首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
植物体需要构建复杂的信号转导体系以调节自身的生长发育过程并适应外界环境的变化,这种功能的实现需要胞内和胞外诸多信号分子的参与,胞外钙调素的发现使人们开始相信植物细胞外多肽信使的存在。胞外钙调素的生物学功能极其广泛,几乎涉及到植物生长发育的各个阶段,其信号转导途径是目前研究得最多也是最为清楚的方面,异三聚体G蛋白、磷脂酶C(PLC)-肌醇三磷酸(IP3)-肌醇三磷酸受体(IP3R)信号通路、活性氧和Ca2 通道之间直接或间接的相互作用是胞外钙调素信号转导的核心。  相似文献   

2.
The intracellular calcium sensor protein calmodulin (CaM) interacts with a large number of proteins to regulate their biological functions in response to calcium stimulus. This molecular recognition process is diverse in its mechanism, but can be grouped into several classes based on structural and sequence information. We have developed a web-based database (http://calcium.uhnres.utoronto.ca/ctdb) for this family of proteins containing CaM binding sites or, as we propose to call it herein, CaM recruitment signaling (CRS) motifs. At present the CRS motif found in approximately 180 protein sequences in the databases can be divided into four subclasses, each subclass representing a distinct structural mode of molecular recognition involving CaM. The database can predict a putative CRS location within a given protein sequence, identify the subclass to which it may belong, and structural and biophysical parameters such as hydrophobicity, hydrophobic moment, and propensity for a -helix formation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
As a calcium-sensing protein, calmodulin acts as a transducer of the intracellular calcium signal for a variety of cellular responses. Although calcium is an important regulator of neuronal survival during development of the nervous system and is also implicated in the pathogenesis of neurodegenerative disorders, it is not known if calmodulin mediates these actions of calcium. To determine the role of calmodulin in regulating neuronal survival and death, we overexpressed calmodulin with mutations in all four Ca(2+)-binding sites (CaM(1-4)) or with disabled C-terminal Ca(2+)-binding sites (CaM(3,4)) in cultured neocortical neurons by adenoviral gene transfer. Long-term neuronal survival was decreased in neurons overexpressing CaM(1-4) and CaM(3,4), which could not be rescued by brain-derived neurotrophic factor (BDNF). The basal level of Akt kinase activation was decreased, and the ability of BDNF to activate Akt was completely abolished in neurons overexpressing CaM(1-4) or CaM(3,4). In contrast, BDNF-induced activation of p42/44 MAPKs was unaffected by calmodulin mutations. Treatment of neurons with calmodulin antagonists and a phosphatidylinositol 3-kinase inhibitor blocked the ability of BDNF to prevent neuronal death, whereas inhibitors of calcium/ calmodulin-dependent protein kinase II did not. Our findings demonstrate a pivotal role for calmodulin in survival signaling by BDNF in developing neocortical neurons by activating a transduction pathway involving phosphatidylinositol 3-kinase and Akt. In addition, our findings show that the C-terminal Ca(2+)-binding sites are critical for calmodulin-mediated cell survival signaling.  相似文献   

4.
Johnson CK 《Biochemistry》2006,45(48):14233-14246
Single-molecule fluorescence measurements can provide a new perspective on the conformations, dynamics, and interactions of proteins. Recent examples are described illustrating the application of single-molecule fluorescence spectroscopy to calcium signaling proteins with an emphasis on the new information available in single-molecule fluorescence burst measurements, resonance energy transfer, and polarization modulation methods. Calcium signaling pathways are crucial in many cellular processes. The calcium binding protein calmodulin (CaM) serves as a molecular switch to regulate a network of calcium signaling pathways. Single-molecule spectroscopic methods can yield insights into conformations and dynamics of CaM and CaM-regulated proteins. Examples include studies of the conformations and dynamics of CaM, binding of target peptides, and interaction with the plasma-membrane Ca2+ pump. Single-molecule resonance energy transfer measurements revealed conformational substates of CaM, and single-molecule polarization modulation spectroscopy was used to probe interactions between CaM and the plasma-membrane Ca2+-ATPase.  相似文献   

5.
Wang Z  Xie W  Chi F  Li C 《FEBS letters》2005,579(7):1683-1687
Although non-specific lipid transfer proteins (nsLTPs) are widely present in plants, their functions and regulations have not been fully understood. In this report, Arabidopsis nsLTP1 was cloned and expressed to investigate its binding to calmodulin (CaM). Gel overlay assays revealed that recombinant nsLTP1 bound to CaM in a calcium-independent manner. The association of nsLTP1 and CaM was corroborated using CaM-Sepharose beads to specifically isolate recombinant nsLTP1 from crude bacterial lysate. The CaM-binding site was mapped in nsLTP1 to the region of 69-80 amino acids. This region is highly conserved among plant nsLTPs, implicating that nsLTPs are a new family of CaM-binding proteins whose functions may be mediated by CaM signaling.  相似文献   

6.
Reddy AS  Ben-Hur A  Day IS 《Phytochemistry》2011,72(10):1007-1019
Ca2+, a universal messenger in eukaryotes, plays a major role in signaling pathways that control many growth and developmental processes in plants as well as their responses to various biotic and abiotic stresses. Cellular changes in Ca2+ in response to diverse signals are recognized by protein sensors that either have their activity modulated or that interact with other proteins and modulate their activity. Calmodulins (CaMs) and CaM-like proteins (CMLs) are Ca2+ sensors that have no enzymatic activity of their own but upon binding Ca2+ interact and modulate the activity of other proteins involved in a large number of plant processes. Protein-protein interactions play a key role in Ca2+/CaM-mediated in signaling pathways. In this review, using CaM as an example, we discuss various experimental approaches and computational tools to identify protein-protein interactions. During the last two decades hundreds of CaM-binding proteins in plants have been identified using a variety of approaches ranging from simple screening of expression libraries with labeled CaM to high-throughput screens using protein chips. However, the high-throughput methods have not been applied to the entire proteome of any plant system. Nevertheless, the data provided by these screens allows the development of computational tools to predict CaM-interacting proteins. Using all known binding sites of CaM, we developed a computational method that predicted over 700 high confidence CaM interactors in the Arabidopsis proteome. Most (>600) of these are not known to bind calmodulin, suggesting that there are likely many more CaM targets than previously known. Functional analyses of some of the experimentally identified Ca2+ sensor target proteins have uncovered their precise role in Ca2+-mediated processes. Further studies on identifying novel targets of CaM and CMLs and generating their interaction network - “calcium sensor interactome” - will help us in understanding how Ca2+ regulates a myriad of cellular and physiological processes.  相似文献   

7.
Calpains are broadly distributed, calcium-dependent enzymes that induce limited proteolysis in a wide range of substrates. Mutations in the gene encoding the muscle-specific family member calpain 3 (CAPN3) underlie limb-girdle muscular dystrophy 2A. We have shown previously that CAPN3 knockout muscles exhibit attenuated calcium release, reduced calmodulin kinase (CaMKII) signaling, and impaired muscle adaptation to exercise. However, neither the precise role of CAPN3 in these processes nor the mechanisms of CAPN3 activation in vivo have been fully elucidated. In this study, we identify calmodulin (CaM), a known transducer of the calcium signal, as the first positive regulator of CAPN3 autolytic activity. CaM was shown to bind CAPN3 at two sites located in the C2L domain. Biochemical studies using muscle extracts from transgenic mice overexpressing CAPN3 or its inactive mutant revealed that CaM binding enhanced CAPN3 autolytic activation. Furthermore, CaM facilitated CAPN3-mediated cleavage of its in vivo substrate titin in tissue extracts. Therefore, these studies reveal a novel interaction between CAPN3 and CaM and identify CaM as the first positive regulator of CAPN3 activity.  相似文献   

8.
Molecular and Cellular Biochemistry - The calcium regulatory protein calmodulin (CaM) plays a role as an on-off switch in the activation of many enzymes and proteins. CaM has a dumbbell shaped...  相似文献   

9.
The present study, carried out to identify stress-modulated calmodulin (CaM)-binding proteins in sorghum, resulted in the isolation of several proteins, which showed binding to CaM-Sepharose matrix. Calmodulin gel overlay assay and MALDI-ToF MS analysis revealed that an 85 kDa protein (Hsp85), which interacted with calmodulin, cross-reacted with anti-N. crassa Hsp80 antibodies. Since these antibodies bind to plant Hsp90, sorghum Hsp85 is likely to be a member of the Hsp90 family. This study provides the first evidence that a member of Hsp90 (Hsp85) in plants exhibits CaM-binding properties.  相似文献   

10.
The discovery that plants contain multiple calmodulin (CaM) isoforms of variable sequence identity to animal CaM suggested an additional level of sophistication in the intracellular role of calcium regulation in plants. Past research has focused on the ability of conserved or divergent plant CaM isoforms to activate both mammalian and plant protein targets. At present, however, not much is known about how these isoforms respond to the signal of an increased cytosolic calcium concentration. Here, using isothermal titration calorimetry and NMR spectroscopy, we investigated the calcium binding properties of a conserved (CaM1) and a divergent (CaM4) CaM isoform from soybean (Glycine max). Both isoforms bind calcium with a semisequential pathway that favors the calcium binding EF-hands of the C-terminal lobe over those of the N-terminal lobe. From the measured dissociation constants, CaM4 binds calcium with a threefold greater affinity than CaM1 (Kd,Ca,mean of 5.0 versus 14.9 μM) but has a significantly reduced selectivity against the chemically similar magnesium cation that binds preferentially to EF-hand I of both isoforms. The implications of a potential magnesium/calcium competition on the activation of CaM1 and CaM4 are discussed in context with their ability to respond to stimulus-specific calcium signatures and their known physiological roles.  相似文献   

11.
In plants, cyclic GMP is involved in signal transduction in response to light and gibberellic acid. For cyclic AMP, a potential role during the plant cell cycle was recently reported. However, cellular targets for cyclic nucleotides in plants are largely unknown. Here we report on the identification and characterisation of a new gene family in Arabidopsis, which share features with cyclic nucleotide-gated channels from animals and inward-rectifying K+ channels from plants. The identified gene family comprises six members (Arabidopsis thaliana cyclic nucleotide-gated channels, AtCNGC1–6) with significant homology among the deduced proteins. Hydrophobicity analysis predicted six membrane-spanning domains flanked by hydrophilic amino and carboxy termini. A putative cyclic nucleotide binding domain (CNBD) which contains several residues that are invariant in other CNBDs was located in the carboxy terminus. This domain overlaps with a predicted calmodulin (CaM) binding site, suggesting interaction between cyclic nucleotide and CaM regulation. We demonstrated interaction of the carboxy termini of AtCNGC1 and AtCNGC2 with CaM in yeast, indicating that the CaM binding sites are functional. Furthermore, it was shown that both AtCNGC1 and AtCNGC2 can partly complement the K+-uptake-deficient yeast mutant CY162. Therefore, we propose that the identified genes constitute a family of plant cyclic nucleotide- and CaM-regulated ion channels.  相似文献   

12.
Calmodulin and calmodulin-like proteins in plant calcium signaling   总被引:2,自引:0,他引:2  
Perochon A  Aldon D  Galaud JP  Ranty B 《Biochimie》2011,93(12):2048-2053
  相似文献   

13.
Protein phosphatase 2A (PP2A) is a multifunctional serine/threonine phosphatase that is critical to many cellular processes including development, neuronal signaling, cell cycle regulation, and viral transformation. PP2A has been implicated in Ca(2+)-dependent signaling pathways, but how PP2A is targeted to these pathways is not understood. We have identified two calmodulin (CaM)-binding proteins that form stable complexes with the PP2A A/C heterodimer and may represent a novel family of PP2A B-type subunits. These two proteins, striatin and S/G(2) nuclear autoantigen (SG2NA), are highly related WD40 repeat proteins of previously unknown function and distinct subcellular localizations. Striatin has been reported to associate with the post-synaptic densities of neurons, whereas SG2NA has been reported to be a nuclear protein expressed primarily during the S and G(2) phases of the cell cycle. We show that SG2NA, like striatin, binds to CaM in a Ca(2+)-dependent manner. In addition to CaM and PP2A, several unidentified proteins stably associate with the striatin-PP2A and SG2NA-PP2A complexes. Thus, one mechanism of targeting and organizing PP2A with components of Ca(2+)-dependent signaling pathways may be through the molecular scaffolding proteins striatin and SG2NA.  相似文献   

14.
A change in intracellular free calcium is a common signaling mechanism that modulates a wide array of physiological processes in most cells. Responses to increased intracellular Ca2+ are often mediated by the ubiquitous protein calmodulin (CaM) that upon binding Ca2+ can interact with and alter the functionality of numerous proteins including a family of protein kinases referred to as CaM-kinases (CaMKs). Of particular interest are multifunctional CaMKs, such as CaMKI, CaMKII, CaMKIV and CaMKK, that can phosphorylate multiple downstream targets. This review will outline several protocols we have used to identify which members and/or isoforms of this CaMK family mediate specific cellular responses with a focus on studies in neurons. Many previous studies have relied on a single approach such as pharmacological inhibitors or transfected dominant-negative kinase constructs. Since each of these protocols has its limitations, that will be discussed, we emphasize the necessity to use multiple, independent approaches in mapping out cellular signaling pathways.  相似文献   

15.
Calcium/calmodulin-mediated signal network in plants   总被引:24,自引:0,他引:24  
  相似文献   

16.
Calmodulin Kinase II in Pure Cultured Astrocytes   总被引:3,自引:3,他引:0  
Calcium- and calmodulin-dependent protein kinase activity was studied in pure neuronal and glial cultures. The addition of calcium and calmodulin stimulated 32P incorporation into several neuronal proteins including two in the 50- and 60-kilodalton (kD) region which comigrated with purified forebrain calmodulin kinase II subunits (CaM kinase II). In mature astrocytes, CaM kinase activity was also present, and was inhibited by trifluoroperazine and diazepam. Again in homogenates of these cells, two phosphoproteins of apparent molecular masses of 50 and 60 kD comigrated with purified CaM kinase. CaM kinase activity was absent in immature mixed glia and oligodendrocytes. The presence of CaM kinase in neurons and mature astrocytes was confirmed using monoclonal antibodies specific for the 50-kD subunit of the enzyme. No immunoreactivity was observed in oligodendrocytes. The presence of CaM kinase in astrocytes suggests a more ubiquitous role of this enzyme in regulating cellular processes than was previously recognized.  相似文献   

17.
Calmodulin (CaM) is a ubiquitous sensor/transducer of calcium signals in eukaryotic organisms. While CaM mediated calcium regulation of cytosolic processes is well established, there is growing evidence for the inclusion of organelles such as chloroplasts, mitochondria and peroxisomes into the calcium/calmodulin regulation network. A number of CaM-binding proteins have been identified in these organelles and processes such as protein import into chloroplasts and mitochondria have been shown to be governed by CaM regulation. What have been missing to date are the mediators of this regulation since no CaM or calmodulin-like protein (CML) has been identified in any of these organelles. Here we show that two Arabidopsis CMLs, AtCML3 and AtCML30, are localized in peroxisomes and mitochondria, respectively. AtCML3 is targeted via an unusual C-terminal PTS1-like tripeptide while AtCML30 utilizes an N-terminal, non-cleavable transit peptide. Both proteins possess the typical structure of CaMs, with two pairs of EF-hand motifs separated by a short linker domain. They furthermore display common characteristics, such as calcium-dependent alteration of gel mobility and calcium-dependent exposure of a hydrophobic surface. This indicates that they can function in a similar manner as canonical CaMs. The presence of close homologues to AtCML3 and AtCML30 in other plants further indicates that organellar targeting of these CMLs is not a specific feature of Arabidopsis. The identification of peroxisomal and mitochondrial CMLs is an important step in the understanding how these organelles are integrated into the cellular calcium/calmodulin signaling pathways.  相似文献   

18.
In all eukaryotic cells, and particularly in neurons, Ca(2+) ions are important second messengers in a variety of cellular signaling pathways. In the retina, Ca(2+) modulation plays a crucial function in the development of the visual system's neuronal connectivity and a regulatory role in the conversion of the light signal received by photoreceptors into an electrical signal transmitted to the brain. Therefore, the study of retinal Ca(2+)-binding proteins, which frequently mediate Ca(2+) signaling, has given rise to the important discovery of two subfamilies of these proteins, neuronal Ca(2+)-binding proteins (NCBPs) and calcium-binding proteins (CaBPs), that display similarities to calmodulin (CaM). These and other Ca(2+)-binding proteins are integral components of cellular events controlled by Ca(2+). Some members of these subfamilies also play a vital role in signal transduction outside of the retina. The expansion of the CaM-like protein family reveals diversification among Ca(2+)-binding proteins that evolved on the basis of the classic molecule, CaM. A large number of NCBP and CaBP subfamily members would benefit from their potentially specialized role in Ca(2+)-dependent cellular processes. Pinpointing the role of these proteins will be a challenging task for further research.  相似文献   

19.
Light signals have profound morphogenic effects on plant development. Signals perceived by the red/far‐red absorbing phytochrome family of photoreceptors and the blue/green/ UV‐A absorbing cryptochrome photoreceptor converge on a group of pleiotropic gene products defined by the COP/DET loci to control the pattern of development. The signaling pathway, although still undefined, includes several classic signaling molecules, such as G‐proteins, calcium, calmodulin, and cGMP. A separate signaling pathway is involved in the modulation of the phototropic response. Additional mutants have been identified that affect subsets of light signaling responses. This review provides an overview of our current understanding of the light signaling process, in particular recent genetic and biochemical advances.  相似文献   

20.
《FEBS letters》2014,588(8):1430-1438
Intracellular Ca2+ activated calmodulin (CaM) inhibits gap junction channels in the low nanomolar to high micromolar range of [Ca2+]i. This regulation plays an essential role in numerous cellular processes that include hearing, lens transparency, and synchronized contractions of the heart. Previous studies have indicated that gap junction mediated cell-to-cell communication was inhibited by CaM antagonists. More recent evidence indicates a direct role of CaM in regulating several members of the connexin family. Since the intracellular loop and carboxyl termini of connexins are largely “invisible” in electron microscopy and X-ray crystallographic structures due to disorder in these domains, peptide models encompassing the putative CaM binding sites of several intracellular domains of connexins have been used to identify the Ca2+-dependent CaM binding sites of these proteins. This approach has been used to determine the CaM binding affinities of peptides derived from a number of different connexin-subfamilies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号