakes on poorly buffered sandy soils. Diatom assemblages of samples from 16 pools taken in 1920 and 1978 were compared by analysis of pH-spectra, diversity, dissimilarity and multivariate statistical techniques.The pH-spectra of pools in the southern (S) and central (C) part of the country indicate a fall in pH from 4.5–6.0 in the old samples to 3.7–4.6 in the recent ones. The pH-spectra of the northern pools (N) do not indicate a significant shift from the original pH (ca 4.5).The number of species in the count and the diversity (indices of Simpson and Shannon) decreased significantly in S+C, and that goes also for the dissimilarity index of Dyer. No changes were found in N.The first component (PC 1) of the principal component analysis explains 61% of total variance. PC 1 is correlated with log [SO4] (r=0.83, p<0.001) and even better (r=0.95, p<0.001) with the relative sulphate concentration,i.e. the ratio of sulphate to all major anions (sulphate, chloride, bicarbonate). All old samples have low scores on PC 1, recent samples have low scores on the second (PC 2) and third (PC 3) principal component. Old samples have high scores on PC 2 and PC 3, explaining 9 and 6% of total variance, respectively.The orginal variation, caused by regional factors, is replaced by a SO4 2– controlled variation. PC 1 is nearly completely determined by the relative abundance ofEunotia exigua. This species, which is known to be very resistant to pollution by sulphur, aluminium and heavy metals, increased largely from 1920 to 1978.In spite of the rather homogeneous distribution of wet sulphate deposition in the Netherlands, substantial differences in SO4 2– content in the pools are observed, being lowest in N (0.13–0.48 meq.l–1) and highest in S+C (0.38–1.65 meq.l–1). Sulphate is positively correlated with calcium, aluminum and magnesium but negatively with factors that characterize humic acid waters (e.g. permanganate-consumption, iron and the ratio of univalent to divalent cations). Sulphate concentration depends on the intensity of sulphate reduction, accumulation by dry deposition in surrounding forests of Scots pine, drought and atmospheric deposition.  相似文献   

12.
Summary The content of endogenous gibberellin (GA)-like substances of roots and root nodules of SOya, and GA production byRhizobium japonicum cultures, were investigated by a combined thin layer chromatographic (TLC)-dwarf pea epicotyl bioassay technique. GAs were more concentrated in root nodules than in the roots, totalling 1.34 and 0.16 nM GA3 equivalents g−1 dry wt. respectively. GA production byR. japonicum cultures was demonstrated (1.00 nM GA3 equivalentsl −1) and comparison of the GA components of plant and bacterial culture medium extracts, suggested that rhizobial GA production may contribute to the nodule GA content. Cis-trans abscisic acid (ABA) was identified in root and nodule extracts by TLC-gas liquid chromatography (GLC), and amounted to 0.18 and 2.21 nM g−1 dry wt. respectively, whereas 0.30 and 4.63 nM ABA equivalents g−1 dry wt. were detected by a TLC-wheat embryo bioassay technique. ABA was not detected in extracts of bacterial cultures.  相似文献   

13.
Abstract: The kinetic characteristics of [3H]adenosine uptake, the extent to which accumulated [3H]adenosine was metabolized, the effects such metabolism had on measurements of apparent Michaelis-Menten kinetic values of KT and Vmax, and the sensitivities with which nucleoside transport inhibitors blocked [3H]adenosine accumulations were determined in cultured human fetal astrocytes. KT and Vmax values for accumulations of [3H]-labeled purines using 15-s incubations in the absence of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and the adenosine kinase inhibitor 5′-iodotubercidin (ITU) were 6.2 µM and 0.15 nmol/min/mg of protein for the high-affinity and 2.6 mM and 21 nmol/min/mg of protein for the low-affinity components respectively. In the presence of EHNA and ITU, where <4% of accumulated [3H]adenosine was metabolized, transport per se was measured, and kinetic values for KT and Vmax were 179 µM and 5.2 nmol/min/mg of protein, respectively. In the absence of EHNA and ITU, accumulated [3H]adenosine was rapidly metabolized to AMP, ADP, and ATP, and caused an appearance of “concentrative” uptake in that the intracellular levels of [3H]-labeled purines (adenosine plus its metabolites) were 1.4-fold higher than in the medium. No apparent concentrative accumulations of [3H]adenosine were found when assays were conducted using short incubation times in the absence or presence of EHNA and ITU. The nucleoside transport inhibitors dipyridamole (DPR), nitrobenzylthioinosine (NBI), and dilazep biphasically inhibited [3H]adenosine transport; for the inhibitor-sensitive components the IC50 values were 0.7 nM for NBI, 1.3 nM for DPR, and 3.3 nM for dilazep, and for the inhibitor-resistant component the IC50 values were 2.5 µM for NBI, 5.1 µM for dilazep, and 39.0 µM for DPR. These findings, in cultured human fetal astrocytes, represent the first demonstration of inhibitor-sensitive and -resistant adenosine transporters in nontransformed human cells.  相似文献   

14.
Antecedent studies have suggested that lipid composition and fluidity of cellular membranes of various organs are altered in response to thyroid hormone status. To date, the effects of thyroid hormone status on these parameters have not been examined in rat renal apical membrane in regard to sodium-dependent phosphate transport. In the present study, we determined the potential role of alterations in cortical brush-border membrane lipid composition and fluidity in modulation of Na+–Pi transport activity in response to thyroid hormone status. Thyroid hormone status influences the fractional excretion of Pi, which is associated with alteration in renal brush-border membrane phosphate transport. The increment in Na+–Pi transport in renal BBMV isolated from Hyper-T rats is manifested as an increase in the maximal velocity (Vmax) of Na+–Pi transport. Further, the cholesterol content was significantly increased in renal BBM of Hypo-T rats and decreased in Hyper-T rats as compared to the Eu-T rats. The molar ratio of cholesterol/phospholipids was also higher in renal BBM from hypo-T rats. Subsequently, fluorescence anisotropy of diphenyl hexatriene (rDPH) and microviscosity were significantly decreased in the renal BBM of the Hyper-T rats and increased in the Hypo-T rats as compared to Eu-T rats. The result of this study, therefore, suggest that alteration in renal BBM cholesterol, cholesterol/phospholipid molar ratio, and membrane fluidity play an important role in the modulation of renal BBM Na+–Pi transport in response to thyroid hormone status of animals. (Mol Cell Biochem 268: 75–82, 2005)  相似文献   

15.
Abstract: Previous work from this laboratory has shown that retinal adenosine A2 binding sites are localized over outer and inner segments of photoreceptors in rabbit and mouse retinal sections. In the present study, adenosine receptor binding has been characterized and localized in membranes from bovine rod outer segments (ROS). Saturation studies with varying concentrations (10–150 nM) of 5′-(N-[2,8-3H]ethylcarboxamido)adenosine ([3H]NECA) and 100 μg of ROS membrane protein show a single site with a KD of 103 nM and a Bmax of 1.3 pM/mg of protein. Cold Scatchards, which used nonradiolabeled NECA (concentrations ranging from 10 nM to 250 nM) in competition with a fixed amount of [3H]NECA (30 nM), demonstrated the presence of a low-affinity site (KD, 50 μM) in addition to the high-affinity site. To confirm the presence of A2abinding sites, saturation analyses with 2-p-(2-[3H]-carboxyethyl)phenylamino-5′-N-ethylcarboxamido adenosine (0–80 nM) also revealed a single population of high-affinity A2a receptors (KD, 9.4 nM). The binding sites labeled by [3H]NECA appear to be A2 receptor sites because binding was displaced by increasing concentrations of 5′-(N-methylcarboxamido)adenosine and 2-chloroadenosine. ROS were fractionated into plasma and disk membranes for localization studies. Receptor binding assays, used to determine specific binding, showed that the greatest concentration of A2 receptors was on the plasma membranes. Therefore, adenosine A2 receptors are in a position to respond to changes in the concentration of extracellular adenosine, which may exhibit a circadian rhythm.  相似文献   

16.
Igor A. Butovich 《Steroids》2010,75(10):726-733
Very long chain cholesteryl esters (CE) are a major group of lipids found in meibomian gland secretions (MGS, also called meibum). MGS are produced by the meibomian glands of human and animal eyelids. They are a critical part of the tear film which covers the exposed ocular surface and serves various physiological roles. The composition of CE of MGS is complex, and still remains poorly understood. Here, a liquid chromatography-ion trap mass spectrometry (LC-MS) procedure developed to analyze CE is described, and a detailed composition of human meibomian CE is reported.MGS were collected from donors, analyzed without any modifications by LC-MS in positive and negative ion modes (PIM and NIM), and quantified using lipid standards where available.CE comprised about 30% of human meibum by mass. More than 40 individual CE species were found and characterized. In PIM, CE were observed as spontaneously in-source generated product ions m/z 369. The signals of the proton adducts of intact CE (M+H)+ were of very low intensity. In NIM, all tested CE spontaneously fragmented in-source producing signals of their respective FA. By combining the LC and MS information, the most abundant CE were found to be based on FA ranging from C16 to at least C32 in the following order C26:0 > C25:0 > C24:0 > C27:0 > C24:1 = C18:1 = C20:0 > other CE.We conclude that the FA composition of CE can be successfully established in LC-MS experiments conducted in NIM. Meibomian CE have a large presence of both saturated and unsaturated FA with an average molar ratio of 4 to 1, respectively.  相似文献   

17.
Biomimetic particles supporting lipid bilayers are becoming increasingly important to isolate and reconstitute protein function. Cholera toxin (CT) from Vibrio cholerae, an 87-kDa AB5 hexameric protein, and its receptor, the monosialoganglioside GM1, a cell membrane glycolipid, self-assembled on phosphatidylcholine (PC) bilayer-covered silica particles at 1 CT/5 GM1 molar ratio in perfect agreement with literature. This receptor-lig-and recognition represented a proof-of-concept that receptors in general can be isolated and their function reconstituted using biomimetic particles, i.e., bilayer-covered silica. After incubation of colloidal silica with small unilamellar PC vesicles in saline solution, pH 7.4, PC adsorption isotherms on silica from inorganic phosphorus analysis showed a high PC affinity for silica with maximal PC adsorption at bilayer deposition. At 0.3 mM PC, fluorescence of pyrene-labeled GM1 showed that GM1 incorporation in biomimetic particles increased as a function of particles concentration. At 1 mg/mL silica, receptor incorporation increased to a maximum of 40% at 0.2–0.3 mM PC and then decreased as a function of PC concentration. At 5 μM GM1, 0.3 mM PC, and 1 mg/mL silica, CT binding increased as a function of CT concentration with a plateau at 2 mg bound CT/m2 silica, which corresponded to the 5 GM1/1 CT molar proportion and showed successful reconstitution of receptor-ligand interaction.  相似文献   

18.
A process-based leaf gas exchange model for C3 plants was developed which specifically describes the effects observed along light gradients of shifting nitrogen investment in carboxylation and bioenergetics and modified leaf thickness due to altered stacking of photosynthetic units. The model was parametrized for the late-successional, shade-tolerant deciduous species Acer saccharum Marsh. The specific activity of ribulose-1,5-bisphosphate carboxylase (Rubisco) and the maximum photosynthetic electron transport rate per unit cytochrome f (cyt f) were used as indices that vary proportionally with nitrogen investment in the capacities for carboxylation and electron transport. Rubisco and cyt f per unit leaf area are related in the model to leaf dry mass per area (MA), leaf nitrogen content per unit leaf dry mass (Nm), and partitioning coefficients for leaf nitrogen in Rubisco (PR) and in bioenergetics (PB). These partitioning coefficients are estimated from characteristic response curves of photosynthesis along with information on lear structure and composition. While PR and PB determine the light-saturated value of photosynthesis, the fraction of leaf nitrogen in thylakoid light-harvesting components (PL) and the ratio of leaf chlorophyll to leaf nitrogen invested in light harvesting (CB), which is dependent on thylakoid stoichiometry, determine the initial photosynthetic light utilization efficiency in the model. Carbon loss due to mitochondrial respiration, which also changes along light gradients, was considered to vary in proportion with carboxylation capacity. Key model parameters - Nm, PR, PB, PLCB and stomatal sensitivity with respect to changes in net photosynthesis (Gr) – were examined as a function of MA, which is linearly related to irradiance during growth of the leaves. The results of the analysis applied to A. saccharum indicate that PB and PR increase, and Gf, PL and CB decrease with increasing MA. As a result of these effects of irradiaiice on nitrogen partitioning, the slope of the light-saturated net photosynthesis rate per unit leaf dry mass (Ammax) versus Nm relationship increased with increasing growth irradiance in mid-season. Furthermore, the nitrogen partitioning coefficients as well as the slopes of Ammax versus Nm were independent of season, except during development of the leaf photosynthetic apparatus. Simulations revealed that the acclimation to high light increased Ammax by 40% with respect to the low light regime. However, light-saturated photosynthesis per leaf area (Aamax) varied 3-fold between these habitats, suggesting that the acclimation to high light was dominated by adjustments in leaf anatomy (Aamax=AmmaxMA) rather than in foliar biochemistry. This differed from adaptation to low light, where the alterations in foliar biochemistry were predicted to be at least as important as anatomical modifications. Due to the light-related accumulation of photosynthetic mass per unit area, Aamax depended on MA and leaf nitrogen per unit area (Na). However, Na conceals the variation in both MA and Nm (Na=NmMA), and prevents clear separation of anatomical adjustments in foliage structure and biochemical modifications in foliar composition. Given the large seasonal and site nutrient availability-related variation in Nm, and the influences of growth irradiance on nitrogen partitioning, the relationship between Aamax and Na is universal neither in time nor in space and in natural canopies at mid-season is mostly driven by variability in MA. Thus, we conclude that analyses of the effects of nitrogen investments on potential carbon acquisition should use mass-based rather than area-based expressions.  相似文献   

19.
Abstract: Rat medullary brain segments containing primarily nucleus tractus solitarius (NTS) were used for superfusion studies of evoked transmitter release and for isotherm receptor binding assays. Isotherm binding assays with [3H]CGS-21680 on membranes prepared from NTS tissue blocks indicated a single high-affinity binding site with a KD of 5.1 ± 1.4 nM and a Bmax of 20.6 ± 2.4 fmol/mg of protein. The binding density for [3H]CGS-21680 on NTS membranes was 23 times less than comparable binding on membranes from striatal tissue. Electrically stimulated (1 min at 25 mA, 2 ms, 3 Hz) release of [3H]norepinephrine ([3H]NE) from 400-µm-thick NTS tissue slices resulted in an S2/S1 ratio of 0.96 ± 0.02. Superfusion of single tissue slices with 0.1–100 nM CGS-21680, a selective adenosine A2a receptor agonist, for 5 min before the S2 stimulus produced a significant concentration-dependent increase in the S2/S1 fractional release ratio that was maximal (31.3% increase) at 1.0 nM. However, superfusion of tissue slices with CGS-21680 over the same concentration range for 20 min before the S2 stimulus did not alter the S2/S1 ratio significantly from control release ratios. The augmented release of [3H]NE mediated by 1.0 nM CGS-21680 with a 5-min tissue exposure was abolished by 1.0 and 10 nM CGS-15943 as well as by 100 nM 8-(3-chlorostyryl)caffeine, both A2a receptor antagonists, but not by 1.0 nM 8-cyclopentyl-1,3-dipropylxanthine, the A1 receptor antagonist. Taken together, these results suggest that CGS-21680 augmented the evoked release of [3H]NE in the NTS via activation of presynaptic A2a receptors within the same concentration range as the binding affinity observed for [3H]CGS-21680. It was also apparent that this population of presynaptic adenosine A2a receptors in the NTS desensitized within 20 min because the augmenting action of CGS-21680 on evoked transmitter release was not evident at the longer interval.  相似文献   

20.
Abstract: Fast scan cyclic voltammetry with carbon fiber electrodes has been used to investigate the dynamics of the neurotransmitter 5-hydroxytryptamine (5-HT) in the extracellular fluid of two brain regions: the dorsal raphe and the substantia nigra reticulata. The method used previously was shown to be optimized to allow the time course of 5-HT concentration changes to be measured rapidly. Measurements were made in slices prepared from the brains of rats with the carbon fiber electrode inserted into the tissue and a bipolar stimulating electrode placed on the slice surface. Identification of 5-HT as the detected substance in both regions was based on voltammetric, anatomical, physiological, and pharmacological evidence. Autoradiography using [3H]paroxetine revealed highest 5-HT transporter binding densities in the regions in which voltammetric measurements were made. Evaluation of the pharmacological actions of tetrodotoxin and tetrabenazine, as well as the effects of calcium removal, suggested that 5-HT storage was vesicular and that the release process was exocytotic. The effects of fluoxetine (0.5 µM) were typical of a competitive uptake inhibitor, changing Km with little effect on Vmax. Release of 5-HT was found to be maximal with wide (2-ms) stimulus pulses in both regions, as expected for release from small unmyelinated processes, and to increase linearly with the number of pulses when high frequencies (100 Hz) were used. At lower frequencies, the concentration observed was a function of both release and uptake. Kinetic simulations of the data revealed that the major difference in 5-HT neurotransmission between the two regions was that release and uptake rates are twice as large in the dorsal raphe ([5-HT] per pulse = 100 ± 20 nM, Vmax = 1,300 ± 20 nM/s for dorsal raphe; [5-HT] per pulse = 55 ± 7 nM, Vmax = 570 ± 70 nM/s for substantia nigra reticulata). When normalized to tissue content, uptake rates in both regions were identical and similar to rates previously reported for dopamine in dopamine terminal regions. Nonetheless, compared with dopaminergic transmission in terminal regions such as the striatum, the absolute clearance rates in the substantia nigra reticulata and dorsal raphe were lower, resulting in a longer lifetime of 5-HT in the extracellular fluid and allowing long-range interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号