首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
IL-5 plays important roles in eosinophil differentiation, expansion, and recruitment. The regulation of IL-5 seems critical for the treatment of eosinophil-mediated allergic reactions. However, the precise mechanisms for IL-5 regulation remain unknown. In this study, we investigated how IL-5 production is regulated. The transduction of GATA-3 into a murine T cell hybridoma resulted in acquiring the ability to produce IL-5 in response to an antigenic stimulus like Th2 cells. This production was dependent on the cAMP-PKA pathway, but not on p38 activation. Transduction of NIK largely impaired IL-5 production. RelA and RelB similarly impaired IL-5 production. RelA decreased not only IL-5 protein amount but mRNA. RelA also inhibited Il5-luciferase reporter activity. The transduction of GATA-3 decreased the expression of Tbx21 and Eomes, but the additional transduction of RelA abrogated the decreased expression of GATA-3-induced Tbx21 and Eomes. Furthermore, the transduction of T-bet or Eomes into the GATA-3-transduced T cell hybridoma impaired IL-5 production. These results suggested that strong enhancement of the NFκB pathway downregulates IL-5 production and upregulates T-box protein expression to shift an immune response from Th2 to inflammatory Th1.  相似文献   

2.
T-cells play an important role in host immunity against invading pathogens. Determining the underlying regulatory mechanisms will provide a better understanding of T-cell-derived immune responses. In this study, we have shown the differential regulation of IL-6 and CXCL8 by NF-κB and NFAT in Jurkat T-cells, in response to PMA, heat killed Escherichia coli and calcium. CXCL8 was closely associated with the activation pattern of NFAT, while IL-6 expression was associated with NF-κB. Furthermore, increasing the intracellular Ca2+ concentration by calcium ionophore treatment of the cells resulted in NFAT induction without affecting the NF-κB activity. Interestingly, NF-κB activation by heat killed E. coli, as well as CXCL8 and IL-6 expression was significantly suppressed following addition of the calcium ionophore. This indicates that calcium plays an important role in regulating protein trafficking and T-cell signalling, and the subsequent inflammatory gene expression infers an involvement of NFAT in CXCL8 regulation.Understanding these regulatory patterns provide clarification of conditions that involve altered intracellular signalling leading to T-cell-derived cytokine expression.  相似文献   

3.
4.
Ferulic acid (FA) is a phenol compound found in plants that has anti-inflammatory properties. Indoleamine 2, 3-dioxygenase (IDO) is a tryptophan catabolic enzyme induced in immune cells, including glial cells, during inflammation. Enhanced IDO expression leads to reduced tryptophan levels and increased levels of toxic metabolites, including quinolinic acid. Therefore, inhibition of IDO expression may be effective in suppressing progression of neurodegenerative diseases. In this study, we examined the effect of FA in microglial cells on IDO expression levels and related inflammatory signal molecules. FA suppressed LPS-induced IDO mRNA expression and also suppressed nuclear translocation of NF-κB and phosphorylation of p38 MAPK. However, FA did not affect the production of LPS-induced inflammatory mediators and phosphorylation of JNK. Our results indicate that FA suppresses LPS-induced IDO mRNA expression, which may be mediated by inhibition of the NF-κB and p38 MAPK pathways in microglial cells.  相似文献   

5.
Calpain, a calcium-dependent cysteine protease, is reportedly involved in the pathophysiology of autoimmune diseases such as rheumatoid arthritis (RA). In addition, autoantibodies against calpastatin, a natural and specific inhibitor of calpain, are widely observed in RA. We previously reported that E-64-d, a membrane-permeable cysteine protease inhibitor, is effective in treating experimental arthritis. However, the exact role of the calpastatin-calpain balance in primary inflammatory cells remains unclear. Here we investigated the effect of calpain-specific inhibition by overexpressing a minimal functional domain of calpastatin in primary helper T (Th) cells, primary fibroblasts from RA patients, and fibroblast cell lines. We found that the calpastatin-calpain balance varied during Th1, Th2, and Th17 development, and that overexpression of a minimal domain of calpastatin (by retroviral gene transduction) or the inhibition of calpain by E-64-d suppressed the production of IL-6 and IL-17 by Th cells and the production of IL-6 by fibroblasts. These suppressions were associated with reductions in RORγt expression and STAT3 phosphorylation. Furthermore, inhibiting calpain by silencing its small regulatory subunit (CPNS) suppressed Th17 development. We also confirmed that overexpressing a minimal domain of calpastatin suppressed IL-6 by reducing NF-κB signaling via the stabilization of IκBα, without affecting the upstream signal. Moreover, our findings indicated that calpastatin overexpression suppressed IL-17 production by Th cells by up-regulating the STAT5 signal. Finally, overexpression of a minimal domain of calpastatin suppressed IL-6 production efficiently in primary fibroblasts derived from the RA synovium. These findings suggest that inhibiting calpain by overexpressing a minimal domain of calpastatin could coordinately suppress proinflammatory activities, not only those of Th cells but also of synovial fibroblasts. Thus, this strategy may prove viable as a candidate treatment for inflammatory diseases such as RA.  相似文献   

6.
Casuarinin is a naturally occurring tannin that is isolated from the leaves of Hippophae rhamnoides. It has been shown to have anti-oxidant, anti-cancer, anti-viral, and anti-inflammatory activities. The aim of this study was to investigate the possible mechanism by which casuarinin inhibits TNF-α/IFN-γ-induced Th2 chemokines expression in the human keratinocytes cell line HaCaT. We found that casuarinin suppressed TNF-α/IFN-γ-induced expression of TARC and MDC mRNA and protein in HaCaT cells. Casuarinin significantly inhibited TNF-α/IFN-γ-induced activation of NF-κB, STAT1, and p38 MAPK. Furthermore, we observed that p38 MAPK contributes to inhibition of TNF-α/IFN-γ-induced TARC and MDC production by blocking NF-κB and STAT1 activation in HaCaT cells. Taken together, these results suggest that casuarinin may exert anti-inflammatory responses by suppressing TNF-α/IFN-γ-induced expression of TARC and MDC via blockage of p38 MAPK activation and subsequent activation of NF-κB and STAT1. We propose that it could therefore be used as a therapeutic agent against inflammatory skin diseases.  相似文献   

7.
IL-15 plays many important roles within the immune system. IL-15 signals in lymphocytes via trans presentation, where accessory cells such as macrophages and dendritic cells present IL-15 bound to IL-15Rα in trans to NK cells and CD8(+) memory T cells expressing IL-15/IL-2Rβ and common γ chain (γ(c)). Previously, we showed that the prophylactic delivery of IL-15 to Rag2(-/-)γ(c)(-/-) mice (mature T, B, and NK cell negative) afforded protection against a lethal HSV-2 challenge and metastasis of B16/F10 melanoma cells. In this study, we demonstrated that in vivo delivery of an adenoviral construct optimized for the secretion of human IL-15 to Rag2(-/-)γ(c)(-/-) mice resulted in significant increases in spleen size and cell number, leading us to hypothesize that IL-15 signals differently in myeloid immune cells compared with lymphocytes, for which IL-15/IL-2Rβ and γ(c) expression are essential. Furthermore, treatment with IL-15 induced RANTES production by Rag2(-/-)γ(c)(-/-) bone marrow cells, but the presence of γ(c) did not increase bone marrow cell sensitivity to IL-15. This IL-15-mediated RANTES production by Rag2(-/-)γ(c)(-/-) bone marrow cells occurred independently of the IL-15/IL-2Rβ and Jak/STAT pathways and instead required IL-15Rα signaling as well as activation of JNK and NF-κB. Importantly, we also showed that the trans presentation of IL-15 by IL-15Rα boosts IL-15-mediated IFN-γ production by NK cells but reduces IL-15-mediated RANTES production by Rag2(-/-)γ(c)(-/-) myeloid bone marrow cells. Our data clearly show that IL-15 signaling in NK cells is different from that of myeloid immune cells. Additional insights into IL-15 biology may lead to novel therapies aimed at bolstering targeted immune responses against cancer and infectious disease.  相似文献   

8.
9.
Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKBα. Accordingly, DP treatment inhibited TNFα-stimulated increases in NF-κB function and expression of NF-κB target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.  相似文献   

10.
Acute asthma exacerbations are frequently associated with respiratory viral infections. Although impaired production of type III IFNs (IFN-λs) is related to the severity of asthma exacerbation, the mechanisms underlying deficient IFN-λ production in asthma are poorly understood. Airway epithelial cells were stimulated in vitro with a synthetic mimetic of viral double-stranded RNA (dsRNA). IL-13, a crucial cytokine responsible for asthma pathogenesis, suppressed dsRNA-induced expression of IFN-λs, and JAK inhibitor AG490 prevented the suppression by IL-13. IL-13 per se did not affect IFN-λ production or the expressions of membrane dsRNA receptor TLR3 and of cytoplasmic receptors RIG-I and MDA5. IL-13-deficient mice exhibited more enhanced IFN-λ expression after intratracheal instillation of dsRNA than wild-type mice, whereas IFN-λ expression after dsRNA was absent in the mouse lungs of the OVA-induced asthma model. These findings suggest that IL-13 may be a putative cytokine suppressing IFN-λ production against airway viral infections in asthmatics.  相似文献   

11.
12.
Hippophae rhamnoides has been extensively used in oriental traditional medicines for treatment of asthma, skin diseases, gastric ulcers, and lung disorders. In this study, we isolated casuarinin from the leaves of H.rhamnoides and examined the effect of casuarinin on the TNF-α-induced ICAM-1 expression in a human keratinocytes cell line HaCaT. Pretreatment with casuarinin inhibited TNF-α-induced protein and mRNA expression of ICAM-1 and subsequent monocyte adhesiveness in HaCaT cells. Casuarinin significantly inhibited TNF-α-induced NF-κB activation. In addition, casuarinin inhibited activation of ERK and p38 MAPK in a dose-dependent manner. Furthermore, pretreatment with casuarinin decreased TNF-α-induced pro-inflammatory mediators, such as IL-1β, IL-6, IL-8, and MCP-1. These results demonstrated that casuarinin exerts its anti-inflammatory activity by suppressing TNF-α-induced expression of ICAM-1 and pro-inflammatory cytokines/chemokines via blockage of activation of NF-κB and ERK/p38 MAPK and can be used as a therapeutic agent against inflammatory skin diseases.  相似文献   

13.
The GRB2 associated binder 1 (GAB1) is an essential docking/adaptor protein for transmitting intracellular signals of the MET tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). We found that in response to hours of HGF/SF treatment, the GAB1 protein level is degraded by a mechanism involving MET activity and the proteasomal machinery. We also showed that GAB1 is both multi- and poly-ubiquitinated in a CBL-dependent manner. A long term exposure to HGF/SF caused a more sustained down-regulation of GAB1 than of MET, associated with a loss of reactivation of the ERK MAP kinases to subsequent acute ligand treatment. These data demonstrate that GAB1 is ubiquitinated by CBL and degraded by the proteasome, and plays a role in negative-feedback regulation of HGF/SF–MET signaling.  相似文献   

14.
Bacterial neuraminidase, a sialic acid-degrading enzyme, is one of the virulent factors produced in pathogenic bacteria like as other bacterial components. However little is known about whether bacterial neuraminidase can initiate or modify a cellular response, such as cytokine production, in epithelial cells at infection and inflammation. We demonstrate here that bacterial neuraminidase, but not heat-inactivated neuraminidase, up-regulates expression of interleukin-8 (IL-8) mRNA and protein in lung epithelial A549 and NCI-H292 cells. We also show that bacterial neuraminidase significantly up-regulates IL-8 promoter activity as well as nuclear factor-kappaB (NF-κB) reporter activity. Moreover, inhibition of NF-κB signaling suppressed IL-8 mRNA expression induced by bacterial neuraminidase. Taken together, desialylation-induced IL-8 production in lung epithelial cells may play an important role in infection-associated inflammatory events.  相似文献   

15.
16.
17.
18.
19.
Chan YC  Leung PS 《Regulatory peptides》2011,166(1-3):128-134
Angiotensin II is a vasoactive peptide that controls blood pressure and homeostasis. Emerging evidence shows that locally generated angiotensin II plays a crucial role in normal physiology, as well as pathophysiological conditions such as pancreatitis. We recently reported that angiotensin II activates pancreatic NFκB in obstructive pancreatitis. However, the specific cell type responsible for this activation remains unclear. In this study, we investigated whether pancreatic acinar cells respond to angiotensin II. These cells are the most abundant pancreatic cells and the most vulnerable to pancreatitis. Pancreatic acinar AR42J cells were used as an in vitro model of pancreatic inflammation. Our results demonstrated that treatment with caerulein, a cholecystokinin receptor agonist, induced hypersecretion and NFκB activation, as demonstrated by elevated amylase secretion and degradation of inhibitor of NFκB (IκBβ). Angiotensin II, either alone or in combination with caerulein, augmented IκBβ degradation. Pre-treatment with losartan, an antagonist of the angiotensin type I (AT1) receptor, abolished NFκB activation by angiotensin II and caerulein in a dose-dependent manner. Treatment with PD123319, a blocker of the angiotensin type II (AT2) receptor, enhanced the activation of NFκB by angiotensin II and caerulein. Preliminary data further demonstrated that angiotensin II could extend caerulein-induced ERK1/2 activation in acinar cells. These results indicated that inflammation triggered by hyperstimulation of pancreatic acinar cells is enhanced by angiotensin II, via the AT1 receptor. In contrast, stimulation of the AT2 receptor protects against caerulein-induced NFκB activation. The differential roles of the AT1 and AT2 receptors might be useful in developing potential therapies for pancreatic inflammation.  相似文献   

20.
AimsMonocyte chemotactic protein-1 (MCP-1) plays an important role in recruiting monocytes/macrophages to injured tubulointerstitial tissue. The present study examined whether indoxyl sulfate, a uremic toxin, regulates renal expression of MCP-1.Main methodsThe effect of indoxyl sulfate on the expression of MCP-1 was determined using human proximal tubular cells (HK-2 cells) and following animals: (1) Dahl salt-resistant normotensive rats (DN), (2) Dahl salt-resistant normotensive indoxyl sulfate-administered rats (DN + IS), (3) Dahl salt-sensitive hypertensive rats (DH), and (4) Dahl salt-sensitive hypertensive indoxyl sulfate-administered rats (DH + IS).Key findingsDN + IS, DH, and DH + IS rats showed significantly increased mRNA expression of MCP-1 in the kidneys compared with DN rats. DH + IS rats tended to show increased mRNA expression of MCP-1 in the kidneys compared with DH rats. Immunohistochemistry demonstrated the stimulatory effects of indoxyl sulfate on MCP-1 expression and monocyte/macrophage infiltration in the kidneys. Indoxyl sulfate upregulated mRNA and protein expression of MCP-1 in HK-2 cells. Indoxyl sulfate induced activation of ERK, p38, and JNK as well as of NF-κB and p53 in HK-2 cells. An antioxidant, and inhibitors of NF-κB, p53, ERK pathway (MEK1/2), and JNK suppressed indoxyl sulfate-induced mRNA expression of MCP-1 in HK-2 cells.SignificanceIndoxyl sulfate upregulates renal expression of MCP-1 through production of reactive oxygen species (ROS), and activation of NF-κB, p53, ERK, and JNK in proximal tubular cells. Thus, accumulation of indoxyl sulfate in chronic kidney disease might be involved in the pathogenesis of tubulointerstitial injury through induction of MCP-1 in the kidneys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号