首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by endothelial nitric oxide synthase (eNOS), and endothelial BH4 bioavailability is a critical factor in regulating the balance between NO and superoxide production (eNOS coupling). Biosynthesis of BH4 is determined by the activity of GTP-cyclohydrolase I (GTPCH). However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but whether DHFR is functionally important in maintaining eNOS coupling remains unclear. To investigate the mechanism by which DHFR might regulate eNOS coupling in vivo, we treated wild-type, BH4-deficient (hph-1), and GTPCH-overexpressing (GCH-Tg) mice with methotrexate (MTX), to inhibit BH4 recycling by DHFR. MTX treatment resulted in a striking elevation in BH2 and a decreased BH4:BH2 ratio in the aortas of wild-type mice. These effects were magnified in hph-1 but diminished in GCH-Tg mice. Attenuated eNOS activity was observed in MTX-treated hph-1 but not wild-type or GCH-Tg mouse lung, suggesting that inhibition of DHFR in BH4-deficient states leads to eNOS uncoupling. Taken together, these data reveal a key role for DHFR in regulating the BH4 vs BH2 ratio and eNOS coupling under conditions of low total biopterin availability in vivo.  相似文献   

2.
Antiapoptotic B-cell lymphoma 2 (Bcl-2) targets the inositol 1,4,5-trisphosphate receptor (IP(3)R) via its BH4 domain, thereby suppressing IP(3)R Ca(2+)-flux properties and protecting against Ca(2+)-dependent apoptosis. Here, we directly compared IP(3)R inhibition by BH4-Bcl-2 and BH4-Bcl-Xl. In contrast to BH4-Bcl-2, BH4-Bcl-Xl neither bound the modulatory domain of IP(3)R nor inhibited IP(3)-induced Ca(2+) release (IICR) in permeabilized and intact cells. We identified a critical residue in BH4-Bcl-2 (Lys17) not conserved in BH4-Bcl-Xl (Asp11). Changing Lys17 into Asp in BH4-Bcl-2 completely abolished its IP(3)R-binding and -inhibitory properties, whereas changing Asp11 into Lys in BH4-Bcl-Xl induced IP(3)R binding and inhibition. This difference in IP(3)R regulation between BH4-Bcl-2 and BH4-Bcl-Xl controls their antiapoptotic action. Although both BH4-Bcl-2 and BH4-Bcl-Xl had antiapoptotic activity, BH4-Bcl-2 was more potent than BH4-Bcl-Xl. The effect of BH4-Bcl-2, but not of BH4-Bcl-Xl, depended on its binding to IP(3)Rs. In agreement with the IP(3)R-binding properties, the antiapoptotic activity of BH4-Bcl-2 and BH4-Bcl-Xl was modulated by the Lys/Asp substitutions. Changing Lys17 into Asp in full-length Bcl-2 significantly decreased its binding to the IP(3)R, its ability to inhibit IICR and its protection against apoptotic stimuli. A single amino-acid difference between BH4-Bcl-2 and BH4-Bcl-Xl therefore underlies differential regulation of IP(3)Rs and Ca(2+)-driven apoptosis by these functional domains. Mutating this residue affects the function of Bcl-2 in Ca(2+) signaling and apoptosis.  相似文献   

3.
5,6,7,8-Tetrahydrobiopterin (BH(4)) is an essential cofactor of nitric oxide synthases (NOSs). Oxidation of BH(4), in the setting of diabetes and other chronic vasoinflammatory conditions, can cause cofactor insufficiency and uncoupling of endothelial NOS (eNOS), manifest by a switch from nitric oxide (NO) to superoxide production. Here we tested the hypothesis that eNOS uncoupling is not simply a consequence of BH(4) insufficiency, but rather results from a diminished ratio of BH(4) vs. its catalytically incompetent oxidation product, 7,8-dihydrobiopterin (BH(2)). In support of this hypothesis, [(3)H]BH(4) binding studies revealed that BH(4) and BH(2) bind eNOS with equal affinity (K(d) approximately 80 nM) and BH(2) can rapidly and efficiently replace BH(4) in preformed eNOS-BH(4) complexes. Whereas the total biopterin pool of murine endothelial cells (ECs) was unaffected by 48-h exposure to diabetic glucose levels (30 mM), BH(2) levels increased from undetectable to 40% of total biopterin. This BH(2) accumulation was associated with diminished calcium ionophore-evoked NO activity and accelerated superoxide production. Since superoxide production was suppressed by NOS inhibitor treatment, eNOS was implicated as a principal superoxide source. Importantly, BH(4) supplementation of ECs (in low and high glucose-containing media) revealed that calcium ionophore-evoked NO bioactivity correlates with intracellular BH(4):BH(2) and not absolute intracellular levels of BH(4). Reciprocally, superoxide production was found to negatively correlate with intracellular BH(4):BH(2). Hyperglycemia-associated BH(4) oxidation and NO insufficiency was recapitulated in vivo, in the Zucker diabetic fatty rat model of type 2 diabetes. Together, these findings implicate diminished intracellular BH(4):BH(2), rather than BH(4) depletion per se, as the molecular trigger for NO insufficiency in diabetes.  相似文献   

4.
Tetrahydrobiopterin (BH4) serves as a critical co-factor for the endothelial nitric-oxide synthase (eNOS). A deficiency of BH4 results in eNOS uncoupling, which is associated with increased superoxide and decreased NO* production. BH4 has been suggested to be a target for oxidation by peroxynitrite (ONOO-), and ascorbate has been shown to preserve BH4 levels and enhance endothelial NO* production; however, the mechanisms underlying these processes remain poorly defined. To gain further insight into these interactions, the reaction of ONOO- with BH4 was studied using electron spin resonance and the spin probe 1-hydroxy-3-carboxy-2,2,5-tetramethyl-pyrrolidine. ONOO- reacted with BH4 6-10 times faster than with ascorbate or thiols. The immediate product of the reaction between ONOO- and BH4 was the trihydrobiopterin radical (BH3.), which was reduced back to BH4 by ascorbate, whereas thiols were not efficient in recycling of BH4. Uncoupling of eNOS caused by peroxynitrite was investigated in cultured bovine aortic endothelial cells (BAECs) by measuring superoxide and NO* using spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine and the NO*-spin trap iron-diethyldithiocarbamate. Bolus ONOO-, the ONOO- donor 3-morpholinosydnonimine, and an inhibitor of BH4 synthesis (2,4-diamino-6-hydroxypyrimidine) uncoupled eNOS, increasing superoxide and decreasing NO* production. Exogenous BH4 supplementation restored endothelial NO* production. Treatment of BAECs with both BH4 and ascorbate prior to ONOO- prevented uncoupling of eNOS by ONOO-. This study demonstrates that endothelial BH4 is a crucial target for oxidation by ONOO- and that the BH4 reaction rate constant exceeds those of thiols or ascorbate. We confirmed that ONOO- uncouples eNOS by oxidation of tetrahydrobiopterin and that ascorbate does not fully protect BH4 from oxidation but recycles BH3. radical back to BH4.  相似文献   

5.
Tetrahydrobiopterin (BH(4)) is an essential cofactor of endothelial nitric oxide (NO) synthase and when depleted, endothelial dysfunction results with decreased production of NO. BH(4) is also an anti-oxidant being a good "scavenger" of oxidative species. NADPH oxidase, xanthine oxidase, and mitochondrial enzymes producing reactive oxygen species (ROS) can induce elevated oxidant stress and cause BH(4) oxidation and subsequent decrease in NO production and bioavailability. In order to define the process of ROS-mediated BH(4) degradation, a sensitive method for monitoring pteridine redox-state changes is required. Considering that the conventional fluorescence method is an indirect method requiring conversion of all pteridines to oxidized forms, it would be beneficial to use a rapid quantitative assay for the individual detection of BH(4) and its related pteridine metabolites. To study, in detail, the BH(4) oxidative pathways, a rapid direct sensitive HPLC assay of BH(4) and its pteridine derivatives was adapted using sequential electrochemical and fluorimetric detection. We examined BH(4) autoxidation, hydrogen peroxide- and superoxide-driven oxidation, and Fenton reaction hydroxyl radical-driven BH(4) transformation. We demonstrate that the formation of the primary two-electron oxidation product, dihydrobiopterin (BH(2)), predominates with oxygen-induced BH(4) autoxidation and superoxide-catalyzed oxidation, while the irreversible metabolites, pterin and dihydroxanthopterin (XH(2)), are largely produced during hydroxyl radical-driven BH(4) oxidation.  相似文献   

6.
We have examined the turnover of 5,6,7,8-tetrahydrobiopterin (BH4) and the effect of decreasing BH4 levels on in situ tyrosine hydroxylase (TH) activity and norepinephrine (NE) content in a homogeneous population of NE-containing neurons derived from the superior cervical ganglion (SCG) of the neonatal rat and maintained in tissue culture. Initial studies indicated that the level of BH4 within SCG cultures increased fourfold between 5 and 37 days in vitro (DIV). This increase in BH4 levels was determined to result from an increase in the rate of BH4 biosynthesis without a change in the rate of degradation. Regardless of culture age, the BH4 content of SCG neurons was observed to turn over with a half-life of approximately 2.5 h. BH4 synthesis by SCG neurons was found to be five times more sensitive to inhibition by 2,4-diamino-6-hydroxypyrimidine (DAHP) and 25 times less sensitive to inhibition by N-acetylserotonin than was previously reported for CNS neurons in culture. Under basal conditions, the rates of in situ TH activity and BH4 biosynthesis were similar. In response to inhibition of BH4 biosynthesis by DAHP and a 90-95% decrease in BH4 levels, in situ TH activity declined by 75%. NE levels declined by 30% following a 24-h period of inhibition of BH4 synthesis. After 2 days of BH4 synthesis inhibition, the level of NE was decreased by 47%. On treatment days 3 and 4, the decline in NE content plateaued at 24% of control levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Tyrosine hydroxylase (TH) is a rate‐limiting enzyme for dopamine synthesis and requires tetrahydrobiopterin (BH4) as an essential cofactor. BH4 deficiency leads to the loss of TH protein in the brain, although the underlying mechanism is poorly understood. To give insight into the role of BH4 in the developmental regulation of TH protein level, in this study, we investigated the effects of acute and subchronic administrations of BH4 or dopa on the TH protein content in BH4‐deficient mice lacking sepiapterin reductase. We found that BH4 administration persistently elevated the BH4 and dopamine levels in the brain and fully restored the loss of TH protein caused by the BH4 deficiency in infants. On the other hand, dopa administration less persistently increased the dopamine content and only partially but significantly restored the TH protein level in infant BH4‐deficient mice. We also found that the effects of BH4 or dopa administration on the TH protein content were attenuated in young adulthood. Our data demonstrate that BH4 and catecholamines are required for the post‐natal augmentation of TH protein in the brain, and suggest that BH4 availability in early post‐natal period is critical for the developmental regulation of TH protein level.  相似文献   

8.
It has been shown that BH(4) ameliorates endothelial dysfunction associated with conditions such as hypertension, cigarette smoking, and diabetes. This effect has been proposed to be due to a superoxide scavenging activity of BH(4). To examine this possibility we determined the rate constant for the reaction between BH(4) and superoxide using electron paramagnetic resonance (EPR) spin trapping competition experiments with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO). We calculated a rate constant for the reaction between BH(4) and superoxide of 3.9 +/- 0.2 x 10(5) M(-1)s(-1) at pH 7.4 and room temperature. This result suggests that superoxide scavenging by BH(4) is not a major reaction in vivo. HPLC product analysis showed that 7,8-BH(2) and pterin are the stable products generated from the reaction. The formation of BH(4) cation radical (BH(4)(*+)) was demonstrated by direct EPR only under acidic conditions. Isotopic substitution experiments demonstrated that the BH(4)(*+) is mainly delocalized on the pyrazine ring of BH(4). In parallel experiments, we investigated the effect of ascorbate on 7,8-BH(2) reduction and eNOS activity. We demonstrated that ascorbate does not reduce 7,8-BH(2) to BH(4), nor does it stimulate nitric oxide release from eNOS incubated with 7,8-BH(2). In conclusion, it is likely that BH(4)-dependent inhibition of superoxide formation from eNOS is the mechanism that better explains the antioxidant effects of BH(4) in the vasculature.  相似文献   

9.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by NOS. Bioavailability of BH4 is a critical factor in regulating the balance between NO and superoxide production by endothelial NOS (eNOS coupling). Crystal structures of the mouse inducible NOS oxygenase domain reveal a homologous BH4-binding site located in the dimer interface and a conserved tryptophan residue that engages in hydrogen bonding or aromatic stacking interactions with the BH4 ring. The role of this residue in eNOS coupling remains unexplored. We overexpressed human eNOS W447A and W447F mutants in novel cell lines with tetracycline-regulated expression of human GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, to determine the importance of BH4 and Trp-447 in eNOS uncoupling. NO production was abolished in eNOS-W447A cells and diminished in cells expressing W447F, despite high BH4 levels. eNOS-derived superoxide production was significantly elevated in W447A and W447F versus wild-type eNOS, and this was sufficient to oxidize BH4 to 7,8-dihydrobiopterin. In uncoupled, BH4-deficient cells, the deleterious effects of W447A mutation were greatly exacerbated, resulting in further attenuation of NO and greatly increased superoxide production. eNOS dimerization was attenuated in W447A eNOS cells and further reduced in BH4-deficient cells, as demonstrated using a novel split Renilla luciferase biosensor. Reduction of cellular BH4 levels resulted in a switch from an eNOS dimer to an eNOS monomer. These data reveal a key role for Trp-447 in determining NO versus superoxide production by eNOS, by effects on BH4-dependent catalysis, and by modulating eNOS dimer formation.  相似文献   

10.
Endothelial nitric-oxide synthase (eNOS) is a critical regulator of vascular homeostasis by generation of NO that is dependent on the cofactor tetrahydrobiopterin (BH4). When BH4 availability is limiting, eNOS becomes “uncoupled,” resulting in superoxide production in place of NO. Recent evidence suggests that eNOS uncoupling can also be induced by S-glutathionylation, although the functional relationships between BH4 and S-glutathionylation remain unknown. To address a possible role for BH4 in S-glutathionylation-induced eNOS uncoupling, we expressed either WT or mutant eNOS rendered resistant to S-glutathionylation in cells with Tet-regulated expression of human GTP cyclohydrolase I to regulate intracellular BH4 availability. We reveal that S-glutathionylation of eNOS, by exposure to either 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or glutathione reductase-specific siRNA, results in diminished NO production and elevated eNOS-derived superoxide production, along with a concomitant reduction in BH4 levels and BH4:7,8-dihydrobiopterin ratio. In eNOS uncoupling induced by BH4 deficiency, BCNU exposure further exacerbates superoxide production, BH4 oxidation, and eNOS activity. Following mutation of C908S, BCNU-induced eNOS uncoupling and BH4 oxidation are abolished, whereas uncoupling induced by BH4 deficiency was preserved. Furthermore, BH4 deficiency alone is alone sufficient to reduce intracellular GSH:GSSG ratio and cause eNOS S-glutathionylation. These data provide the first evidence that BH4 deficiency- and S-glutathionylation-induced mechanisms of eNOS uncoupling, although mechanistically distinct, are functionally related. We propose that uncoupling of eNOS by S-glutathionylation- or by BH4-dependent mechanisms exemplifies eNOS as an integrated redox “hub” linking upstream redox-sensitive effects of BH4 and glutathione with redox-dependent targets and pathways that lie downstream of eNOS.  相似文献   

11.
Tetrahydrobiopterin (BH4) is the natural cofactor of several enzymes widely distributed among eukaryotes, including aromatic amino acid hydroxylases (AAAHs), nitric oxide synthases (NOSs), and alkylglycerol monooxygenase (AGMO). We show here that the nematode Caenorhabditis elegans, which has three AAAH genes and one AGMO gene, contains BH4 and has genes that function in BH4 synthesis and regeneration. Knockout mutants for putative BH4 synthetic enzyme genes lack the predicted enzymatic activities, synthesize no BH4, and have indistinguishable behavioral and neurotransmitter phenotypes, including serotonin and dopamine deficiency. The BH4 regeneration enzymes are not required for steady-state levels of biogenic amines, but become rate limiting in conditions of reduced BH4 synthesis. BH4-deficient mutants also have a fragile cuticle and are generally hypersensitive to exogenous agents, a phenotype that is not due to AAAH deficiency, but rather to dysfunction in the lipid metabolic enzyme AGMO, which is expressed in the epidermis. Loss of AGMO or BH4 synthesis also specifically alters the sensitivity of C. elegans to bacterial pathogens, revealing a cuticular function for AGMO-dependent lipid metabolism in host–pathogen interactions.  相似文献   

12.
(6R)-Tetrahydro-l-biopterin (BH(4)) is the rate-limiting cofactor in the production of catecholamine and indoleamine neurotransmitters and is also essential for the synthesis of nitric oxide by nitric-oxide synthase. We have previously reported that BH(4) administration induces PC12 cell proliferation and that nerve growth factor- or epidermal growth factor-induced PC12 cell proliferation requires the elevation of intracellular BH(4) levels. We show here that BH(4) accelerates apoptosis in undifferentiated PC12 cells deprived of serum and in differentiated neuron-like PC12 cells after nerve growth factor withdrawal. Increased production of catecholamines or nitric oxide cannot account for the enhancement of apoptosis by BH(4). Furthermore, increased calcium influx by exogenous BH(4) administration is not involved in the BH(4) proapoptotic effect. Our data also argue against the possibility that increased oxidative stress, due to BH(4) autoxidation, is responsible for the observed BH(4) effects. Instead, they are consistent with the hypothesis that BH(4) induces apoptosis by increasing cell cycle progression. Elevation of intracellular BH(4) during serum withdrawal increased c-Myc (and especially Myc S) expression earlier than serum withdrawal alone. Furthermore, N-acetylcysteine and the cyclin-dependent kinase inhibitor olomoucine ameliorated the BH(4) proapoptotic effect. These data suggest that BH(4) affects c-Myc expression and cell cycle-dependent events, possibly accounting for its effects on promoting cell cycle progression or apoptosis.  相似文献   

13.
14.
Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthase (NOS), but its function is not fully understood. Specifically, it is unclear whether BH4 participates directly in electron transfer. We investigated the redox properties of BH4 and several other pteridines with cyclic voltammetry and Osteryoung square wave voltammetry. BH4 was oxidized at a potential of +0.27 V vs normal hydrogen electrode (NHE); the corresponding reductive signal after the reversal of the scan direction was very small. Instead, reduction occurred at a potential of -0.16 V vs NHE; there was no corresponding oxidative signal. These two transitions were interdependent, indicating that the reductive wave at -0.16 V represented the regeneration of BH4 from its product of oxidation at +0.27 V. Similar voltammograms were obtained with tetrahydroneopterin and 6,7-dimethyltetrahydropterin, both of which can substitute for BH4 in NOS catalysis. Completely different voltammograms were obtained with 7,8-dihydrobiopterin, sepiapterin, 2'-deoxysepiapterin, and autoxidized BH4. These 7,8-dihydropterins, which do not sustain NOS catalysis, were oxidized at much higher potentials (+0.82-1.04 V vs NHE), and appreciable reduction did not occur between +1.2 and -0.8 V, in line with the concept of a redox role for BH4 in NOS catalysis. However, the electrochemical properties of the potent pterin-site NOS inhibitor 4-amino-BH4 resembled those of BH4, whereas the active pterin cofactor 5-methyl-BH4 was not re-reduced after oxidation. We conclude that the 2-electron redox cycling of the pterin cofactor between BH4 and quinonoid dihydrobiopterin is not essential for NO synthesis. The data are consistent with 1-electron redox cycling between BH4 and the trihydrobiopterin radical BH3(*).  相似文献   

15.
Levels of tetrahydrobiopterin (BH(4)) bound to nitric-oxide synthase (NOS) were examined during multiple turnovers of the enzyme in the presence of an NADPH-regenerating system. Our findings show that NOS-bound BH(4) does not remain in a static state but undergoes redox reactions. Under these experimental conditions, the redox state of BH(4) was determined by the balance between calcium/calmodulin (Ca(2+)/CaM)-dependent oxidation of BH(4) mediated by the uncoupled formation of superoxide/hydrogen peroxide on the one hand and by reductive regeneration of BH(4) on the other hand. BH(4) oxidation was appreciably increased in the presence of arginine. Levels of NOS-bound BH(4) were also examined under single turnover conditions in the absence of an NADPH-regenerating system and in the presence of added superoxide dismutase and catalase to suppress the accumulation of superoxide and hydrogen peroxide. BH(4) oxidation was again dependent on Ca(2+)/CaM. The insensitivity to superoxide dismutase and catalase suggested that the single turnover oxidation of BH(4) did not proceed through superoxide/peroxide, although the involvement of these oxidants could not be definitively excluded. The amount of BH(4) oxidized was highest in the presence of arginine, and this oxidation significantly exceeded that in the presence of N(G)-hydroxy-L-arginine. The findings that single turnover oxidation of BH(4) is stimulated by arginine in the presence of Ca(2+)/CaM and that BH(4) is regenerated are consistent with a role for the pterin as an electron donor in product formation; this role remains to be defined.  相似文献   

16.
Kong JS  Kang JY  Kim HL  Kwon OS  Lee KH  Park YS 《FEBS letters》2006,580(20):4900-4904
6-Pyruvoyltetrahydropterin synthase (PTPS) catalyzes the second step of tetrahydrobiopterin (BH4) synthesis. We previously identified PTPS orthologs (bPTPS-Is) in bacteria which do not produce BH4. In this study we disrupted the gene encoding bPTPS-I in Synechococcus sp. PCC 7942, which produces BH4-glucoside. The mutant was normal in BH4-glucoside production, demonstrating that bPTPS-I does not participate in BH4 synthesis in vivo and bringing us a new PTPS ortholog (bPTPS-II) of a bimodular polypeptide. The recombinant Synechococcus bPTPS-II was assayed in vitro to show PTPS activity higher than human enzyme. Further computational analysis revealed the presence of mono and bimodular bPTPS-II orthologs mostly in green sulfur bacteria and cyanobacteria, respectively, which are well known for BH4-glycoside production. In summary we found new bacterial PTPS orthologs, having either a single or dual domain structure and being responsible for BH4 synthesis in vivo, thereby disclosing all the bacterial PTPS homologs.  相似文献   

17.
6-(R)-(L-erythro-1',2'-Dihydroxypropyl)-2-amino- 4-hydroxy-5,6,7,8-tetrahydropteridine (tetrahydrobiopterin, BH4) synthesis rate and turnover time were estimated in cultures derived from the embryonic rat mesencephalon (MES) and hypothalamus (HYP) by following the decline in BH4 levels after blockade of BH4 biosynthesis by N-acetylserotonin (NAS) or 2,4-diamino-6-hydroxypyrimidine (DAHP). BH4 content of both culture systems decreased by 75% following an 8-h incubation with maximally effective concentrations of NAS (200 microM) or DAHP (10 mM). Parameters describing BH4 metabolism were calculated from steady-state levels of BH4 and first-order rate constants determined by a nonlinear regression analysis of the exponential BH4 decline. These parameters were confirmed using an alternative procedure that examined the first-order rate of recovery of BH4 following termination of BH4 synthesis inhibition. Steady-state levels of BH4 in HYP cultures (70.3 +/- 9.4 pg/culture) were significantly greater than that for MES (46.5 +/- 2.8 pg/culture). The average fractional rate constants of BH4 loss for MES (0.153 +/- 0.015/h) and HYP (0.159 +/- 0.014/h) were equivalent. The calculated rate of BH4 synthesis was significantly greater for HYP (11.29 +/- 2.13 pg/culture/h) than for MES (7.11 +/- 0.85 pg/culture/h), owing to the greater steady-state concentration of BH4. BH4 turnover time for MES (6.68 +/- 0.67 h) and HYP (6.40 +/- 0.62 h) and half-life for MES (4.63 +/- 0.46 h) and HYP (4.44 +/- 0.43 h) did not differ. The turnover of the cofactor is thus rapid enough that alterations in its synthesis or degradation could acutely modify the rate of monoamine biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Abstract. Reduced cell proliferation and increased levels of cellular glutathione (GSH) are characteristic for cells that overexpress the anti-apoptotic Bcl-2 protein. We investigated the influence of various Bcl-2 domains on both these characteristics. Rat CC531 colorectal cancer cells were stably transfected with the human bcl- 2 gene (CCbcl2 cells) or with bcl- 2 gene constructs missing a coding sequence for a func-tional domain, BH1 (CCΔBH1 cells), BH3 (CCΔBH3 cells), BH4 (CCΔBH4 cells) or the transmembrane region (CCΔTM cells). We measured GSH levels in exponentially and confluent growing bcl- 2-transfected cell populations. The fraction of S-phase cells during exponential growth was significantly reduced in CCbcl2, CCΔBH1, CCΔBH3, and CCΔTM cells compared with parental CC531, neo-transfected CC531 and CCΔBH4 cells. GSH levels in these bcl -2 transfectants were significantly higher than in the parental line measured at 50% confluence; at 100% confluence they reached a similar level as found in parental cells. Independently from the presence of BH1, BH3 or TM domains, overexpression of Bcl-2 reduces cellular proliferation under conditions of increased GSH levels. This apparent link is lost in CCΔBH4 cells; these cells are not reduced in cellular proliferation and harbour significantly higher GSH levels than found in the other transfectants. Studies on the subcellular localization revealed an extremely low expression of the Bcl-2 protein lacking the N-terminal BH4 domain in nuclear fractions. Nuclear translocation of Bcl-2 requires the presence of the BH4 domain and seems prominent in reducing cellular proliferation.  相似文献   

19.
Tetrahyrobiopterin (BH4) is a required cofactor for the synthesis of nitric oxide by endothelial nitric-oxide synthase (eNOS), and BH4 bioavailability within the endothelium is a critical factor in regulating the balance between NO and superoxide production by eNOS (eNOS coupling). BH4 levels are determined by the activity of GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in de novo BH4 biosynthesis. However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but the functional importance of DHFR in maintaining eNOS coupling remains unclear. We investigated the role of DHFR in regulating BH4 versus BH2 levels in endothelial cells and in cell lines expressing eNOS combined with tet-regulated GTPCH expression in order to compare the effects of low or high levels of de novo BH4 biosynthesis. Pharmacological inhibition of DHFR activity by methotrexate or genetic knockdown of DHFR protein by RNA interference reduced intracellular BH4 and increased BH2 levels resulting in enzymatic uncoupling of eNOS, as indicated by increased eNOS-dependent superoxide but reduced NO production. In contrast to the decreased BH4:BH2 ratio induced by DHFR knockdown, GTPCH knockdown greatly reduced total biopterin levels but with no change in BH4:BH2 ratio. In cells expressing eNOS with low biopterin levels, DHFR inhibition or knockdown further diminished the BH4:BH2 ratio and exacerbated eNOS uncoupling. Taken together, these data reveal a key role for DHFR in eNOS coupling by maintaining the BH4:BH2 ratio, particularly in conditions of low total biopterin availability.In vascular disease states such as atherosclerosis and diabetes, endothelial nitric oxide (NO) bioactivity is reduced, and oxidative stress is increased, resulting in endothelial dysfunction. It has become apparent that enzymatic “coupling” of endothelial NO synthase by its cofactor tetrahydrobiopterin (BH4)2 plays a key role in maintaining endothelial function. Indeed, the balance between NO and superoxide production by eNOS appears to be determined by the availability of BH4 versus the abundance of 7,8-dihydrobiopterin (BH2, that is inactive for NOS cofactor function and may compete with BH4 for NOS binding (1). Intracellular biopterin levels are regulated principally by the activity of the de novo biosynthetic pathway (Fig. 1). Guanosine triphosphate cyclohydrolase I (GTPCH; EC 3.5.4.16) catalyzes the formation of dihydroneopterin triphosphate from GTP, and BH4 is generated by two further steps through 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase. GTPCH appears to be the rate-limiting enzyme in BH4 biosynthesis, and overexpression of GTPCH is sufficient to augment BH4 levels in cultured endothelial cells (2). Electron paramagnetic resonance spectroscopy studies have shown that BH4 both stabilizes and donates electrons to the ferrous-dioxygen complex in the oxygenase domain, as the initiating step of l-arginine oxidation (35). In this reaction BH4 forms the protonated trihydrobiopterin cation radical, which is subsequently reduced by electron transfer from NOS flavins. When BH4 availability is limiting, electron transfer from NOS flavins becomes uncoupled from l-arginine oxidation, eNOS generates superoxide rather than NO, BH4 becomes oxidized to catalytically incompetent BH2, and a futile feed-forward cascade of BH4 destruction proceeds (1). Recent studies reveal that BH4 and BH2 bind eNOS with equal affinity and that BH2 can efficiently replace eNOS-bound BH4, resulting in eNOS uncoupling (6). Indeed, we have previously shown that the relative abundance of eNOS versus BH4 together with the intracellular BH4:BH2 ratio, rather than absolute concentrations of BH4, are the key determinants of eNOS uncoupling (7), a hypothesis supported by a recent publication where BH2 levels are elevated after exposure of bovine aortic endothelial cells to DHFR-specific siRNA (8). Thus, mechanisms that regulate the BH4:BH2 ratio independently of overall biopterin levels may play an equally important role in regulating eNOS coupling as the well established role of GTCPH, which regulates de novo BH4 biosynthesis. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR; EC 1.5.1.3) can reduce BH2, thus regenerating BH4 (9, 10). It is, therefore, likely that net BH4 bioavailability within the endothelium reflects the balance between de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. In human liver extracts DHFR has been shown to reduce BH2 back to BH4 as part of the salvage pathway for biopterin synthesis (11). However, the role of this pathway and the extent to which it regulates intracellular BH4 levels in vivo remains unknown. Recent work by Chalupsky and Cai (2) investigated the functionality of endothelial DHFR in cultured bovine aortic endothelial cells. Exposure to angiotensin II down-regulated DHFR expression, decreased BH4 levels, and increased eNOS uncoupling, which was restored by overexpression of DHFR (2). A recent study also suggests that perturbation of BH4 metabolism differentially affects eNOS phosphorylation sites. Knockdown of DHFR by siRNA inhibits vascular endothelial growth factor-induced dephosphorylation of eNOS at Ser-116, an effect that is completely recovered by the addition of exogenous BH4 (8). However, the requirement for DHFR in regulating intracellular BH4 homeostasis and the quantitative relationships that relate BH4 de novo synthesis versus BH4 recycling to eNOS coupling remain uncertain. Accordingly, we sought to address these questions using both pharmacologic and genetic manipulation of DHFR activity and related these interventions to effects on eNOS coupling. We manipulated DHFR in both endothelial cells and in novel cell lines that stably express an eNOS-GFP fusion protein and where expression of human GTPCH can be regulated by doxycycline in order to test the effects of variations in intracellular BH4 biosynthesis (7). We report that although GTPCH is the key regulator of the total amount of intracellular biopterins, DHFR is critical to eNOS function by determining BH4:BH2 ratio and, thus, in maintaining eNOS coupling. In particular, DHFR is important in preventing “self-propagated” eNOS uncoupling in conditions of low total biopterin levels, when eNOS-dependent oxidation of BH4 that would further exacerbate eNOS uncoupling can be rescued by DHFR.Open in a separate windowFIGURE 1.Schematic representation of the BH4 recycling pathway and eNOS coupling. BH4 is synthesized from GTP via a series of reactions involving GTPCH, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase (SR) and DHFR. DHFR activity can be inhibited by MTX. GFRP, GTP cyclohydrolase feedback regulatory protein. PTPS, 6-pyruvoyl-tetrahydropterin synthase.  相似文献   

20.
Mutations in GTP-cyclohydrolase I (GTP-CH) have been identified as causing a range of inborn errors of metabolism, including dopa-responsive dystonia. GTP-CH catalyses the first step in the biosynthesis of tetrahydrobiopterin (BH4), a cofactor necessary for the synthesis of catecholamines and serotonin. Current therapy based on monoamine neurotransmitter replacement may be only partially successful in correcting the neurological deficits. The reason might be that BH4 is also a cofactor for nitric oxide synthase. Using a strain of mutant GTP-CH-deficient (hph-1) mice, we demonstrate that in addition to impaired monoamine metabolism, BH4 deficiency is also associated with diminished nitric oxide synthesis in the brain (as evaluated by measuring the levels of cyclic GMP), when compared with wild-type animals. We have found a decline in the levels of BH4 with age in all animals, but no gender-related differences. We found a strong association between the levels of BH4 and cyclic GMP in hph-1 mice but not in wild-type animals. We also demonstrate that acute peripheral administration of BH4 (100 micromol/kg s.c.) in hph-1 mice significantly elevated the brain BH4 concentration and subsequently cyclic GMP levels in cerebellum, with peaks at 2 and 3 h, respectively. We suggest that BH4 administration should be considered in BH4 deficiency states in addition to monoamine replacement therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号