首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Background

Clinical trials have shown the benefits of statins after acute myocardial infarction (AMI). However, it is unclear whether different statins exert a similar effect in reducing the incidence of recurrent AMI and death when used in clinical practice.

Methods

We conducted a retrospective cohort study (1997–2002) to compare 5 statins using data from medical administrative databases in 3 provinces (Quebec, Ontario and British Columbia). We included patients aged 65 years and over who were discharged alive after their first AMI-related hospital stay and who began statin treatment within 90 days after discharge. The primary end point was the combined outcome of recurrent AMI or death from any cause. The secondary end point was death from any cause. Adjusted hazard ratios (HRs) for each statin compared with atorvastatin as the reference drug were estimated using Cox proportional hazards regression analysis.

Results

A total of 18 637 patients were prescribed atorvastatin (n = 6420), pravastatin (n = 4480), simvastatin (n = 5518), lovastatin (n = 1736) or fluvastatin (n = 483). Users of different statins showed similar baseline characteristics and patterns of statin use. The adjusted HRs (and 95% confidence intervals) for the combined outcome of AMI or death showed that each statin had similar effects when compared with atorvastatin: pravastatin 1.00 (0.90–1.11), simvastatin 1.01 (0.91– 1.12), lovastatin 1.09 (0.95–1.24) and fluvastatin 1.01 (0.80– 1.27). The results did not change when death alone was the end point, nor did they change after adjustment for initial daily dose or after censoring of patients who switched or stopped the initial statin treatment.

Interpretation

Our results suggest that, under current usage, statins are equally effective for secocondary prevention in elderly patients after AMI.Randomized controlled trials (RCTs) have shown that the use of statins after acute myocardial infarction (AMI) are effective in reducing the incidence of both fatal and nonfatal cardiovascular events.1,2,3,4,5,6,7,8 Although these trials have significantly influenced post-AMI treatment,9,10,11,12 it remains unclear whether all statins are equally effective in preventing recurrent AMI and death. Drugs in the same class are generally thought to be therapeutically equivalent because of similar mechanisms of action (class effect).13,14,15 However, in the absence of comparative data, this assumption requires evaluation. Statins differ in multiple characteristics, including liver and renal metabolism, half-life, effect on other serum lipid components, bioavailability and potency.16,17,18,19 These differences could potentially influence the extent to which the drugs are beneficial. Despite limited evidence in support of a differential benefit of statins for secondary prevention, preferential prescribing already occurs in practice and cannot be fully explained by the existing evidence or guidelines.20 Comparative data of statins are thus required to inform health care decision-making.A number of RCTs have directly compared statins using surrogate end points, such as lipid reduction,21,22,23 markers of hemostasis and inflammation24,25,26 or reduction in number of atherotic plaques.27 However, the extent to which these results can be extrapolated to clinically relevant outcomes remains to be established. The newly released PROVE IT– TIMI 22 trial28 was the first trial to compare 2 statins for cardiovascular prevention. The study showed that atorvastatin used at a maximal dose of 80 mg (intensive therapy) was better than pravastatin at a dose of 40 mg (standard therapy) in decreasing the incidence of cardiovascular events and procedures. The study was, however, conducted to show the benefit associated with increased treatment intensity. It did not compare the drugs by milligram-equivalent doses or by cholesterol-lowering equivalent doses. Moreover, no difference was detected when death alone or the combined outcome of death or AMI was evaluated. Other than the PROVE IT–TIMI 22 trial, few data are currently available from RCTs that compare statins for cardiovascular prevention.29We conducted a population-based study to examine the relative effectiveness of different statins for long-term secondary prevention after AMI. We used retrospective cohorts of elderly patients prescribed statins after AMI in 3 provinces. Five statins were studied: atorvastatin, pravastatin, simvastatin, lovastatin and fluvastatin. The newest statin, rosuvastatin, was not available during the study period and was not considered in this study.  相似文献   

3.
4.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

5.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

6.
Simian immunodeficiency virus (SIV)-infected African nonhuman primates do not progress to AIDS in spite of high and persistent viral loads (VLs). Some authors consider the high viral replication observed in chronic natural SIV infections to be due to lower anti-SIV antibody titers than those in rhesus macaques, suggesting a role of antibodies in controlling viral replication. We therefore investigated the impact of antibody responses on the outcome of acute and chronic SIVagm replication in African green monkeys (AGMs). Nine AGMs were infected with SIVagm.sab. Four AGMs were infused with 50 mg/kg of body weight anti-CD20 (rituximab; a gift from Genentech) every 21 days, starting from day −7 postinfection up to 184 days. The remaining AGMs were used as controls and received SIVagm only. Rituximab-treated AGMs were successfully depleted of CD20 cells in peripheral blood, lymph nodes (LNs), and intestine, as shown by the dynamics of CD20+ and CD79a+ cells. There was no significant difference in VLs between CD20-depleted AGMs and control monkeys: peak VLs ranged from 107 to 108 copies/ml; set-point values were 104 to 105 SIV RNA copies/ml. Levels of acute mucosal CD4+ T-cell depletion were similar for treated and nontreated animals. SIVagm seroconversion was delayed for the CD20-depleted AGMs compared to results for the controls. There was a significant difference in both the timing and magnitude of neutralizing antibody responses for CD20-depleted AGMs compared to results for controls. CD20 depletion significantly altered the histological structure of the germinal centers in the LNs and Peyer''s patches. Our results, although obtained with a limited number of animals, suggest that humoral immune responses play only a minor role in the control of SIV viral replication during acute and chronic SIV infection in natural hosts.In marked contrast to pathogenic human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections of humans and macaques, which are characterized by the constant progression to AIDS in a variable time frame (26), African monkey species naturally infected with SIV are generally spared from any signs of disease (reviewed in references 53 and 71).There are currently three animal models of SIV infection in natural hosts: SIVagm infection of African green monkeys (AGMs), SIVsmm infection of sooty mangabeys, and SIVmnd-1 and SIVmnd-2 infection of mandrills (53, 71). SIV infection in natural hosts is characterized by the following: (i) active viral replication, with set-point viral loads (VLs) similar to or even higher than those found in pathogenic infections (44-46, 49, 50, 52, 61-63); (ii) transient depletion of peripheral CD4+ T cells during primary infection, which rebound to preinfection levels during chronic infection (12, 30, 44-46, 49, 62); (iii) significant CD4+ T-cell depletion in the intestine, which can be partially restored during chronic infection in spite of significant viral replication (21, 48); (iv) low levels of CD4+ CCR5+ cells in blood and tissues (47); (v) transient and moderate increases in immune activation and T-cell proliferation during acute infection, with a return to baseline levels during the chronic phase (44-46, 49, 50, 52, 61-63), as a result of an anti-inflammatory milieu which is rapidly established after infection (14, 30); and (vi) no significant increase in CD4+ T-cell apoptosis during either acute or chronic infection (37, 48), thus avoiding enteropathy and microbial translocation, which control excessive immune activation and prevent disease progression by allowing CD4+ T-cell recovery in the presence of high VLs (21, 48). Hence, the current view is that the main reason behind the lack of disease progression in natural African hosts lies in a better adaptation of the host in response to the highly replicating virus. A better understanding of the mechanisms underlying the lack of disease in natural hosts for SIV infection may provide important clues for understanding the pathogenesis of HIV infection (53, 71).To date, it is still unknown whether or not immune responses are responsible for the lack of disease progression in natural hosts, since data are scarce. Studies of cellular immune responses are significantly more limited than is the case with pathogenic infection, and although not always in agreement (3, 13, 28, 29, 73, 76), their convergence point is that cellular immune responses are not essentially superior to those observed in pathogenic infections (3, 13, 28, 29, 73, 76). This observation is not surprising in the context of the high viral replication in natural hosts. Data are even scarcer on the role of humoral immune responses in the control of disease progression in natural hosts. However, several studies reported that anti-SIV antibody titers are lower in SIV infections of natural hosts, with a lack of anti-Gag responses being characteristic of natural SIV infections in African nonhuman primates (1, 6, 24, 25, 42, 43, 71). Because the viral replication in SIVagm-infected AGMs is of the same magnitude or higher than that in pathogenic infections of rhesus macaques (RMs), it has been hypothesized that these high VLs may be a consequence of the lower antibody titers. Moreover, a recent study has also shown that B cells in lymph nodes (LNs) of AGMs are activated at an earlier time point than is the case for SIVmac251-infected RMs, which implies that humoral immune responses may be important in controlling SIV replication in the natural hosts (9). Conversely, it has been shown that passively transferring immunoglobulins from animals naturally infected with SIVagm prior to infection with a low dose of SIVagm did not prevent infection in AGMs (42, 60), which is in striking contrast to results in studies of pathogenic infections, which convincingly demonstrated with animal models that intravenously administered or topically applied antibodies can protect macaques against intravenous or mucosal simian-human immunodeficiency virus challenge (34-36, 54, 72).Previous CD20+ B-cell-depletion studies during pathogenic RM infections have indicated that humoral immune responses may be important for controlling both the postpeak VL and disease progression (38, 57). However, these studies used strains that are highly resistant to neutralization (SIVmac251 and SIVmac239), making it difficult to assess the role that antibodies have in controlling SIV replication and disease progression. Moreover, our recent results suggested a limited impact of humoral immune responses in controlling replication of a neutralization-sensitive SIVsmm strain in rhesus macaques (18).To investigate the effect that CD20+ B cells and antibodies have on SIV replication in natural hosts, we have depleted CD20+ B cells in vivo in AGMs infected with SIVagm.sab92018. We assessed the impact of humoral immune responses on the control of viral replication and other immunological parameters, and we report that ablating humoral immune responses in SIVagm-infected AGMs does not significantly alter the course of virus replication or disease progression.  相似文献   

7.
Highly active antiretroviral therapy (HAART) can reduce human immunodeficiency virus type 1 (HIV-1) viremia to clinically undetectable levels. Despite this dramatic reduction, some virus is present in the blood. In addition, a long-lived latent reservoir for HIV-1 exists in resting memory CD4+ T cells. This reservoir is believed to be a source of the residual viremia and is the focus of eradication efforts. Here, we use two measures of population structure—analysis of molecular variance and the Slatkin-Maddison test—to demonstrate that the residual viremia is genetically distinct from proviruses in resting CD4+ T cells but that proviruses in resting and activated CD4+ T cells belong to a single population. Residual viremia is genetically distinct from proviruses in activated CD4+ T cells, monocytes, and unfractionated peripheral blood mononuclear cells. The finding that some of the residual viremia in patients on HAART stems from an unidentified cellular source other than CD4+ T cells has implications for eradication efforts.Successful treatment of human immunodeficiency virus type 1 (HIV-1) infection with highly active antiretroviral therapy (HAART) reduces free virus in the blood to levels undetectable by the most sensitive clinical assays (18, 36). However, HIV-1 persists as a latent provirus in resting, memory CD4+ T lymphocytes (6, 9, 12, 16, 48) and perhaps in other cell types (45, 52). The latent reservoir in resting CD4+ T cells represents a barrier to eradication because of its long half-life (15, 37, 40-42) and because specifically targeting and purging this reservoir is inherently difficult (8, 25, 27).In addition to the latent reservoir in resting CD4+ T cells, patients on HAART also have a low amount of free virus in the plasma, typically at levels below the limit of detection of current clinical assays (13, 19, 35, 37). Because free virus has a short half-life (20, 47), residual viremia is indicative of active virus production. The continued presence of free virus in the plasma of patients on HAART indicates either ongoing replication (10, 13, 17, 19), release of virus after reactivation of latently infected CD4+ T cells (22, 24, 31, 50), release from other cellular reservoirs (7, 45, 52), or some combination of these mechanisms. Finding the cellular source of residual viremia is important because it will identify the cells that are still capable of producing virus in patients on HAART, cells that must be targeted in any eradication effort.Detailed analysis of this residual viremia has been hindered by technical challenges involved in working with very low concentrations of virus (13, 19, 35). Recently, new insights into the nature of residual viremia have been obtained through intensive patient sampling and enhanced ultrasensitive sequencing methods (1). In a subset of patients, most of the residual viremia consisted of a small number of viral clones (1, 46) produced by a cell type severely underrepresented in the peripheral circulation (1). These unique viral clones, termed predominant plasma clones (PPCs), persist unchanged for extended periods of time (1). The persistence of PPCs indicates that in some patients there may be another major cellular source of residual viremia (1). However, PPCs were observed in a small group of patients who started HAART with very low CD4 counts, and it has been unclear whether the PPC phenomenon extends beyond this group of patients. More importantly, it has been unclear whether the residual viremia generally consists of distinct virus populations produced by different cell types.Since the HIV-1 infection in most patients is initially established by a single viral clone (23, 51), with subsequent diversification (29), the presence of genetically distinct populations of virus in a single individual can reflect entry of viruses into compartments where replication occurs with limited subsequent intercompartmental mixing (32). Sophisticated genetic tests can detect such population structure in a sample of viral sequences (4, 39, 49). Using two complementary tests of population structure (14, 43), we analyzed viral sequences from multiple sources within individual patients in order to determine whether a source other than circulating resting CD4+ T cells contributes to residual viremia and viral persistence. Our results have important clinical implications for understanding HIV-1 persistence and treatment failure and for improving eradication strategies, which are currently focusing only on the latent CD4+ T-cell reservoir.  相似文献   

8.

Background

The number of births attended by individual family physicians who practice intrapartum care varies. We wanted to determine if the practice–volume relations that have been shown in other fields of medical practice also exist in maternity care practice by family doctors.

Methods

For the period April 1997 to August 1998, we analyzed all singleton births at a major maternity teaching hospital for which the family physician was the responsible physician. Physicians were grouped into 3 categories on the basis of the number of births they attended each year: fewer than 12, 12 to 24, and 25 or more. Physicians with a low volume of deliveries (72 physicians, 549 births), those with a medium volume of deliveries (34 physicians, 871 births) and those with a high volume of deliveries (46 physicians, 3024 births) were compared in terms of maternal and newborn outcomes. The main outcome measures were maternal morbidity, 5-minute Apgar score and admission of the baby to the neonatal intensive care unit or special care unit. Secondary outcomes were obstetric procedures and consultation patterns.

Results

There was no difference among the 3 volume cohorts in terms of rates of maternal complications of delivery, 5-minute Apgar scores of less than 7 or admissions to the neonatal intensive care unit or the special care unit, either before or after adjustment for parity, pregnancy-induced hypertension, diabetes, ethnicity, lone parent status, maternal age, gestational age, newborn birth weight and newborn head circumference at birth. High- and medium-volume family physicians consulted with obstetricians less often than low-volume family physicians (adjusted odds ratio [OR] 0.586 [95% confidence interval, CI, 0.479–0.718] and 0.739 [95% CI 0.583–0.935] respectively). High- and medium-volume family physicians transferred the delivery to an obstetrician less often than low-volume family physicians (adjusted OR 0.668 [95% CI 0.542–0.823] and 0.776 [95% CI 0.607–0.992] respectively). Inductions were performed by medium-volume family physicians more often than by low-volume family physicians (adjusted OR 1.437 [95% CI 1.036–1.992].

Interpretation

Family physicians'' delivery volumes were not associated with adverse outcomes for mothers or newborns. Low-volume family physicians referred patients and transferred deliveries to obstetricians more frequently than high- or medium-volume family physicians. Further research is needed to validate these findings in smaller facilities, both urban and rural.More than 20 years ago, Luft and associates1 conducted one of the earliest volume–outcome studies. Since then, many studies addressing the relation between volume of procedures and patient outcomes have been published.2,3 In some of these studies, either the hospital size or the physician procedural volume was used as a surrogate for physician expertise. Among studies analyzing hospital volumes and outcomes, better outcomes have been associated with higher patient volumes in some instances4,5,6,7 but not others.3,8,9 Some studies of individual provider volume have shown a positive relation between volume and outcomes,10,11 whereas others have shown no relation or inconsistent results.3,12 Finally, a few studies analyzing both hospital volume and provider volume have reported a positive volume–outcome relation.13,14Criticism levelled at the methods used in volume–outcome studies have addressed the lack of adjustment for case mix, different cutoff points for volume categories and retrospective design.3 Other factors that have an effect on patient outcomes but that have not been included in previous volume analyses include health maintenance organization status, physician certification and years since graduation, and patient socioeconomic status, age and ethnicity. Furthermore, most of the studies on volume have covered surgical or oncology specialities.The few studies that have been done on volume and outcome in maternity care have shown variable effects. Rural health care is often associated with lower volumes of obstetric procedures. However, no differences in maternal or newborn outcomes have been shown in some comparisons of births in urban and rural locations.15,16,17,18 Other studies have shown poorer maternal and newborn outcomes in low-volume hospitals, neonatal intensive care units (NICUs) and rural locations.19,20,21,22 Conversely, higher volume (hospitals with more than 1000 deliveries per year) has been associated with more maternal lacerations or complications.23When the health care provider has been the unit of analysis, a relation between volume and maternal or newborn outcome has been demonstrated in at least one study24 but not in others.25,26 Low volume has been defined as 20 to 24 deliveries per year.24,26 Hass and colleagues24 reported an adjusted odds ratio (OR) of 1.4 for low birth weight for infants delivered by low-volume non-board-certified physicians relative to high-volume non-board-certified physicians; the adjusted OR was 1.56 for low-volume board-certified physicians relative to high-volume board-certified physicians (98.7% of whom were obstetricians).Possible explanations for the differences among studies include differences in health care delivery systems, insurance coverage, experience and training of providers, maternal risk factors, triage or transfer of high-risk cases, choice of outcome measures, and changes over time in access to care, quality assurance and standard of living. Relations have been reported between maternal or newborn outcomes and smoking, maternal history of low birth weight (for previous pregnancies), pregnancy–induced hypertension, diabetes, prepregnancy weight, gestational weight gain, maternal height and age, multiple gestation, previous vaginal birth after cesarean section, history of previous delivery problems, parity, large-for-date fetus, ethnicity and fetal sex.25,27,28,29 Few studies of the relation between volume of births and obstetric outcome have been able to control for these potentially confounding variables and adjust for maternal risk factors.Our database of detailed accounts of births in one hospital setting allowed us to examine this issue more rigorously. We posed 2 research questions: Is there a relation between the volume of deliveries attended by individual family physicians and maternal and newborn outcomes? If there are differences in outcomes, are they related to different physician practice styles and consultation patterns?  相似文献   

9.
10.
Prion strain interference can influence the emergence of a dominant strain from a mixture; however, the mechanisms underlying prion strain interference are poorly understood. In our model of strain interference, inoculation of the sciatic nerve with the drowsy (DY) strain of the transmissible mink encephalopathy (TME) agent prior to superinfection with the hyper (HY) strain of TME can completely block HY TME from causing disease. We show here that the deposition of PrPSc, in the absence of neuronal loss or spongiform change, in the central nervous system corresponds with the ability of DY TME to block HY TME infection. This suggests that DY TME agent-induced damage is not responsible for strain interference but rather prions compete for a cellular resource. We show that protein misfolding cyclic amplification (PMCA) of DY and HY TME maintains the strain-specific properties of PrPSc and replicates infectious agent and that DY TME can interfere, or completely block, the emergence of HY TME. DY PrPSc does not convert all of the available PrPC to PrPSc in PMCA, suggesting the mechanism of prion strain interference is due to the sequestering of PrPC and/or other cellular components required for prion conversion. The emergence of HY TME in PMCA was controlled by the initial ratio of the TME agents. A higher ratio of DY to HY TME agent is required for complete blockage of HY TME in PMCA compared to several previous in vivo studies, suggesting that HY TME persists in animals coinfected with the two strains. This was confirmed by PMCA detection of HY PrPSc in animals where DY TME had completely blocked HY TME from causing disease.Prions are infectious agents of animals, including humans, which are comprised of PrPSc, a misfolded isoform of the noninfectious host encoded protein PrPC (17, 24, 50, 63). Prion diseases of humans are unique neurodegenerative disorders in that they can have either a sporadic, familial, or infectious etiology. Prions cause disease in economically important domestic and wild animal species such as bovine spongiform encephalopathy in cattle and chronic wasting disease in wild and captive cervids (20, 62). Prion diseases can be zoonotic as illustrated by the transmission of bovine spongiform encephalopathy to humans that resulted in the emergence of variant Creutzfeldt-Jacob disease (14, 19, 22, 23, 46, 61, 68). Prion diseases are inevitably fatal and there are currently no effective treatments (21).Prion strains are defined by a characteristic set of features that breed true upon experimental passage (33, 34). Strain-specific differences have been identified in incubation period, clinical signs, agent distribution, overdominance, host range, neuropathology, and biochemical properties of PrPSc (5, 10, 11, 13, 28, 34, 42, 44). Strain-specific conformations of PrPSc are hypothesized to encode prion strain diversity; however, it is not understood how these differences result in the distinct strain properties (11, 19, 40, 47, 59, 66).Prion strain interference may be involved in the emergence of a dominant strain from a mixture as could occur during prion adaptation to a new host species or during prion evolution (4, 36, 43, 48, 56). In the natural prion diseases, there are examples where an individual host may be infected with more than one prion strain (15, 25, 55, 57, 58). Experimentally, coinfection or superinfection of prion strains can result in interference where a blocking, long incubation period strain extends the incubation period or completely blocks a superinfecting, short incubation period strain from causing disease (26, 27). Prion interference has been described in experimental studies of mice and hamsters infected with a wide variety of prion strains and routes of inoculation, suggesting it may be a common property of prion disease (3, 27, 52, 53, 60).It has been proposed that prion strains compete for a shared “replication site”; however, mechanistic details are not known, and it is unclear whether the blocking strain destroys or occupies the replication sites required for the superinfecting strain (28). The transport to and relative onset of replication of interfering strains in a common population of neurons is an important factor that can determine which strain will emerge (8). In the present study, we sought to determine whether the blocking strain disables transport and spread of the superinfecting strain or whether prion interference is due to competition for a cellular resource.  相似文献   

11.
The purpose of the present study was to investigate the inhibition of Vibrio by Roseobacter in a combined liquid-surface system. Exposure of Vibrio anguillarum to surface-attached roseobacters (107 CFU/cm2) resulted in significant reduction or complete killing of the pathogen inoculated at 102 to 104 CFU/ml. The effect was likely associated with the production of tropodithietic acid (TDA), as a TDA-negative mutant did not affect survival or growth of V. anguillarum.Antagonistic interactions among marine bacteria are well documented, and secretion of antagonistic compounds is common among bacteria that colonize particles or surfaces (8, 13, 16, 21, 31). These marine bacteria may be interesting as sources for new antimicrobial drugs or as probiotic bacteria for aquaculture.Aquaculture is a rapidly growing sector, but outbreaks of bacterial diseases are a limiting factor and pose a threat, especially to young fish and invertebrates that cannot be vaccinated. Because regular or prophylactic administration of antibiotics must be avoided, probiotic bacteria are considered an alternative (9, 18, 34, 38, 39, 40). Several microorganisms have been able to reduce bacterial diseases in challenge trials with fish or fish larvae (14, 24, 25, 27, 33, 37, 39, 40). One example is Phaeobacter strain 27-4 (17), which inhibits Vibrio anguillarum and reduces mortality in turbot larvae (27). The antagonism of Phaeobacter 27-4 and the closely related Phaeobacter inhibens is due mainly to the sulfur-containing tropolone derivative tropodithietic acid (TDA) (2, 5), which is also produced by other Phaeobacter strains and Ruegeria mobilis (28). Phaeobacter and Ruegeria strains or their DNA has been commonly found in marine larva-rearing sites (6, 17, 28).Phaeobacter and Ruegeria (Alphaproteobacteria, Roseobacter clade) are efficient surface colonizers (7, 11, 31, 36). They are abundant in coastal and eutrophic zones and are often associated with algae (3, 7, 41). Surface-attached Phaeobacter bacteria may play an important role in determining the species composition of an emerging biofilm, as even low densities of attached Phaeobacter strain SK2.10 bacteria can prevent other marine organisms from colonizing solid surfaces (30, 32).In continuation of the previous research on roseobacters as aquaculture probiotics, the purpose of this study was to determine the antagonistic potential of Phaeobacter and Ruegeria against Vibrio anguillarum in liquid systems that mimic a larva-rearing environment. Since production of TDA in liquid marine broth appears to be highest when roseobacters form an air-liquid biofilm (5), we addressed whether they could be applied as biofilms on solid surfaces.  相似文献   

12.
Filopodia are dynamic structures found at the leading edges of most migrating cells. IRSp53 plays a role in filopodium dynamics by coupling actin elongation with membrane protrusion. IRSp53 is a Cdc42 effector protein that contains an N-terminal inverse-BAR (Bin-amphipysin-Rvs) domain (IRSp53/MIM homology domain [IMD]) and an internal SH3 domain that associates with actin regulatory proteins, including Eps8. We demonstrate that the SH3 domain functions to localize IRSp53 to lamellipodia and that IRSp53 mutated in its SH3 domain fails to induce filopodia. Through SH3 domain-swapping experiments, we show that the related IRTKS SH3 domain is not functional in lamellipodial localization. IRSp53 binds to 14-3-3 after phosphorylation in a region that lies between the CRIB and SH3 domains. This association inhibits binding of the IRSp53 SH3 domain to proteins such as WAVE2 and Eps8 and also prevents Cdc42-GTP interaction. The antagonism is achieved by phosphorylation of two related 14-3-3 binding sites at T340 and T360. In the absence of phosphorylation at these sites, filopodium lifetimes in cells expressing exogenous IRSp53 are extended. Our work does not conform to current views that the inverse-BAR domain or Cdc42 controls IRSp53 localization but provides an alternative model of how IRSp53 is recruited (and released) to carry out its functions at lamellipodia and filopodia.The ability of a cell to rapidly respond to extracellular cues and direct cytoskeletal rearrangements is dependent on an array of signaling complexes that control actin assembly (58). The protrusive structures at the leading edges of motile cells are broadly defined as lamellipodia or filopodia (14). Lamellae are sheet-like protrusions composed of dendritic actin arrays that drive membrane expansion, with the “lamellipodium” representing a narrow region at the edge of the cell (in culture) characterized by rapid actin polymerization. This F-actin assembly is suggested to require Arp2/3 activity that nucleates new actin filaments from the sides of existing ones (58, 71) and capping proteins that limit the length of these new filaments and stabilize them (7). Arp2/3 activity in turn is regulated by the WASP/WAVE family of proteins, such as N-WASP and WAVE2 (68), whose regulation is a subject of intense interest (12, 29, 36, 41, 56, 76).Filopodia contain parallel bundles of actin filaments containing fascin (22). These are dynamic structures that emanate from the periphery of the cell and are retracted, with occasional attachment (to the dish in culture). Thus, they have been thought to have a sensory or exploratory role during cell migration (28). This is the case for neuronal growth cones, where filopodia sense attractant or repulsive cues and dictate direction in axonal path finding (9, 17, 25, 35). Filopodia have been shown to be important in the context of dendritic-spine development (64, 77), epithelial-sheet closure (26, 60, 79), and cell invasion/metastasis (80, 83).Lamellipodia have been well characterized since the pioneering work of Abercrombie et al. in the early 1970s (2, 3, 4). Filopodia require symmetry breaking at the leading edge (initiation), followed by elongation driven by a filopodial-tip protein complex (14, 28). A few proteins have been identified in this complex; Mena/Vasp serve to prevent capping at the barbed ends of bundled actin filaments (7, 53), and Dia2 promotes F-actin elongation (57, 85). Termination of filopodial elongation is not understood but nonetheless is likely to be tightly regulated. In the absence of F-actin elongation, retraction of the filopodium takes place by a rearward flow of F-actin and filament depolymerization (22).IRSp53 is in a position to play a pivotal role in generating filopodia; this brain-enriched protein was discovered as a substrate of the insulin receptor (87). Subsequently, IRSp53 was identified as an effector for Rac1 (50) and Cdc42 (27, 38), where it participates in filopodium and lamellipodium production (38, 51, 54, 86), neurite extension (27), dendritic-spine morphogenesis (1, 15, 66, 67), cell motility and invasiveness (24). The N terminus of IRSp53 contains a conserved helical domain that is found in five different gene products and is referred to as the IRSp53/MIM homology domain (IMD) (51, 70). This domain has been postulated to bind to Rac1 (50, 70) in a nucleotide-independent manner (52), but no convincing effector-like region has been identified. A Cdc42-specific CRIB-like sequence that does not bind Rac1 (27, 38) allows coupling of this and perhaps related Rho GTPases. The structure of the IMD reveals a zeppelin-shaped dimer that could bind “bent” membranes; thus, its potential as an F-actin-bundling domain (51, 82) could be an in vitro artifact often attributed to proteins with basic patches (46). Although there are reports of F-actin binding at physiological ionic strength (ca. 100 mM KCl) (82, 19), this region when expressed in isolation does not decorate F-actin in vivo.Two reports showed the IMD to be an “inverse-BAR” domain. BAR (Bin-amphipysin-Rvs) domains are found in proteins involved in endocytic trafficking, such as amphipysin and endophilin, and stabilize positively bent membranes, such as those on endocytic vesicles (31, 47). The IMD domains of both IRSp53 (70) and MIM-B (46) associate with lipids and can induce tubulations of PI(3,4,5)P3 or PI(4,5)P2-rich membranes, respectively. These tubulations are equivalent to membrane protrusions and are also referred to as negatively bent membranes. Ectopic expression of the IMD from IRSp53 (51, 70, 82, 86) or two other family members, MIM-B (11, 46) and IRTKS (52), can give rise to cells with many peripheral extensions. MIM-B is said to stimulate lamellipodia (11), while IRTKS generates “short actin clusters” at the cell periphery (52).In IRSp53 is a CRIB-like motif that mediates binding to Cdc42 (27, 38), but the function of this interaction in unclear. Cdc42 could relieve IRSp53 autoinhibition as described for N-Wasp (38), but there is little evidence for this. It has been suggested that Cdc42 controls IRSp53 localization and actin remodeling (27, 38), but another study indicated that these events are Cdc42 independent (19). IRSp53 contains a central SH3 domain that may bind proline-rich proteins, such as Dia1 (23), Mena (38), WAVE2 (49, 50, 69), and Eps8 (19, 24). However, it seems unlikely that all of these represent bona fide partners, and side-by-side comparison is provided in this study. Mena is involved in filopodium production (37), Dia1 in stress fiber formation (81), and WAVE2 in lamellipodium extension (72). Thus, Mena is a better candidate as a partner for IRSp53-mediated filopodia than Dia1 or WAVE2.There is good evidence for IRSp53 as a cellular partner for Eps8 (19). Eps8 is an adaptor protein containing an N-terminal PTB domain that can associate with receptor tyrosine kinases (65), and perhaps β integrins (13), and a C-terminal SH3 domain that can associate with Abi1 (30). Binding of the general adaptor Abi1 appears to positively regulate the actin-capping domain at the C terminus of Eps8 (18). It has been suggested that IRSp53 and Eps8 as a complex regulate cell motility, and perhaps Rac1 activation, via SOS (24); more recently, their roles in filopodium formation have been addressed (19). The involvement of IRSp53, but not MIM-B or IRTKS, in filopodium formation might be related to its role as a Cdc42 effector. We show here that, surprisingly, the CRIB motif is not essential for this activity, but rather, the ability of IRSp53 to associate via its SH3 domain is required, and that this domain is controlled by 14-3-3 binding.We have focused on the regulation of Cdc42 effectors that bind 14-3-3, including IRSp53 and PAK4, which are found as 14-3-3 targets in various proteomic projects (32, 44). In this study, we characterize the binding of 14-3-3 to IRSp53 and uncover how this activity regulates IRSp53 function. The phosphorylation-dependent 14-3-3 binding is GSK3β dependent, and 14-3-3 blocks the accessibility of both the CRIB and SH3 domains of IRSp53, thus indicating its primary function in controlling IRSp53 partners. This regulation of the SH3 domain by 14-3-3 is critical in the proper localization and termination of IRSp53 function to promote filopodium dynamics.  相似文献   

13.
14.
15.
Steve Slade  Nick Busing 《CMAJ》2002,166(11):1407-1411
BackgroundHealth systems planning is a challenging task, exacerbated by a lack of detailed information on the role played by family physicians, as indicated by practice variations across regions and demographic characteristics. Outcome measures used in past studies of family physician practice patterns were not uniform. Furthermore, past research has generally been limited to narrowly defined geographic regions. A national study of family physician practice patterns was undertaken to allow regional-level comparisons of clinical workload and range of medical services offered.MethodsThe 1997/98 National Family Physician Survey was mailed to a sample of 5198 Canadian family physicians and general practitioners (FP/GPs); the overall response rate was 58.4% (3036 questionnaires returned, of which 3004 were analyzable). Sampling strata were based on College of Family Physicians of Canada (CFPC) membership status and regions of Canada.ResultsClinical workload varied considerably across the demographic categories studied. Male physicians reported 8.9 more total weekly work hours than female physicians, but the mean number of medical and clinical services offered did not differ between the sexes. Solo practitioners reported 53.8 (95% confidence interval [CI] 52.7–55.0) total weekly work hours, whereas those practising in multidisciplinary clinics reported 45.0 (95% CI 43.2–46.8) hours. FP/GPs in the Atlantic and Prairie provinces reported 5.6 and 5.1 more weekly work hours, respectively, than the national average of 51.4 (95% CI 50.8–52.0) hours. Finally, FP/GPs who served inner-city populations reported 48.6 (95% CI 46.8–50.5) total weekly work hours, whereas those serving rural populations reported 57.0 (95% CI 54.7–59.2) hours. Mean weekly work hours were similar for all age cohorts less than 65 years. FP/GPs practising in less populated provinces and in rural areas reported the highest numbers of work hours, medical services offered and clinical procedures performed. InterpretationThese data suggest significant variations in FP/GP clinical workload in relation to key demographic variables. Physician resource planning in Canada is a challenging and inexact science. Past attempts have resulted in variable estimates of the ultimate need for physician services. There is a clear recognition that we need more information than simple head counts of physicians. We need to know, for example, what physicians do and how they work with other physicians, and we need to identify regional variations and differences in practice patterns.Past studies of family physician practice patterns have measured workload in terms of hours worked,1,2,3 number of patient visits,2,3 billings to health insurance plans4,5 and range of clinical procedures performed.5,6,7 These outcomes have been analyzed in relation to practice setting,1,2,6,7 geographic physician density,4,5 sex,1,2,3,4,5,6,7 age,1,2,4,5,7 years in practice3,6 and type of practice.1,2,3,6,7Although past studies have proven useful in describing the significant relations that exist between physician workloads and demographic characteristics, they have not addressed the broader issue of access to family physicians'' services throughout Canada. By gathering uniform information from family doctors across the country, the College of Family Physicians of Canada (CFPC) National Family Physician Survey (NFPS) addresses this information gap. In this report we present the results of the 1997/98 NFPS, describing physician workload measures in relation to a comprehensive set of demographic variables.  相似文献   

16.
We used on-line electron capture dissociation (ECD) for the large scale identification and localization of sites of phosphorylation. Each FT-ICR ECD event was paired with a linear ion trap collision-induced dissociation (CID) event, allowing a direct comparison of the relative merits of ECD and CID for phosphopeptide identification and site localization. Linear ion trap CID was shown to be most efficient for phosphopeptide identification, whereas FT-ICR ECD was superior for localization of sites of phosphorylation. The combination of confident CID and ECD identification and confident CID and ECD localization is particularly valuable in cases where a phosphopeptide is identified just once within a phosphoproteomics experiment.Phosphorylation is an important protein post-translational modification. Phosphoproteomics experiments have successfully identified thousands of phosphorylation sites, predominantly using CID with relatively low resolution ion trap detection (13). For phosphoproteomics data to be of most use to the wider biology community, two key criteria should be met: the phosphopeptide identifications should be correct, and the sites of phosphorylation should be correctly localized. In practice it is not possible to guarantee the accuracy of identifications and site localizations; however, it is possible to include some measure of the confidence in both these results for each phosphopeptide. Database search algorithms give output such as expectation values or similar scores, which can be used to gauge the strength of an identification (4, 5). Recently algorithms have been introduced that give similar confidence scores for phosphorylation site localization (2, 3, 68).Electron capture dissociation (ECD)1 is a radical-driven fragmentation technique that provides an alternative to slow heating CID fragmentation (9). In contrast to CID fragmentation, labile modifications are usually retained intact upon ECD peptide backbone cleavage. ECD has therefore been applied to the analysis of post-translationally modified proteins almost since its inception (1013). ECD efficiency has improved to the point where on-line LC-MS/MS experiments are feasible; however, the amount of precursor required for such analyses remains significantly greater than for corresponding CID experiments (1416). ECD is effectively restricted to FT-ICR mass spectrometers. Although ECD has been demonstrated in ion trap instruments, to date these demonstrations have consisted only of direct infusion of known standards (17, 18). The recently developed technique of electron transfer dissociation (ETD) has allowed similar radical fragmentation to be obtained in ion trap mass spectrometers (19). Large scale comparisons of CID and ETD have been carried out for unmodified peptides (20, 21). The increase in speed and sensitivity, albeit at the expense of resolution, has also allowed ETD to be used in phosphoproteomics analyses (22, 23). These studies demonstrated that ETD can efficiently identify phosphopeptides on a chromatographic time scale. Molina et al. (22) compared alternating CID and ETD fragmentation of the same precursors (for an unspecified number of precursors) and found that ETD gave greater peptide sequence coverage. This was assumed to result in improved phosphorylation site localization; however, neither study calculated confidence scores for site localization.The benefits of ECD fragmentation have been demonstrated for various single phosphoproteins and simple mixtures (2429); however, no large scale comparison of CID and ECD for phosphoprotein analysis has been carried out. In this context, we present a phosphoproteomics data set obtained using both CID and ECD tandem mass spectrometric techniques. Particular attention was paid to the confident localization of sites of phosphorylation within the identified phosphopeptides.  相似文献   

17.

Background

Although repeat induced abortion is common, data concerning characteristics of women undergoing this procedure are lacking. We conducted this study to identify the characteristics, including history of physical abuse by a male partner and history of sexual abuse, of women who present for repeat induced abortion.

Methods

We surveyed a consecutive series of women presenting for initial or repeat pregnancy termination to a regional provider of abortion services for a wide geographic area in southwestern Ontario between August 1998 and May 1999. Self-reported demographic characteristics, attitudes and practices regarding contraception, history of relationship violence, history of sexual abuse or coercion, and related variables were assessed as potential correlates of repeat induced abortion. We used χ2 tests for linear trend to examine characteristics of women undergoing a first, second, or third or subsequent abortion. We analyzed significant correlates of repeat abortion using stepwise multivariate multinomial logistic regression to identify factors uniquely associated with repeat abortion.

Results

Of the 1221 women approached, 1145 (93.8%) consented to participate. Data regarding first versus repeat abortion were available for 1127 women. A total of 68.2%, 23.1% and 8.7% of the women were seeking a first, second, or third or subsequent abortion respectively. Adjusted odds ratios for undergoing repeat versus a first abortion increased significantly with increased age (second abortion: 1.08, 95% confidence interval [CI] 1.04–1.09; third or subsequent abortion: 1.11, 95% CI 1.07–1.15), oral contraceptive use at the time of conception (second abortion: 2.17, 95% CI 1.52–3.09; third or subsequent abortion: 2.60, 95% CI 1.51–4.46), history of physical abuse by a male partner (second abortion: 2.04, 95% CI 1.39–3.01; third or subsequent abortion: 2.78, 95% CI 1.62–4.79), history of sexual abuse or violence (second abortion: 1.58, 95% CI 1.11–2.25; third or subsequent abortion: 2.53, 95% CI 1.50–4.28), history of sexually transmitted disease (second abortion: 1.50, 95% CI 0.98–2.29; third or subsequent abortion: 2.26, 95% CI 1.28–4.02) and being born outside Canada (second abortion: 1.83, 95% CI 1.19–2.79; third or subsequent abortion: 1.75, 95% CI 0.90–3.41).

Interpretation

Among other factors, a history of physical or sexual abuse was associated with repeat induced abortion. Presentation for repeat abortion may be an important indication to screen for a current or past history of relationship violence and sexual abuse.Repeat pregnancy termination procedures are common in Canada (where 35.5% of all induced abortions are repeat procedures)1,2 and the United States (where 48% of induced abortions are repeat procedures).3,4,5,6,7 Rates of repeat induced abortion increased in both countries for an initial period after abortion was legalized, as a result of an increase in the number of women who had access to a first, and consequently to repeat, legal induced abortion.1,6,8,9 At present, rates of initial and repeat abortion in Canada and the United States appear to be stabilizing.2,7Research concerning characteristics of women who undergo repeat induced abortions has been limited in scope. In a literature search we identified fewer than 20 studies in this area published over the past 3 decades. However, available research has shown several consistent findings. Women undergoing repeat abortions are more likely than those undergoing a first abortion to report using a method of contraception at the time of conception.7,8,10,11 In addition, women seeking repeat abortions report more challenging family situations than women seeking initial abortions: they are more likely to be separated, divorced, widowed or living in a common-law marriage, and to report difficulties with their male partner.1,5,8,11,12 They also are older,7,13 have more children1,5,13 and are more often non-white7,11,13 than women seeking initial abortions.There is little evidence to suggest that women seeking repeat abortion are using pregnancy termination as a method of birth control.1,5,6,8,11 Evidence also does not indicate that women seeking repeat abortion are psychologically maladjusted.8,13Our literature review showed that many studies of repeat abortion are 20 to 30 years old and are based on data collected when abortion was a newly legalized procedure.5,11 Furthermore, in studies of correlates of repeat abortion the investigators did not examine a range of personality characteristics that are known to influence women''s reproductive health outcomes,14,15 including attitudes about sexuality,14 health locus of control,16,17 degree of social integration,16 attitudes about contraception18,19 and history of sexual or physical abuse.20,21,22 The objective of the current study was to identify characteristics of women who undergo repeat induced abortion.  相似文献   

18.
We previously reported that CD4C/human immunodeficiency virus (HIV)Nef transgenic (Tg) mice, expressing Nef in CD4+ T cells and cells of the macrophage/dendritic cell (DC) lineage, develop a severe AIDS-like disease, characterized by depletion of CD4+ T cells, as well as lung, heart, and kidney diseases. In order to determine the contribution of distinct populations of hematopoietic cells to the development of this AIDS-like disease, five additional Tg strains expressing Nef through restricted cell-specific regulatory elements were generated. These Tg strains express Nef in CD4+ T cells, DCs, and macrophages (CD4E/HIVNef); in CD4+ T cells and DCs (mCD4/HIVNef and CD4F/HIVNef); in macrophages and DCs (CD68/HIVNef); or mainly in DCs (CD11c/HIVNef). None of these Tg strains developed significant lung and kidney diseases, suggesting the existence of as-yet-unidentified Nef-expressing cell subset(s) that are responsible for inducing organ disease in CD4C/HIVNef Tg mice. Mice from all five strains developed persistent oral carriage of Candida albicans, suggesting an impaired immune function. Only strains expressing Nef in CD4+ T cells showed CD4+ T-cell depletion, activation, and apoptosis. These results demonstrate that expression of Nef in CD4+ T cells is the primary determinant of their depletion. Therefore, the pattern of Nef expression in specific cell population(s) largely determines the nature of the resulting pathological changes.The major cell targets and reservoirs for human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) infection in vivo are CD4+ T lymphocytes and antigen-presenting cells (macrophages and dendritic cells [DC]) (21, 24, 51). The cell specificity of these viruses is largely dependent on the expression of CD4 and of its coreceptors, CCR5 and CXCR-4, at the cell surface (29, 66). Infection of these immune cells leads to the severe disease, AIDS, showing widespread manifestations, including progressive immunodeficiency, immune activation, CD4+ T-cell depletion, wasting, dementia, nephropathy, heart and lung diseases, and susceptibility to opportunistic pathogens, such as Candida albicans (1, 27, 31, 37, 41, 82, 93, 109). It is reasonable to assume that the various pathological changes in AIDS result from the expression of one or many HIV-1/SIV proteins in these immune target cells. However, assigning the contribution of each infected cell subset to each phenotype has been remarkably difficult, despite evidence that AIDS T-cell phenotypes can present very differently depending on the strains of infecting HIV-1 or SIV or on the cells targeted by the virus (4, 39, 49, 52, 72). For example, the T-cell-tropic X4 HIV strains have long been associated with late events and severe CD4+ T-cell depletion (22, 85, 96). However, there are a number of target cell subsets expressing CD4 and CXCR-4, and identifying which one is responsible for this enhanced virulence has not been achieved in vivo. Similarly, the replication of SIV in specific regions of the thymus (cortical versus medullary areas), has been associated with very different outcomes but, unfortunately, the critical target cells of the viruses were not identified either in these studies (60, 80). The task is even more complex, because HIV-1 or SIV can infect several cell subsets within a single cell population. In the thymus, double (CD4 CD8)-negative (DN) or triple (CD3 CD4 CD8)-negative (TN) T cells, as well as double-positive (CD4+ CD8+) (DP) T cells, are infectible by HIV-1 in vitro (9, 28, 74, 84, 98, 99, 110) and in SCID-hu mice (2, 5, 91, 94). In peripheral organs, gut memory CCR5+ CD4+ T cells are primarily infected with R5 SIV, SHIV, or HIV, while circulating CD4+ T cells can be infected by X4 viruses (13, 42, 49, 69, 70, 100, 101, 104). Moreover, some detrimental effects on CD4+ T cells have been postulated to originate from HIV-1/SIV gene expression in bystander cells, such as macrophages or DC, suggesting that other infected target cells may contribute to the loss of CD4+ T cells (6, 7, 32, 36, 64, 90).Similarly, the infected cell population(s) required and sufficient to induce the organ diseases associated with HIV-1/SIV expression (brain, heart, and kidney) have not yet all been identified. For lung or kidney disease, HIV-specific cytotoxic CD8+ T cells (1, 75) or infected podocytes (50, 95), respectively, have been implicated. Activated macrophages have been postulated to play an important role in heart disease (108) and in AIDS dementia (35), although other target cells could be infected by macrophage-tropic viruses and may contribute significantly to the decrease of central nervous system functions (11, 86, 97), as previously pointed out (25).Therefore, because of the widespread nature of HIV-1 infection and the difficulty in extrapolating tropism of HIV-1/SIV in vitro to their cell targeting in vivo (8, 10, 71), alternative approaches are needed to establish the contribution of individual infected cell populations to the multiorgan phenotypes observed in AIDS. To this end, we developed a transgenic (Tg) mouse model of AIDS using a nonreplicating HIV-1 genome expressed through the regulatory sequences of the human CD4 gene (CD4C), in the same murine cells as those targeted by HIV-1 in humans, namely, in immature and mature CD4+ T cells, as well as in cells of the macrophage/DC lineages (47, 48, 77; unpublished data). These CD4C/HIV Tg mice develop a multitude of pathologies closely mimicking those of AIDS patients. These include a gradual destruction of the immune system, characterized among other things by thymic and lymphoid organ atrophy, depletion of mature and immature CD4+ T lymphocytes, activation of CD4+ and CD8+ T cells, susceptibility to mucosal candidiasis, HIV-associated nephropathy, and pulmonary and cardiac complications (26, 43, 44, 57, 76, 77, 79, 106). We demonstrated that Nef is the major determinant of the HIV-1 pathogenicity in CD4C/HIV Tg mice (44). The similarities of the AIDS-like phenotypes of these Tg mice to those in human AIDS strongly suggest that such a Tg mouse approach can be used to investigate the contribution of distinct HIV-1-expressing cell populations to their development.In the present study, we constructed and characterized five additional mouse Tg strains expressing Nef, through distinct regulatory elements, in cell populations more restricted than in CD4C/HIV Tg mice. The aim of this effort was to assess whether, and to what extent, the targeting of Nef in distinct immune cell populations affects disease development and progression.  相似文献   

19.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号