首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neuroinflammation and oxidative stress play an important role in cognition deficit following chronic cerebral hypoperfusion (CCH). Luteolin, a natural flavonoid found in many plants, is known for a variety of pharmacological activities, such as its anti-inflammatory, anti-allergy, urate, anti-tumor, antibacterial, and antiviral effects. To assess whether luteolin could prevent CCH-induced cognitive dysfunction, through its anti-inflammatory and anti-oxidative-stress effects, we used enzyme-linked immunosorbent assays, enzyme activity assays, behavioral methods, immunohistochemistry, and electrophysiology to detect neuroinflammation and oxidative stress, cognition alterations, and long-term potential (LTP), in a bilateral common carotid arteries ligation (2VO) rat model. We demonstrated that CCH increased tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6), and malondialdehyde (MDA), and decreased superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. Further, it caused microglia over-activation and astrogliosis, learning and short-term memory dysfunction, and an LTP deficit. Luteolin treatment reversed CCH-induced changes. Specifically, luteolin prevented the increase of TNF-α and IL-1β, IL-6, and MDA, improved the activity of SOD and GPx, inhibited microglia over-activation and astrogliosis (particularly in the hippocampus and cortex), and ameliorated learning and short-term memory dysfunction, and LTP deficit. Thus, our study suggested that luteolin could be a preferable anti-inflammatory agent to protect cognitive function and synaptic plasticity following CCH. Luteolin could also be putative therapeutic candidate for other inflammation-related brain diseases.  相似文献   

3.
The degradation of the flavonol quercetin and the flavone luteolin by Eubacterium ramulus, a strict anaerobe of the human intestinal tract, was studied. Resting cells converted these flavonoids to 3,4-dihydroxyphenylacetic acid and 3-(3,4-dihydroxyphenyl)propionic acid, respectively. The conversion of quercetin was accompanied by the transient formation of two intermediates, one of which was identified as taxifolin based on its specific retention time and UV and mass spectra. The structure of the second intermediate, alphitonin, was additionally elucidated by 1H and 13C nuclear magnetic resonance analysis. In resting-cell experiments, taxifolin in turn was converted via alphitonin to 3,4-dihydroxyphenylacetic acid. Alphitonin, which was prepared by enzymatic conversion of taxifolin and subsequent purification, was also transformed to 3,4-dihydroxyphenylacetic acid. The coenzyme-independent isomerization of taxifolin to alphitonin was catalyzed by cell extract or a partially purified enzyme preparation of E. ramulus. The degradation of luteolin by resting cells of E. ramulus resulted in the formation of the intermediate eriodictyol, which was identified by high-performance liquid chromatography and mass spectrometry analysis. The observed intermediates of quercetin and luteolin conversion suggest that the degradation pathways in E. ramulus start with an analogous reduction step followed by different enzymatic reactions depending on the additional 3-hydroxyl group present in the flavonol structure.  相似文献   

4.
目的:研究Iuteolin对链脲佐菌素诱导的Ⅰ型糖尿病大鼠心功能及心肌线粒体氧化应激的影响。方法:雄性SD大鼠,随机分成正常对照组,Iuteolin对照纽,糖尿病模型组,低剂量Iuteolin(10ms/(kg·d))灌胃治疗组,高剂量Iuteolin(100ms/(kg·d))灌胃治疗组。各组大鼠饲养8周后,测体重、血糖、心功能、左心室重量、心肌胶原含量及活性氧自由基(ROS)水平,分离心肌线粒体检测ROS水平、超氧化物歧化酶(SOD)活性及线粒体肿胀程度。结果:Iuteolin处理对糖尿病大鼠血糖无明显影响,但可减少糖尿病引起的体重下降。高剂量Iuteolin可显著减小糖尿病大鼠心室与体重比值,提高左室发展压,降低左室舒张末压。高剂量Iuteolin治疗后,糖尿病大鼠心肌ROS及胶原含量。心肌线粒体ROS水平与肿胀程度均明显下降,心肌线粒体SOD活性明显增加。结论:Iuteolin处理可显著改善糖尿病大鼠心功能.其机制可能与减轻心肌线粒体氧化应激及抑制线粒体肿胀有关。  相似文献   

5.
木犀草素对金黄色葡萄球菌的抑菌活性及其机制   总被引:10,自引:0,他引:10  
王倩  谢明杰 《微生物学报》2010,50(9):1180-1184
【目的】研究木犀草素对金黄色葡萄球菌的抑制活性及其机制。【方法】利用2,3,5-氯化三苯基四氮唑(TTC)染色,细胞膜渗透性测定,SDS-PAGE蛋白谱变化,4′,6-二脒基-2-苯基吲哚(DAPI)荧光染色法等对木犀草素的抑菌活性及其机制进行研究。【结果】木犀草素能影响金黄色葡萄球菌细胞膜的通透性,木犀草素作用16h,菌体可溶性蛋白总量减少64.54%,DNA含量减少48.44%,RNA含量减少39.35%,木犀草素的浓度为1.6mg/mL时,拓扑异构酶I和II的活性可完全被抑制。【结论】木犀草素有明显的抑菌活性,其抑菌机制主要是通过抑制DNA拓扑异构酶的活性,进而影响菌体核酸及蛋白质的合成来实现的。  相似文献   

6.
The objectives of present study were to investigate whether luteolin affects procoagulant proteinase activity and fibrin clot formation and influences thrombosis and coagulation in Sprague–Dawle rats. Luteolin significantly inhibited the enzymatic activity of thrombin and FXa activity by 29.1% and 16.2%. Luteolin also inhibited fibrin polymer formation in turbidity and microscopic analysis using fluorescent conjugate. Coagulation assay of luteolin was found to prolong activated partial thromboplastin time and prothrombin time. Moreover, luteolin protected the development of oxidative stress induced thrombosis in the FeCl3‐induced carotid arterial thrombus model. This study demonstrated that luteolin may be useful by reducing or preventing thrombotic challenge and can help us better understand the antithrombotic action of luteolin.  相似文献   

7.
8.
‘Don''t eat me’ signal of CD47 is activated via its interaction with SIRPα protein on myeloid cells, especially phagocytic cells, and prevents malignant cells from anti-tumor immunity in which pyroglutamate modification of CD47 by glutaminyl-peptide cyclotransferase-like protein (isoQC) takes an important part evidenced by our previous report that isoQC is an essential regulator for CD47-SIRPα axis with a strong inhibition on macrophage-mediated phagoctyosis. Therefore, we screened for potential isoQC inhibitors by fluorescence-activated cell sorting assay and identified luteolin as a potent compound that blocked the pyroglutamation of CD47 by isoQC. We further demonstrated that luteolin directly bound to isoQC using pull-down assay and isothermal calorimetric (ITC) assay. In consistency, we showed that luteolin markedly abrogated the cell-surface interaction between CD47 and SIRPα in multiple myeloma H929 cells and consequently promoted the macrophage-mediated phagocytosis. Collectively, our study discovered a promising lead compound targeting isoQC, luteolin, which functions distinctly from current CD47 antibody-based drugs and therefore may potentially overcome the clinical side effects associated with CD47 antibody treatment-induced anemia.Keyword: Luteolin, CD47-SIRPα, isoQC, Phagocytosis, Tumor immunotherapy  相似文献   

9.
Luteolin inhibits endothelin-1 secretion in cultured endothelial cells   总被引:1,自引:0,他引:1  
We discovered that luteolin, a typical flavonoid contained in various kinds of plants, inhibits the secretion and gene expression of endothelin-1 (ET-1), a potent vasoconstrictor regulating blood pressure, in porcine aortic endothelial cells. Its ED50 was about 10 microM. In addition, the inhibition of ET-1 by a glycoside compound of luteolin (luteolin-6-C-glucoside) was weak.  相似文献   

10.
Twenty-one naturally occurring flavonoids were tested for inhibitory activities against alpha-glucosidase (EC 3.2.1.20) and alpha-amylase (EC 3.2.1.1). Luteolin, amentoflavone, luteolin 7-O-glucoside, and daidzein were the strongest inhibitors among the compounds tested. Luteolin inhibited alpha-glucosidase by 36% at the concentration of 0.5 mg/ml and was stronger than acarbose, the most widely prescribed drug, in inhibitory potency, suggesting that it has the possibility to effectively suppress postprandial hyperglycemia in patients with non-insulin dependent diabetes mellitus. Luteolin also inhibited alpha-amylase effectively although it was less potent than acarbose. The clinical value of luteolin needs to be further evaluated.  相似文献   

11.
Oxidative stress has been implicated in cardiac remodeling (cardiac fibrosis and hypertrophy), which impairs cardiac function and metabolism; therefore, it is anticipated antioxidative compounds will have protective properties against cardiac remodeling. Luteolin (3’,4’,5,7-tetrahydroxyflavone), a widely distributed flavonoid found in many herbal extracts including celery, green pepper, perilla leaves and seeds, and chamomile, is a known to be a potent antioxidant and was previously demonstrated to exert an antifibrotic effect in the lungs and the liver. In this study, we clearly demonstrate that oral pretreatment with the higher-luteolin diet (0.035% (wt/wt)) protected against cardiac fibrosis and hypertrophy as well as a hyperoxidative state in Ang II-infused rats. In cardiac tissue, increased gene expression levels of TGFβ1, CTGF, Nox2, Nox4, ANP, and BNP induced by Ang II were restored by oral pretreatment of this high-luteolin diet. In cultured rat cardiac fibroblasts, H2O2-induced TGFβ1 expression and the phosphorylation of JNK were suppressed by luteolin pretreatment. In conclusion, food-derived luteolin has protective actions against Ang II-induced cardiac remodeling, which could be mediated through attenuation of oxidative stress.  相似文献   

12.
13.
The NLRP3 inflammasome is a caspase-1 containing multi-protein complex that controls the release of IL-1β and plays important roles in the innate immune response. Since NLRP3 inflammasome is implicated in the pathogenesis of a variety of diseases, it has become an increasingly interested target in developing therapies for multiple diseases. We reported the current study to determine how luteolin, a natural phenolic compound found in many vegetables and medicinal herbs, would modulate NLRP3 inflammasome in both the in vivo and in vitro settings. First, we found that a high-fat diet upregulated mRNA expression of NLRP3 inflammasome components Asc and Casp1 in adipose tissue of ovariectomized mice, which were greatly reduced by dietary supplementation with luteolin. Of note, Asc and Casp1 expression in adipose tissue correlated with mRNA levels of Adgre1 encoding F4/80, an established marker for mature macrophages. We also demonstrated that luteolin inhibited NLRP3 inflammasome-derived caspase-1 activation and IL-1β secretion in J774A.1 macrophages upon diverse stimuli including ATP, nigericin, or silica crystals. Luteolin inhibited the activation step of NLRP3 inflammasome by interfering with ASC oligomerization. Taken together, these findings suggest that luteolin supplementation may suppress NLRP3 induction and activation process and thus potentially would be protective against NLRP3-mediated inflammatory diseases.  相似文献   

14.
Uncontrolled proliferation, a major feature of cancer cells, is often triggered by the malfunction of cell cycle regulators such as protein kinases. Recently, cell cycle-related protein kinases have become attractive targets for anti-cancer therapy, because they play fundamental roles in cellular proliferation. However, the protein kinase-targeted drugs that have been developed so far do not show impressive clinical results and also display severe side effects; therefore, there is undoubtedly a need to investigate new drugs targeting other protein kinases that are critical in cell cycle progression. Vaccinia-related kinase 1 (VRK1) is a mitotic kinase that functions in cell cycle regulation by phosphorylating cell cycle-related substrates such as barrier-to-autointegration factor (BAF), histone H3, and the cAMP response element (CRE)-binding protein (CREB). In our study, we identified luteolin as the inhibitor of VRK1 by screening a small-molecule natural compound library. Here, we evaluated the efficacy of luteolin as a VRK1-targeted inhibitor for developing an effective anti-cancer strategy. We confirmed that luteolin significantly reduces VRK1-mediated phosphorylation of the cell cycle-related substrates BAF and histone H3, and directly interacts with the catalytic domain of VRK1. In addition, luteolin regulates cell cycle progression by modulating VRK1 activity, leading to the suppression of cancer cell proliferation and the induction of apoptosis. Therefore, our study suggests that luteolin-induced VRK1 inhibition may contribute to establish a novel cell cycle-targeted strategy for anti-cancer therapy.  相似文献   

15.
Luteolin, 3′,4′,5,7-tetrahydroxyflavone, has been shown to possess antioxidant, anti-inflammation and anti-cancer properties. However, its role in lung cancer remains poorly understood. Here we examined the anti-tumorigenic role of luteolin in a commonly used lung cancer cell line. Luteolin inhibited the growth of A549 cells by inducing G1 phase cell cycle arrest and apoptosis. Furthermore, stress fiber assembly and cell migration in A549 cells was markedly suppressed by luteolin.  相似文献   

16.
Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1.  相似文献   

17.
He D  Ma X  Chen Y  Cai Y  Ru X  Bruce IC  Xia Q  Shi G  Jin J 《The FEBS journal》2012,279(10):1834-1843
Luteolin is an antioxidative, antitumor and anti-inflammatory flavone. It has been shown to reduce endothelial dysfunction, but the mechanism is not clear. We set out to explore the effects of luteolin on apoptosis and its mechanism of action in endothelial cells. The effect of luteolin on pyrogallol-induced superoxide stress and the subsequent apoptosis was studied in the mouse heart capillary endothelial cell line H5V and human umbilical vein endothelial cells, by the use of flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, Hoechst staining, and western blot. Pyrogallol (0-400 μm) dose-dependently induced reactive oxygen species production, cytotoxicity, an annexin V-fluorescein isothiocyanate increase, mitochondrial transmembrane depolarization and DNA condensation in both H5V and human umbilical vein endothelial cells; these actions were reversed by luteolin (0.78-50 μm) in a concentration-dependent manner. Luteolin suppressed the poly (ADP-ribose) polymerase activation, caspase-8 cleavage and p38 mitogen-activated protein kinase activation triggered by pyrogallol, and stimulated the extracellular signal-regulated kinase signaling pathway to counteract the pyrogallol-induced apoptotic signals. Luteolin is an effective agent for the protection of endothelial cells from superoxide stress-induced apoptosis via the extracellular signal-regulated kinase signaling pathway.  相似文献   

18.
Tsou MF  Chen GW  Hung CF  Yeh FT  Chang HL  Lu HF  Chung JG 《Microbios》2001,104(408):87-97
Growth inhibition and arylamine N-acetyltransferase (NAT) activity in Neisseria gonorrhoeae were inhibited by luteolin, a drug which originated from herbs. The growth inhibition was based on changes in optical density (OD) using a spectrophotometer, and arylamine NAT activity with 2-aminofluorene (2-AF) was determined using high pressure liquid chromatography. The inhibition of growth in N. gonorrhoeae demonstrated that luteolin elicited a dose-dependent growth inhibition in the N. gonorrhoeae cultures. Suspensions of N. gonorrhoeae with or without specific concentrations of luteolin cotreatment showed different percentages of 2-AF acetylation. The data indicated that there was reduced NAT activity associated with increased levels of luteolin in N. gonorrhoeae suspensions. Time-course experiments showed that NAT activity measured from intact N. gonorrhoeae cells was inhibited by luteolin for at least 4 h. Using standard steady-state kinetic analysis, it was demonstrated that luteolin was a possible uncompetitive inhibitor to NAT activity in N. gonorrhoeae. This report is the first to show that luteolin can inhibit N. gonorrhoeae NAT activity.  相似文献   

19.
Endothelial insulin resistance is tightly associated with diabetic cardiovascular complication, and it is well known that inflammation plays an important role in the development of insulin resistance. Luteolin, a flavonoid abundant in some medical and eatable plants, is a potent inhibitor of inflammation. It is also reported that luteolin exhibited some chemoprotection capability to the endothelial integrity. This study aims to clarify whether the anti-inflammatory potency of luteolin contributes to amelioration of insulin resistance in the endothelium. Palmitate (PA) stimulation markedly reduced insulin-mediated endothelium-dependent relaxation in rat aorta, while luteolin pretreatment effectively reversed the effects of palmitate in a concentration-dependent manner. PA stimulation also evoked inflammatory response in endothelial cells. When the cells were pretreated with luteolin, IKKβ phosphorylation were reduced, which, in turn, blocked the NF-κB activation through attenuating P65 phosphorylation. At the same time, it was also found that the gene over-expressions for TNF-α and IL-6 were also reduced by luteolin pretreatment. When endothelial cells were stimulated with PA, the insulin signaling cascades were impaired with reduced insulin-dependent production of NO. Again, pretreatment of luteolin could effectively reverse the effects of PA. Luteolin modulated the Ser/Thr phosphorylation of insulin receptor substrates-1 and restored downstream Akt/eNOS activation, resulting in increased NO production in the presence of insulin. In conclusion, these results suggested that luteolin ameliorated inflammation related endothelial insulin resistance in an IKKβ/IRS-1/Akt/eNOS-dependent pathway.  相似文献   

20.
During a chemosystematic survey of 38 representative species of the Juncaceae for leaf and stem flavonoids, the 5-methyl ether of luteolin was discovered for the first time in plants. It occurs both free and as the 7-glucoside; its identity was confirmed by synthesis. Flavone sulphates were also found in the family and the 7-glucosidesulphates of luteolin and chrysoeriol were characterised for the first time. 7,3′,4′-Trihydroxyflavone and its 7-glucoside, not previously reported in the monocotyledons, were found in three species. The presence of luteolin 5-methyl ether or its glucoside in 70% of the species surveyed serves to distinguish the Juncaceae from the morphologically related Centrolepidaceae, Restionaceae and Thurniaceae. Flavone C-glycosides, common in grasses and sedges, were found only in Prionium, a genus which on anatomical grounds is anomalous in the Juncaceae. Among other phenolics detected during the survey, the uncommon 7,8-dihydroxycoumarin, daphnetin, was identified in Juncus effusus and its 8-methyl ether in four Luzula species. Taken together, these chemical findings show that the Juncaceae are very distinctive in their phenolic pattern and confirm the correctness of assigning them an isolated position in a separate order, the Juncales. The results indicate that the Juncaceae are chemically specialized, in spite of the facts that the family has been regarded as ancestral to the Cyperaceae and Gramineae and that they have been assigned a low advancement index by Sporne.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号