共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the influence of prenatal amphetamine exposure (PAE) on dopamine (DA) receptors, and dopamine transporter
(DAT) in various striatal and limbic subregions and locomotor activity induced by novel environmental conditions and amphetamine
at two postnatal ages, 35 days old (prepubertal) and 60 days old (postpubertal). Experiments were carried out on pregnant
female Sprague–Dawley rats, which were daily injected with either d-amphetamine sulfate (1 mg/kg) or saline solution (0.9%) for 11 days, from gestation day 11–21. In PAE rats compared to control
we found the following: at pre-pubertal age, an enhancement of DA D1 in the dorsolateral area of the caudate-putamen (CPu),
CPu-ventral and shell of the nucleus accumbens (NAcc) with a decrement of the DA D3 receptors in NAcc, olfactory tubercle
(OT), and the islands of Calleja (IoC); whereas at postpubertal age, an increase in the levels of DAT in the NAcc and fundus
of the CPu, and OT along with a decrease in the expression of DA D2 receptors only in the NAcc shell were found in PAE rats
compared to control. In addition, amphetamine induces a marked decrease in locomotor activity at postpubertal age in rats
with PAE. These results suggest a differential effect of amphetamines on the DAT mechanism of the nervous system during embryonic
development of animals with implications in behavior and drug addictions at adulthood age. 相似文献
2.
Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt) as well as appetitive (odor-sugar) associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive olfactory memory formation respectively, or for the retrieval of these memory traces. Future studies of the dopaminergic system need to take into account such cellular dissociations in function in order to be meaningful. 相似文献
3.
Methylphenidate (MPD) was found to inhibit competitively the striatal dopamine transporter (DAT) and bind at sites on the DAT in common with both cocaine (a non-substrate site ligand) and amphetamine (a substrate site ligand). Some methylphenidate analogues modified on the aromatic ring and/or at the nitrogen were tested to determine whether the profile of inhibition could be altered. None was found to stimulate the release of dopamine in the time frame (< or = 60 s) of the experiments conducted, and each of the analogues tested was found to noncompetitively inhibit the transport of dopamine. It was found that halogenating the aromatic ring with chlorine (threo-3,4-dichloromethylphenidate hydrochloride; compound 1) increased the affinity of MPD to inhibit the transport of dopamine. A derivative of MPD with simultaneous, single methyl group substitutions on the phenyl ring and at the nitrogen (threo-N-methyl-4-methylphenidate hydrochloride; compound 2) bound at a site in common with MPD. A benzyl group positioned at the nitrogen (threo-N-benzylmethylphenidate hydrochloride; compound 3) imparted properties to the inhibitor in which binding at substrate and non-substrate sites could be distinguished. This analogue bound at a mutually interacting site with that of methylphenidate and had a K(int) value of 4.29 microM. Furthermore, the N-substituted analogues (compounds 2 and 3), although clearly inhibitors of dopamine transport, were found to attenuate dramatically the inhibition of dopamine transport by amphetamine, suggesting that the development of an antagonist for substrate analogue drugs of abuse may be possible. 相似文献
4.
H. H. Sitte S. Huck H. Reither S. Boehm †E. A. Singer C. Pifl 《Journal of neurochemistry》1998,71(3):1289-1297
Abstract: Amphetamine and related substances induce dopamine release. According to a traditional explanation, this dopamine release occurs in exchange for amphetamine by means of the dopamine transporter (DAT). We tested this hypothesis in human embryonic kidney 293 cells stably transfected with the human DAT by measuring the uptake of dopamine, tyramine, and d - and l -amphetamine as well as substrate-induced release of preloaded N -methyl-4-[3 H]phenylpyridinium ([3 H]MPP+ ). The uptake of substrates was sodium-dependent and was inhibited by ouabain and cocaine, which also prevented substrate-induced release of MPP+ . Patch-clamp recordings revealed that all four substrates elicited voltage-dependent inward currents (on top of constitutive leak currents) that were prevented by cocaine. Whereas individual substrates had similar affinities in release, uptake, and patch-clamp experiments, maximal effects displayed remarkable differences. Hence, maximal effects in release and current induction were ∼25% higher for d -amphetamine as compared with the other substrates. By contrast, dopamine was the most efficacious substrate in uptake experiments, with its maximal initial uptake rate exceeding those of amphetamine and tyramine by factors of 20 and 4, respectively. Our experiments indicate a poor correlation between substrate-induced release and the transport of substrates, whereas the ability of substrates to induce currents correlates well with their releasing action. 相似文献
5.
VNTR polymorphisms of the serotonin transporter (hSERT) and dopamine transporter (DAT1) gene were studied in male opiate addicts. Samples of ethnic Russians and ethnic Tatars did not differ in genotype and allele frequencies. Homozygosity at hSERT (especially 10/10) was associated with early opiate addiction, while genotype 12/10 proved to be protective. In the case of DAT1, genotype 9/9 was associated with early opiate addiction. The combination of hSERT genotype 10/10 with DAT1 genotype 10/10 was shown to be a risk factor of opiate abuse under 16 years of age. 相似文献
6.
7.
Abstract: Amphetamine or selective D1 and D2 dopamine receptor agonists and antagonists were administered to the ventral tegmental area (VTA) through a microdialysis probe to determine their effects on glutamate and aspartate efflux in rats pretreated for 5 days with vehicle or 5 mg/kg (+)-amphetamine sulfate. In vehicle rats, glutamate efflux declined during 2 h of perfusion with the D1 receptor agonist SKF-82958 (10 and 100 µ M ). After SKF-82958 perfusion ended, glutamate efflux rebounded to basal levels and continued to increase gradually over the next 2 h. A similar biphasic pattern was observed with intra-VTA amphetamine (10 and 100 µ M ) and with another D1 agonist (100 µ M SKF-38393). The biphasic effects of SKF-82958 were prevented by coperfusion with a D1 antagonist (SCH-23390; 30 µ M ). Glutamate efflux was unaffected by a D2 agonist (100 µ M quinpirole) and by D1 or D2 antagonists administered alone (SCH 23390 and eticlopride; 30 µ M ). In amphetamine-pretreated rats tested 2 days after the last injection, both the decrease during SKF-82958 perfusion and the delayed increase in glutamate efflux were attenuated. In rats tested 12–14 days after the last amphetamine injection, only the decrease during SKF-82958 perfusion was attenuated. None of these drug treatments produced consistent effects on aspartate efflux. We showed previously that systemic amphetamine (5 mg/kg, i.p.) has no immediate effect on VTA glutamate efflux but produces a delayed increase in glutamate efflux that reaches statistical significance 2–3 h after injection. Because behavioral sensitization can be elicited either by repeated systemic or repeated intra-VTA administration, neurochemical effects common to both routes (such as the delayed increase in glutamate efflux) are most likely to contribute to its induction. 相似文献
8.
Effects of Amphetamine on Carrier-Mediated and Electrically Stimulated Dopamine Release in Slices of Rat Caudate Putamen and Nucleus Accumbens 总被引:1,自引:2,他引:1
Abstract: The effects of (+)-amphetamine on carrier-mediated and electrically stimulated dopamine release were investigated using fast cyclic voltammetry in rat brain slices incorporating the nucleus accumbens, and in the caudate putamen. In the caudate putamen, dopamine release either increased with increasing frequency of local electrical stimulation (hot spots) or did not increase significantly (cold spots); dopamine release increased with increasing frequency of electrical stimulation in the nucleus accumbens. Local pressure application of (+)-amphetamine from a micropipette caused dopamine efflux at all sites examined, and this was not affected by sulpiride, indicating that efflux of dopamine caused by (+)-amphetamine is not regulated by dopamine D2 autoreceptors. (+)-Amphetamine reduced single-pulse electrically stimulated dopamine release at all sites; sulpiride reversed this decrease, indicating that endogenous dopamine released by (+)-amphetamine activates dopamine D2 autoreceptors. In nucleus accumbens and hot spots, (+)-amphetamine did not affect 20-pulse 50-Hz-stimulated dopamine release, whereas in cold spots it potentiated 20-pulse 50-Hz-stimulated dopamine release. We conclude that (+)-amphetamine modifies electrically stimulated dopamine release by uptake inhibition or by indirect activation of D2 autoreceptors; the precise mechanism is determined by site and duration of electrical stimulation. 相似文献
9.
Yue Xia Dennis J. Goebel Gregory Kapatos† Michael J. Bannon† 《Journal of neurochemistry》1992,59(3):1179-1182
Dopamine transporter mRNA levels in the rat substantia nigra were quantified using a sensitive nuclease protection assay with a highly homologous human dopamine transporter cDNA clone. The same probe was also used to visualize dopamine transporter mRNA in the substantia nigra by in situ hybridization. Repeated cocaine administration (15 mg/kg, twice a day for 6.5 days) resulted in a greater than 40% decrease in nigral dopamine transporter mRNA levels. In contrast, dopamine transporter mRNA levels were unchanged after either acute treatment (4 h before death) or repeated cocaine treatment followed by a 72-h withdrawal period. Thus, blockade of the dopamine transporter by repeated cocaine administration may result in the down-regulation of dopamine transporter gene expression in dopamine neurons. 相似文献
10.
影响野生型Canton S果蝇睡眠时间的相关生理因素 总被引:1,自引:0,他引:1
目的探讨影响果蝇睡眠时间的相关生理因素。方法选择野生型CantonS果蝇为实验对象,利用果蝇活动监测系统(DAMS),以5min为单位自动统计一次果蝇活动次数,若5min内活动次数为零,认为果蝇处于睡眠状态,计为果蝇的睡眠时间,累积计算果蝇24h睡眠总时间为指标,分别观察了日龄(7日龄)相同,而性别不同和性别(雌性)相同,而日龄(2,7,12,17,22,27和32日龄)不同果蝇的24h睡眠总时间。结果①同一日龄(7日龄)不同性别的果蝇之间白天(12h)及夜间(12h)平均睡眠时间的长短存在着显著差异。雌果蝇白天(12h)平均睡眠时间短于雄果蝇,而夜间(12h)平均睡眠时间长于雄果蝇。雌果蝇白天(12h)平均睡眠时间显著短于夜间平均睡眠时间(P0.05);而雄果蝇白天(12h)平均睡眠时间与夜间(12h)平均睡眠时间基本持平。②同一性别(雌性)不同日龄的果蝇,随着日龄的增加,其白天(12h)平均睡眠时间有逐渐缩短的趋势,27日龄的果蝇睡眠时间减少相对明显,32日龄果蝇的睡眠时间有所恢复,相互之间存在着显著差异(P0.05)。夜间(12h)平均睡眠时间有逐渐延长的趋势,27日龄果蝇的夜间平均睡眠时间有所减少,32日龄果蝇的夜间平均睡眠时间相对有所恢复,相互之间存在着显著差异(P0.05)。结论性别与日龄等生理因素对果蝇24h睡眠时间有显著的影响。 相似文献
11.
12.
Abstract: Using dissociated rat carotid body (CB) cultures, we compared levels of extracellular dopamine (DA) around oxygen-sensitive glomus cells grown for ~12 days in normoxia (Nox; 20% O2), chronic hypoxia (CHox; 6% O2), or chronic nicotine (CNic; 10 µM nicotine, 20% O2), with or without acetylcholine (ACh) receptor (AChR) agonists/antagonists and blockers of DA uptake. In Nox cultures, extracellular DA, determined by HPLC and normalized to the number of tyrosine hydroxylase-positive glomus cells present, was augmented by acute (~15-min) exposure to hypoxia (5% O2; ~6× basal), high extracellular K+ (30 mM; ~10× basal), nomifensine (1 µM; a selective DA uptake inhibitor; ~3× basal), and nicotine (100 µM; ~5× basal), but not methylcholine (300 µM; a specific muscarinic agonist). In contrast, in CHox cultures where basal DA release is markedly elevated (~9× control), the stimulatory effect of high K+ (3–4× basal) and acute hypoxia (~2× basal) on DA release persisted, but nicotine and nomifensine were no longer effective and methylcholine had a partial inhibitory effect. In CNic cultures, basal DA levels were also elevated (~9× control), similar to that in CHox cultures; however, although acute hypoxia had a stimulatory effect on DA release (~2× basal), nicotine, nomifensine, and high K+ were ineffective. The elevated basal DA in both CHox and CNic cultures was attenuated by acute or chronic treatment with mecamylamine (100 µM), a nicotinic AChR (nAChR) antagonist. In addition, long-term (16-h), but not acute (15-min), treatment with the muscarinic antagonist atropine (1 µM) produced an additional enhancement of basal DA levels in CHox cultures. Thus, after chronic hypoxia or nicotine in vitro, extracellular DA levels around CB chemoreceptor cell clusters appear to be set by a variety of factors including released ACh, positive and negative feedback regulation via nAChRs and muscarinic AChRs, respectively, and modulation of DA transporters. These results provide insight into roles of endogenous transmitters in the adaptation of CB chemoreceptors to chronic hypoxia and suggest pathways by which neuroactive drugs, e.g., nicotine, can interfere with the protective chemoreflex response against hypoxia. 相似文献
13.
Seiji Hayashizaki Shinobu Hirai Yumi Ito Yoshiko Honda Yosefu Arime Ichiro Sora Haruo Okado Tohru Kodama Masahiko Takada 《PloS one》2013,8(10)
Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behavioral response to methamphetamine. Interestingly, D5 dopamine receptor-deficient mice displayed increased ambulation in response to methamphetamine. Furthermore, dopamine transporter threonine phosphorylation levels, which regulate amphetamine-induced dopamine release, were elevated in D5 dopamine receptor-deficient mice. The increase in methamphetamine-induced locomotor activity was eliminated by pretreatment with the dopamine transporter blocker GBR12909. Taken together, these results suggest that dopamine transporter activity and threonine phosphorylation levels are regulated by D5 dopamine receptors. 相似文献
14.
Abstract: There is growing evidence of an interaction between dopamine and norepinephrine. To test the hypothesis that norepinephrine terminals are involved in the uptake and removal of dopamine from the extracellular space, the norepinephrine uptake blocker desmethylimipramine (DMI) was infused locally while the extracellular concentrations of dopamine were simultaneously monitored. DMI increased the extracellular concentrations of dopamine in the medial prefrontal cortex and nucleus accumbens shell but had no effect in the striatum. The combined systemic administration of haloperidol and the local infusion of DMI produced an augmented increase in extracellular dopamine in the cortex compared with the increase produced by either drug alone. This synergistic increase in dopamine overflow is likely due to the combination of impulse-mediated dopamine release produced by haloperidol and blockade of the norepinephrine transporter. No such synergistic effects were observed in the nucleus accumbens and striatum. Local perfusion of the α2 -antagonist idazoxan also increased the extracellular concentrations of dopamine in the cortex. Although the stimulation of extracellular dopamine by idazoxan and DMI could be due to the increased extracellular concentrations of norepinephrine produced by these drugs, an increase in dopamine also was observed in lesioned rats that were depleted of norepinephrine and challenged with haloperidol. This contrasted with the lack of an effect of haloperidol on cortical dopamine in unlesioned controls. These results suggest that norepinephrine terminals regulate extracellular dopamine concentrations in the medial prefrontal cortex and to a lesser extent in the nucleus accumbens shell through the uptake of dopamine by the norepinephrine transporter. 相似文献
15.
Drosophila Vesicular Monoamine Transporter Mutants Can Adapt to Reduced or Eliminated Vesicular Stores of Dopamine and Serotonin
下载免费PDF全文

Anne F. Simon Richard Daniels Rafael Romero-Caldern Anna Grygoruk Hui-Yun Chang Rod Najibi David Shamouelian Evelyn Salazar Mordecai Solomon Larry C. Ackerson Nigel T. Maidment Aaron DiAntonio David E. Krantz 《Genetics》2009,181(2):525-541
Physiologic and pathogenic changes in amine release induce dramatic behavioral changes, but the underlying cellular mechanisms remain unclear. To investigate these adaptive processes, we have characterized mutations in the Drosophila vesicular monoamine transporter (dVMAT), which is required for the vesicular storage of dopamine, serotonin, and octopamine. dVMAT mutant larvae show reduced locomotion and decreased electrical activity in motoneurons innervating the neuromuscular junction (NMJ) implicating central amines in the regulation of these activities. A parallel increase in evoked glutamate release by the motoneuron is consistent with a homeostatic adaptation at the NMJ. Despite the importance of aminergic signaling for regulating locomotion and other behaviors, adult dVMAT homozygous null mutants survive under conditions of low population density, thus allowing a phenotypic characterization of adult behavior. Homozygous mutant females are sterile and show defects in both egg retention and development; males also show reduced fertility. Homozygotes show an increased attraction to light but are mildly impaired in geotaxis and escape behaviors. In contrast, heterozygous mutants show an exaggerated escape response. Both hetero- and homozygous mutants demonstrate an altered behavioral response to cocaine. dVMAT mutants define potentially adaptive responses to reduced or eliminated aminergic signaling and will be useful to identify the underlying molecular mechanisms. 相似文献
16.
Marazziti D Baroni S Catena Dell'Osso M Masala I Fabbrini L Betti L Giannaccini G Dell'osso B Lucacchini A 《Neurochemical research》2008,33(6):1011-1016
The paucity of information on the presence of the dopamine transporter (DAT) in blood cells, prompted us to explore it in
human resting lymphocytes by means of the binding of 3H-WIN 35,428, a compound which is currently considered the most selective ligand for labelling this protein, and by means
of the specific reuptake of 3H-dopamine (3H-DA). Lymphocytes were obtained by 15 healthy subjects. The results showed the presence of a specific and saturable binding
of 3H-WIN 35,428, which labelled one site only. A specific 3H-DA reuptake was also measured. The pharmacological characterization of both binding and reuptake was overlapping. These
findings would indicate that human resting lymphocytes carry the DAT, whose functions in periphery are still unknown. 相似文献
17.
The Dopamine Transporter Is Absent in Parkinsonian Putamen and Reduced in the Caudate Nucleus 总被引:5,自引:2,他引:5
Hyman B. Niznik Evan F. Fogel Frank F. Fassos Philip Seeman 《Journal of neurochemistry》1991,56(1):192-198
The neuronal dopamine transporter/uptake site can be covalently labeled with the photoaffinity probe 1-(2-[bis-(4-fluorophenyl) methoxy]ethyl)-4-[2-(4-azido-3-[125I]iodophenyl)ethyl]piperazine [( 125I]FAPP) and visualized following sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. Upon photolysis, [125I]FAPP specifically incorporated into a polypeptide of apparent Mr = 62,000 in membranes from both the putamen and the caudate nucleus of control, Alzheimer's, schizophrenia, and Huntington's diseased brain, and following complete deglycosylation, migrated as an Mr approximately 48,000 polypeptide. In parkinsonian postmortem putamen, however, there was no detectable photoincorporation of [125I]FAPP into the ligand binding subunit of the dopamine transporter. [125I]FAPP did specifically label the Mr 62,000 polypeptide of parkinsonian caudate, although with efficiencies of 20-50% of control. The asymmetrical loss of the dopamine transporter in Parkinson's diseased striatum was confirmed in reversible receptor binding experiments using [3H]GBR-12935 (3H-labeled 1-[2-(diphenylmethoxy) ethyl]-4-(3-phenylpropyl)piperazine). In parkinsonian putamen, mazindol competitively inhibited the binding of [3H]GBR-12935 with an estimated affinity (Ki approximately 2,000 nM) 10 times lower than in controls (Ki approximately 30 nM), while the affinity of maxindol for [3H]GBR-12935 binding in the caudate was equal to that seen with controls (Ki approximately 50 nM). The proportion of [3H]GBR-12935 binding sites recognized by mazindol with high affinity in Parkinson's diseased caudate was, however, reduced by 50-80%.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
18.
The regulation of the dopamine transporter (DAT) impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function. Co-expression of DAT and DJ-1 in HEK-293T cells leads to an increase in [3H] dopamine uptake that does not appear to be mediated by increased total DAT expression but rather through an increase in DAT cell surface localization. In addition, through a series of GST affinity purifications and co-immunoprecipitations, we provide evidence that the DAT can be found in a complex with DJ-1, which involve distinct regions within both DAT and DJ-1. Using in vitro binding experiments we also show that this complex can be formed in part by a direct interaction between DAT and DJ-1. Co-expression of a mini-gene that can disrupt the DAT/DJ-1 complex appears to block the increase in [3H] dopamine uptake by DJ-1. Mutations in DJ-1 have been linked to familial forms of Parkinson’s disease, yet the normal physiological function of DJ-1 remains unclear. Our study suggests that DJ-1 may also play a role in regulating dopamine levels by modifying DAT activity. 相似文献
19.
Modification of Dopamine Transporter Function: Effect of Reactive Oxygen Species and Dopamine 总被引:9,自引:3,他引:9
Sarah B. Berman Michael J. Zigmond † Teresa G. Hastings 《Journal of neurochemistry》1996,67(2):593-600
Abstract: Dopamine can oxidize to form reactive oxygen species and quinones, and we have previously shown that dopamine quinones bind covalently to cysteinyl residues on striatal proteins. The dopamine transporter is one of the proteins at risk for this modification, because it has a high affinity for dopamine and contains several cysteinyl residues. Therefore, we tested whether dopamine transport in rat striatal synaptosomes could be affected by generators of reactive oxygen species, including dopamine. Uptake of [3 H]dopamine (250 n M ) was inhibited by ascorbate (0.85 m M ; −44%), and this inhibition was prevented by the iron chelator diethylenetriaminepentaacetic acid (1 m M ), suggesting that ascorbate was acting as a prooxidant in the presence of iron. Preincubation with xanthine (500 µ M ) and xanthine oxidase (50 mU/ml) also reduced [3 H]dopamine uptake (−76%). Preincubation with dopamine (100 µ M ) caused a 60% inhibition of subsequent [3 H]dopamine uptake. This dopamine-induced inhibition was attenuated by diethylenetriaminepentaacetic acid (1 m M ), which can prevent iron-catalyzed oxidation of dopamine during the preincubation, but was unaffected by the monoamine oxidase inhibitor pargyline (10 µ M ). None of these incubations caused a loss of membrane integrity as indicated by lactate dehydrogenase release. These findings suggest that reactive oxygen species and possibly dopamine quinones can modify dopamine transport function. 相似文献
20.
Balla Andrea Hashim Audrey Burch Sarah Javitt Daniel C. Lajtha Abel Sershen Henry 《Neurochemical research》2001,26(8-9):1001-1006
Phencyclidine (PCP) administration in rodents has been used to model aspects of schizophrenia. One aspect of such treatment has been the enhancement of amphetamine-induced increase of dopamine in the prefrontal cortex and striatum. To further characterize this mechanism rats were treated for 2 weeks with continuous PCP (15 mg/kg per day via Alzet minipump). Rats were implanted with a microdialysis probe into the prefrontal cortex (PFC) or striatum. Amphetamine was administered locally via the dialysis probe during one collection period and changes in extracellular dopamine were monitored. The effect of local administration of the dopamine uptake blocker nomifensine was also measured. Amphetamine (10 M) and nomifensine (10 M) increased the level of dopamine in both the PFC and striatum. PCP administration did not alter the response to amphetamine or nomifensine in the PFC, but reduced this response about 2-fold in striatum. To examine effects of continuous PCP administration on dopamine autoreceptor function, release of [3H]dopamine in response to electrical stimulation and in the presence of a dopamine agonist or antagonist was tested in striatal and prefrontal cortical tissue. Autoreceptor responses were similar in control and PCP-treated tissues. We conclude that the brain region-specific enhancement of dopamine release by peripheral amphetamine administration in rats after PCP is not likely mediated by alterations in the dopamine autoreceptors or changes in the dopamine transporter. The selective local responses of amphetamine indicates heterogeneous regional effects of continuous PCP on NMDA receptor function; effects that influence both regional excitatory responses and the overall dynamics of tonic excitatory/inhibitory inputs to the PFC and striatum. 相似文献