首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome-wide linkage disequilibrium in two Japanese beef cattle breeds   总被引:4,自引:0,他引:4  
There is little knowledge about the degree of linkage disequilibrium (LD) in beef cattle. This study aims to perform a genome-wide search for LD in Japanese Black and Japanese Brown beef cattle and to compare the level of LD between these two breeds. Parameter D' (the LD coefficient) was used as a measure of LD, and LD was tested for significance of allelic associations between syntenic and between non-syntenic marker pairs. Effects of breed, chromosome, genetic map distance and their interactions with D' were tested based on least squares analyses. Both breeds showed high levels of LD, which ranged over several tens of cM and declined as the marker distance increased for syntenic marker pairs. A rapid decline of the D' value was observed between markers that were spaced 5 and 20 cM apart. LD was significant in most cases for marker pairs <40 cM apart but was not significant between non-syntenic loci. The pattern of LD found in these two breeds was similar to that previously published for dairy cattle. The D' value between breeds was not significantly different (P > 0.05), but the interaction between breed and chromosome was highly significant (P < 0.001). Genetic selection seems to have caused the heterogeneity of the D' values among chromosomes within breed. These results indicate that LD mapping is a useful tool for fine-mapping quantitative trait loci of economically important traits in Japanese beef cattle.  相似文献   

2.
We constructed a metric linkage disequilibrium (LD) map of bovine chromosome 6 (BTA6) on the basis of data from 220 SNPs genotyped on 433 Australian dairy bulls. This metric LD map has distances in LD units (LDUs) that are analogous to centimorgans in linkage maps. The LD map of BTA6 has a total length of 8.9 LDUs. Within the LD map, regions of high LD (represented as blocks) and regions of low LD (steps) are observed, when plotted against the integrated map in kilobases. At the most stringent block definition, namely a set of loci with zero LDU increase over the span of these markers, BTA6 comprises 40 blocks, accounting for 41% of the chromosome. At a slightly lower stringency of block definition (a set of loci covering a maximum of 0.2 LDUs on the LD map), up to 81% of BTA6 is spanned by 46 blocks and with 13 steps that are likely to reflect recombination hot spots. The mean swept radius (the distance over which LD is likely to be useful for mapping) is 13.3 Mb, confirming extensive LD in Holstein-Friesian dairy cattle, which makes such populations ideal for whole-genome association studies.  相似文献   

3.
Genome-wide linkage disequilibrium (LD) is subject to intensive investigation in human and livestock populations since it can potentially reveal aspects of a population history, permit to date them and help in fine-gene mapping. The most commonly used measure of LD between multiallelic loci is the coefficient D''. Data based on D'' were recently published in humans, livestock and model animals. However, the properties of this coefficient are not well understood. Its sampling distribution and variance has received recent attention, but its expected behaviour with respect to genetic or physical distance remains unknown. Using stochastic simulations of populations having a finite size, we show that D'' fits an exponential function having two parameters of simple biological interpretation: the residual value (rs) towards which D'' tends as the genetic distance increases and the distance R at which this value is reached. Properties of this model are evaluated as a function of the inbreeding coefficient (F). It was found that R and rs increase when F increases. The proposed model offers opportunities to better understand the patterns and the origins of LD in different populations and along different chromosomes.  相似文献   

4.
In accordance with pseudo-testcross strategy, the first genetic linkage map of Eucommia ulmoides Oliv. was constructed by an F1 population of 122 plants using amplified fragment length polymorphism (AFLP) markers. A total of 22 AFLP primer combinations generated 363 polymorphic markers. We selected 289 markers segregating as 1:1 and used them for constructing the parent-specific linkage maps. Among the candidate markers, 127 markers were placed on the maternal map LF and 108 markers on the paternal map Q1. The maternal map LF spanned 1116.1 cM in 14 linkage groups with a mean map distance of 8.78 cM; the paternal map Q1 spanned 929.6 cM in 12 linkage groups with an average spacing of 8.61 cM. The estimated coverage of the genome through two methods was 78.5 and 73.9% for LF, and 76.8 and 71.2% for Q1, respectively. This map is the first linkage map of E. ulmoides and provides a basis for mapping quantitative-trait loci and breeding applications.  相似文献   

5.
We analysed a QTL affecting milk yield (MY), milk protein yield (PY) and milk fat yield (FY) in the dual purpose cattle breed Fleckvieh on BTA5. Twenty-six microsatellite markers covering 135 cM were selected to analyse nine half-sib families containing 605 sons in a granddaughter design. We thereby assigned two new markers to the public linkage map using the CRI-MAP program. Phenotypic records were daughter yield deviations (DYD) originating from the routinely performed genetic evaluations of breeding animals. To determine the position of the QTL, three different approaches were applied: interval mapping (IM), linkage analysis by variance component analysis (LAVC), and combined linkage disequilibrium (LD) and linkage (LDL) analysis. All three methods mapped the QTL in the same marker interval ( BM2830-ETH152 ) with the greatest test-statistic value at 118, 119.33 and 119.33 cM respectively. The positive QTL allele simultaneously increases DYD in the first lactation by 272 kg milk, 7.1 kg milk protein and 7.0 kg milk fat. Although the mapping accuracy and the significance of a QTL effect increased from IM over LAVC to LDL, the confidence interval was large (13, 20 and 24 cM for FY, MY and PY respectively) for the positional cloning of the causal gene. The estimated averages of pair wise marker LD with a distance <5 cM were low (0.107) and reflect the large effective population size of the Fleckvieh subpopulation analysed. This low level of LD suggests a need for increase in marker density in following fine mapping steps.  相似文献   

6.
In the absence of a complete and annotated bovine genome sequence, detailed human-bovine comparative maps are one of the most effective tools for identification of positional candidate genes contributing to quantitative trait loci (QTL) in cattle. In the present study, eight genes from human chromosome 8 were selected for mapping in cattle to improve breakpoint resolution and confirm gene order on the comparative map near the 40 cM region of the BTA27 linkage map where a QTL affecting dairy form had previously been identified. The resulting map identified ADRB3 as a positional candidate gene for the QTL contributing to the dairy form trait based on its estimated position between 40 and 45 cM on the linkage map. It is also a functional candidate gene due to its role in fat metabolism, and polymorphisms in the ADRB3 gene associated with obesity and metabolic disease in humans, as well as, carcass fat in sheep. Further studies are underway to investigate the existence of polymorphisms in the bovine ADRB3 gene and their association with traits related to fat deposition in cattle.  相似文献   

7.
Genetic linkage maps of Fenneropenaeus chinensis were constructed using a “double pseudo-testcross” strategy with 200 single nucleotide polymorphisms (SNPs) markers. This study represents the first SNP genetic linkage map for F. chinensis. The parents and F 1 progeny of 100 individuals were used as mapping populations. 21 genetic linkage groups in the male and female maps were identified. The male linkage map was composed of 115 loci and spanned 879.7 cM, with an average intermarker spacing of 9.4 cM, while the female map was composed of 119 loci and spanned 876.2 cM, with an average intermarker spacing of 8.9 cM. The estimated coverage of the linkage maps was 51.94% for the male and 53.77% for the female, based on two estimates of genome length. The integrated map contains 180 markers distributed in 16 linkage groups, and spans 899.3 cM with an average marker interval of 5.2 cM. This SNP genetic map lays the foundation for future shrimp genomics and genetic breeding studies, especially the discovery of gene or regions for economically important traits in Chinese shrimp.  相似文献   

8.
Sesame (Sesamum indicum L.) is one of the oldest oilseed crops with high seed oil quality. The first sesame genetic linkage map based on F2 segregating population of an intraspecific cross between two cultivars was constructed. Using three types of PCR-based markers, 284 polymorphic loci including 10 EST-SSR marker, 30 AFLP marker and 244 RSAMPL marker, respectively, had been screened. Subsequently, a total of 220 molecular markers were mapped in 30 linkage groups covering a genetic length of 936.72 cM, and the average distance between markers was 4.93 cM. In this map, the linkage groups contained from 2 to 33 loci each and ranged in distance from 6.44 cM to 74.52 cM. Based on map information, sesame genome length was estimated to be approximately 1,232.53 cM, and genome coverage of this map was about 76.0%. As a starting point of sesame genome study, the genetic linkage map will be hopeful to tag traits of breeding interest and further aid in the sesame molecular breeding. Furthermore, RSAMPL marker had been also appreciated in this paper, for its first usage in genetic map construction and higher utilization potential in some crop species lacking much genome information.  相似文献   

9.
The level of population structure and the extent of linkage disequilibrium (LD) can have large impacts on the power, resolution, and design of genome-wide association studies (GWAS) in plants. Until recently, the topics of LD and population structure have not been explored in oat due to the lack of a high-throughput, high-density marker system. The objectives of this research were to survey the level of population structure and the extent of LD in oat germplasm and determine their implications for GWAS. In total, 1,205 lines and 402 diversity array technology (DArT) markers were used to explore population structure. Principal component analysis and model-based cluster analysis of these data indicated that, for the lines used in this study, relatively weak population structure exists. To explore LD decay, map distances of 2,225 linked DArT marker pairs were compared with LD (estimated as r 2). Results showed that LD between linked markers decayed rapidly to r 2 = 0.2 for marker pairs with a map distance of 1.0 centi-Morgan (cM). For GWAS, we suggest a minimum of one marker every cM, but higher densities of markers should increase marker-QTL association and therefore detection power. Additionally, it was found that LD was relatively consistent across the majority of germplasm clusters. These findings suggest that GWAS in oat can include germplasm with diverse origins and backgrounds. The results from this research demonstrate the feasibility of GWAS and related analyses in oat.  相似文献   

10.
Our previously published second generation genetic map for the American mink (Neovison vison) has been used and redesigned in its best for genome-wide studies with maximum of efficiency. A number of 114 selected markers, including 33 newly developed microsatellite markers from the CHORI-231 mink Bacterial Artificial Chromosome (BAC) library, have been genotyped in a two generation population composed of 1200 individuals. The outcome reassigns the position of some markers on the chromosomes and it produces a more reliable map with a convenient distance between markers. A total of 104 markers mapped to 14 linkage groups corresponding to the mink autosomes. Six markers are unlinked and four markers are allocated to the X chromosome by homology but no linkage was detected. The sex-average linkage map spans 1192 centiMorgans (cM) with an average intermarker distance of 11.4 cM and 1648 cM when the ends of the linkage groups and the autosomal unlinked markers are added. Sex-specific genetic linkage maps were also generated. The male sex-specific map had a total length of 1014.6 cM between the linked markers and an average inter-marker interval of 9.7 cM. The female map has a corresponding length of 1378.6 cM and an average inter-marker interval of 13.3 cM. The study is complemented with additional anchorage for most of the chromosomes of the map by BAC in situ hybridization with clones containing microsatellites strategically selected from the various parts of the genome. This map provides an improved tool for genetic mapping and comparative genomics in mink, also useful for the future assembly of the mink genome sequence when this will be taken forward.  相似文献   

11.
The quail is a valuable farm and laboratory animal. Yet molecular information about this species remains scarce. We present here the first genetic linkage map of the Japanese quail. This comprehensive map is based solely on amplified fragment length polymorphism (AFLP) markers. These markers were developed and genotyped in an F2 progeny from a cross between two lines of quail differing in stress reactivity. A total of 432 polymorphic AFLP markers were detected with 24 TaqI/EcoRI primer combinations. On average, 18 markers were produced per primer combination. Two hundred and fifty eight of the polymorphic markers were assigned to 39 autosomal linkage groups plus the ZW sex chromosome linkage groups. The linkage groups range from 2 to 28 markers and from 0.0 to 195.5 cM. The AFLP map covers a total length of 1516 cM, with an average genetic distance between two consecutive markers of 7.6 cM. This AFLP map can be enriched with other marker types, especially mapped chicken genes that will enable to link the maps of both species and make use of the powerful comparative mapping approach. This AFLP map of the Japanese quail already provides an efficient tool for quantitative trait loci (QTL) mapping.  相似文献   

12.
Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits.  相似文献   

13.
Gan S  Shi J  Li M  Wu K  Wu J  Bai J 《Genetica》2003,118(1):59-67
Moderate-density molecular maps were constructed for the genomes of Eucalyptus urophylla S. T. Blake and E. tereticornis Smith using RAPD markers and an interspecific cross between the two species. One hundred and eighty-three primers were employed to generate 245 and 264 parent-specific markers in E. urophylla and E. tereticornis, respectively, as well as 49 parent-shared markers. The normally segregating markers, including 208 (84.9%) specific to maternal E. urophylla, 175 (66.3%) to paternal E. tereticornis, and 48 shared by both parents, were used for framework map construction for each parental species. For maternal E. urophylla, the linkage map consisted of 23 linkage groups, 160 framework markers, and 60 accessory markers, defining a total map distance of 1504.6 cM and an average interval of 11.0 ± 8.07 cM. For paternal E. tereticornis, the linkage map contained 23 linkage groups, 126 framework markers, and 92 accessory markers, defining a total map distance of 1035.7 cM and an average interval of 10.1 ± 7.23 cM. Genome length was estimated at 1585.7 and 1507.5 cM for E. urophylla and E. tereticornis, respectively, indicating map coverage of 94.9 and 68.7% of the corresponding genomes. Construction of such maps will be valuable for quantitative trait loci (QTLs) detection, marker-assisted selection (MAS), comparative mapping, and whole genome based fingerprint characterization in Eucalyptus breeding programs.  相似文献   

14.
A genetic linkage map was constructed for watermelon using a testcross population [Plant Accession Griffin 14113 (Citrullus lanatus var. citroides) 2 New Hampshire Midget (NHM; C. lanatus var. lanatus)] 2 U.S. Plant Introduction (PI) 386015 (Citrullus colocynthis). The map contains 141 randomly amplified polymorphic DNA (RAPD) markers produced by 78 primers, 27 inter-simple sequence repeat (ISSR) markers produced by 17 primers, and a sequence-characterized amplified region (SCAR) marker that was previously reported as linked (1.6 cM) to race-1 Fusarium wilt [incited by Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F.Sm.) W.C. Synder &; H.N. Hans] resistance in watermelon. The map consists of 25 linkage groups. Among them are a large linkage group that contains 22 markers covering a mapping distance of 225.6 cM and six large groups each with 10-20 markers covering a mapping distance of 68.8 to 110.8 cM. There are five additional linkage groups consisting of 3-7 markers per group, each covering a mapping distance of 36.5 to 57.2 cM. The 13 remaining linkage groups are small, each consisting of 2-11 markers covering a mapping distance of 3.5-29.9 cM. The entire map covers a total distance of 1,166.2 cM with an average distance of 8.1 cM between two markers. This map is useful for the further development of markers linked to disease resistance and watermelon fruit qualities.  相似文献   

15.
Single nucleotide polymorphisms (SNPs) were used to construct an integrated SNP linkage map of peach (Prunus persica (L.) Batsch). A set of 1,536 SNPs were evaluated with the GoldenGate® Genotyping assay in two mapping populations, Pop-DF, and Pop-DG. After genotyping and filtering, a final set of 1,400 high quality SNPs in Pop-DF and 962 in Pop-DG with full map coverage were selected and used to construct two linkage maps with JoinMap®4.0. The Pop-DF map covered 422 cM of the peach genome and included 1,037 SNP markers, and Pop-DG map covered 369 cM and included 738 SNPs. A consensus map was constructed with 588 SNP markers placed in eight linkage groups (n?=?8 for peach), with map coverage of 454 cM and an average distance of 0.81 cM/marker site. Placements of SNPs on the “peach v1.0” physical map were compared to placement on the linkage maps and several differences were observed. Using the SNP linkage map of Pop-DG and phenotypic data collected for three harvest seasons, a QTL analysis for fruit quality traits and chilling injury symptoms was carried out with the mapped SNPs. Significant QTL effects were detected for mealiness (M) and flesh bleeding (FBL) QTLs on linkage group 4 and flesh browning (FBr) on linkage group 5. This study represents one of the first examples of QTL detection for quality traits and chilling injury symptoms using a high-density SNP map in a single peach F1 family.  相似文献   

16.
The razor clam (Sinonovacula constricta) is an important aquaculture species, for which a high-density genetic linkage map would play an important role in marker-assisted selection (MAS). In this study, we constructed a high-density genetic map and detected quantitative trait loci (QTLs) for Sinonovacula constricta with an F1 cross population by using the specific locus amplified fragment sequencing (SLAF-seq) method. A total of 315,553 SLAF markers out of 467.71 Mreads were developed. The final linkage map was composed of 7516 SLAFs (156.60-fold in the parents and 20.80-fold in each F1 population on average). The total distance of the linkage map was 2383.85 cM, covering 19 linkage groups with an average inter-marker distance of 0.32 cM. The proportion of gaps less than 5.0 cM was on average 96.90%. A total of 16 suggestive QTLs for five growth-related traits (five QTLs for shell height, six QTLs for shell length, three QTLs for shell width, one QTL for total body weight, and one QTL for soft body weight) were identified. These QTLs were distributed on five linkage groups, and the regions showed overlapping on LG9 and LG13. In conclusion, the high-density genetic map and QTLs for S. constricta provide a valuable genetic resource and a basis for MAS.  相似文献   

17.
An F2 population was developed from a cross between a mur-cytoplasmic male sterile broccoli line and a restorer Chinese kale line. Phenotypic analysis of F2 plants indicated that the pollen fertility is controlled by two genes and segregated in a duplicate gene interaction mode with a ratio of 15:1. A total of 236 single nucleotide polymorphism (SNP) markers were developed utilizing 1,448 primers designed for production of expressed sequence tag (EST)-SNP markers of Raphanus sativus and analyzed by the dot-blot technique in 205 F2 individuals. A linkage map was constructed with a total of 142 markers and these markers were assigned to nine linkage groups together with simple sequence repeat markers mapped previously on the published linkage maps of Brassica oleracea. The linkage map spanned 909 cM with an average marker distance of 6.4 cM. A fertility restorer locus (Rfm1) was mapped on LG1, corresponding to chromosome 3, along with a flower color locus at a distance of 25 cM. SNP markers flanking the Rfm1 locus were BoCL2642s at a distance of 2.5 cM on one side and BoCL2901s at a distance of 7.5 cM on the other side. All the SNP markers showed homology with Arabidopsis thaliana and Brassica rapa genome sequences. Three pentatricopeptide repeat genes of the P-subfamily, particularly expressed in buds of the restorer line, were identified and these genes could be potential candidate fertility restorer genes.  相似文献   

18.
Genetic linkage map of olive flounder, Paralichthys olivaceus   总被引:1,自引:0,他引:1       下载免费PDF全文
Olive flounder, Paralichthys olivaceus, is an important fish species in Asia, both for fisheries and aquaculture. As the first step for better understanding the genomic structure and functional analysis, we constructed a genetic linkage map for olive flounder based on 180 microsatellites and 31 expressed sequence tag (EST)-derived markers. Twenty-four linkage groups were identified, consistent with the 24 chromosomes of this species. The total map distance was 1,001.3 cM based on Kosambi sex-average mapping, and the average inter-locus distance was 4.7 cM. Linkage between the loci was identified by an LOD score of ≥3. This linkage map may be used to map quantitative trait loci associated with important traits of the species and may assist in breeding programs.  相似文献   

19.

Background

Although Daphnia is increasingly recognized as a model for ecological genomics and biomedical research, there is, as of yet, no high-resolution genetic map for the genus. Such a map would provide an important tool for mapping phenotypes and assembling the genome. Here we estimate the genome size of Daphnia magna and describe the construction of an SNP array based linkage map. We then test the suitability of the map for life history and behavioural trait mapping. The two parent genotypes used to produce the map derived from D. magna populations with and without fish predation, respectively and are therefore expected to show divergent behaviour and life-histories.

Results

Using flow cytometry we estimated the genome size of D. magna to be about 238 mb. We developed an SNP array tailored to type SNPs in a D. magna F2 panel and used it to construct a D. magna linkage map, which included 1,324 informative markers. The map produced ten linkage groups ranging from 108.9 to 203.6 cM, with an average distance between markers of 1.13 cM and a total map length of 1,483.6 cM (Kosambi corrected). The physical length per cM is estimated to be 160 kb. Mapping infertility genes, life history traits and behavioural traits on this map revealed several significant QTL peaks and showed a complex pattern of underlying genetics, with different traits showing strongly different genetic architectures.

Conclusions

The new linkage map of D. magna constructed here allowed us to characterize genetic differences among parent genotypes from populations with ecological differences. The QTL effect plots are partially consistent with our expectation of local adaptation under contrasting predation regimes. Furthermore, the new genetic map will be an important tool for the Daphnia research community and will contribute to the physical map of the D. magna genome project and the further mapping of phenotypic traits. The clones used to produce the linkage map are maintained in a stock collection and can be used for mapping QTLs of traits that show variance among the F2 clones.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1033) contains supplementary material, which is available to authorized users.  相似文献   

20.
A collection of 94 F6 individuals derived from crosses between Lotus japonicus, Gifu B-129 (G) and Miyakojima MG-20 (M) were used for mapping. By using the HEGS running system, 427 EcoRI/MseI primer pairs were selected to generate a total of 2053 markers, consisting of 739 G-associated dominant markers, 674 M-associated dominant markers, 640 co-dominant markers, 95 SSR markers and 2 dCAPS markers. Excluding heavily distorted markers, 1588 were mapped to six chromosomes of the L. japonicus genome based on the 97 reference markers. This linkage map consisted of 1023 unique markers (excluding duplicated markers) and covered a total of 508.5 cM of the genome with an average chromosome length of 84.7 cM and interval distance of 0.50 cM. Fifteen quantitative traits loci for eight morphological traits were also mapped. This linkage map will provide a useful framework for physical map construction in L. japonicus in the near future.Key words: Lotus japonicus, AFLP, SSR, linkage map, HEGS (high efficiency genome scanning)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号