首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The gene encoding the human NAD+-dependent 15-hydroxyprostaglandin dehydrogenase, designated type-I 15-PGDH, was mapped to chromosome 4 by analyzing its segregation in a panel of human-hamster somatic cell hybrids. This gene was further localized to bands 4q34–q35 by in situ hybridization on human chromosomes. Received: 7 October 1996  相似文献   

2.
Summary Tenascin (TN) is a hexameric extracellular matrix glycoprotein that is highly expressed in solid tumors but has a restricted distribution in normal adult tissues. Each TN subunit is composed of segments with high homology to the sequences of epidermal growth factor, fibronectin and fibrinogen. Furthermore, it has been suggested that TN could modulate epithelial-mesenchymal and neuronal-glial interactions. Here, using a cDNA probe to human TN, we have carried out Southern blot analysis of the genomic DNAs from a panel of human-hamster somatic cell hybrids carrying different complements of human chromosomes. The results demonstrate that the human TN gene is located on chromosome 9. Furthermore, in situ hybridization studies demonstrate that human TN is located at 9q32–q34.  相似文献   

3.
Summary The human progesterone receptor gene was mapped by in situ hybridization using two cDNA probes corresponding to the 5′ and 3′ part of the coding sequence. This gene was localized to 11q22-q23.  相似文献   

4.
Summary A complementary cDNA clone (900 bp) representing the 3 untranslated region and almost the entire coding sequence of the human erythrocyte membrane glycophorin C has been used to determine the chromosomal location of the blood group Gerbich locus by in situ hybridization. The results indicate that this locus is assigned to the region q14–q21 of chromosome 2.  相似文献   

5.
Summary In situ hybridisation using a biotinylated 1.8kb human cDNA clone in both normal and structurally abnormal chromosomes supports regional localisation of the gene for human C1-inhibitor to chromosome 11q11-q13.11.  相似文献   

6.
Summary Epidermolytic palmoplantar keratoderma (EPPK) (Vörner-Unna-Thost) is an autosomal dominantly inherited skin disease of unknown etiology characterized by diffuse severe hyperkeratosis of the palms and soles and, histologically, by cellular degeneration. We have mapped a gene for EPPK to chromosome 17q11–q23, with linkage analysis using microsatellite DNA-polymorphisms, in a single large family of 7 generations. A maximum lod score of z=6.66 was obtained with the probe D17S579 at a recombination fraction of =0.00. This locus maps to the same region as the type I (acidic) keratin gene cluster. Keratins, members of the intermediate filament family, the major proteins of the cytoskeleton in epidermis, are differentially expressed in a tissue-specific manner. One acidic keratin, keratin 9 (KRT9), is expressed only in the terminally differentiated epidermis of palms and soles. The KRT9 gene has not yet been cloned; however, since the genes for most acidic keratins are clustered, it is highly probable that it too will map to this region. We therefore propose KRT9 as the candidate gene for EPPK.  相似文献   

7.
Sublocalization of the human protein C gene on chromosome 2q13–q14   总被引:3,自引:2,他引:1  
Summary The localization of human protein C gene on chromosome 2 was investigated by in situ hybridization using a partial cDNA for protein C. Silver-grain analysis indicates that the protein C gene is located on 2q13-q14.  相似文献   

8.
Autosomal dominant juvenile open angle glaucoma (JOAG) is an early-onset form of primary open angle glaucoma (POAG), which has been linked to chromosome 1q21–q31. Recently, mutations in the trabecular meshwork inducible glucocorticoid response gene (TIGR), one of the candidate genes mapped in this region, were identified in glaucoma patients of several families. We screened for mutations of the TIGR gene in two German families with JOAG and in 100 unselected sporadic cases of POAG. In the first family we identified a Pro370Leu mutation and in the second family a Gly367Arg mutation cosegregating with the glaucoma phenotype. No pathogenic mutation was found in 100 sporadic cases but a Tyr347Tyr polymorphism was found in two patients. Furthermore, fluorescence in situ hybridization (FISH) analysis was used to map a TIGR-specific yeast artificial chromosome to 1q24.3–q25.2. Received: 19 June 1997 / Accepted: 12 August 1997  相似文献   

9.
10.
Large-scale physical mapping of the porcine genome has been limited because up to now no suitable genomic libraries for this purpose have been available. Therefore, we have constructed a yeast artificial chromosome (YAC) library from porcine lymphocytes. The library was cloned in the amplifiable vector pCGS966. A total of 10080 YAC clones was obtained and has been ordered into 105 96-well microtiter plates. An average insert size of 300 kb was calculated from the analysis of 78 randomly selected clones, giving a onefold coverage of the porcine genome. To analyze the complexity, we have screened the library for five different genes and isolated four different clones containing parts of three of these genes. One YAC clone harboring parts of the porcine cardiac muscle ryanodine receptor (RYR2) gene allowed us to assign this locus to Chromosome (Chr) 14q22-q23. The data were confirmed by PCR analysis of a rodent-porcine hybrid cell panel.  相似文献   

11.
The human aggrecan gene (AGC1) has been localized to 15q25q26.2 by in situ hybridization. Although no genetic diseases of connective tissue map to this location, the malignant melanoma-associated surface antigen mel-CSPG is located here; mel-CSPG is a chondroitin sulfate proteoglycan. This raises the possibility that AGC1 and mel-CSPG may be the same gene.  相似文献   

12.
Chromosome 15 is frequently involved in the formation of structural rearrangements. We report the molecular characterisation of 16 independent interstitial duplications, including those of one individual who carried a duplication on both of her chromosomes 15, and three interstitial triplications of the Prader-Willi/Angelman syndrome critical region (PWACR). In all probands except one, the rearrangement was maternal in origin. In one family, the duplication was paternal in origin, yet appeared to segregate in a sibship of three with an abnormal phenotype that included developmental delay and a behavioural disorder. Ten duplications were familial, five de novo and one unknown. All 16 duplications, including two not visible by routine G-banding, were of an almost uniform size and shared the common deletion breakpoints of Prader-Willi syndrome and Angelman syndrome. Like deletions, the formation of duplications can occur in both male and female meiosis and involve both inter- and intrachromosomal events. This implies that at least some deletions and duplications are the reciprocal products of each other. We observed no instances of meiotic instability in the transmission of a duplication, although recombination within the PWACR occurred in two members of the same family between the normal and the duplicated chromosome 15 homologues. All three triplications arose de novo and included alleles from both maternal chromosomes 15. Triplication breakpoints were more variable and extended distally beyond the PWACR. The molecular characteristics of duplications and triplications suggest that they are formed by different mechanisms.  相似文献   

13.
A cDNA coding for a human Graves' disease autoantigen (hGT) has been isolated from a thyroid expression library. Using this cDNA as a probe, the gene for hGT, previously assigned to chromosome 10, has been further localized to 10q21.3–q22.1 by non-isotopic in situ hybridization.  相似文献   

14.
Culture–gene coevolutionary theory posits that cultural values have evolved, are adaptive and influence the social and physical environments under which genetic selection operates. Here, we examined the association between cultural values of individualism–collectivism and allelic frequency of the serotonin transporter functional polymorphism (5-HTTLPR) as well as the role this culture–gene association may play in explaining global variability in prevalence of pathogens and affective disorders. We found evidence that collectivistic cultures were significantly more likely to comprise individuals carrying the short (S) allele of the 5-HTTLPR across 29 nations. Results further show that historical pathogen prevalence predicts cultural variability in individualism–collectivism owing to genetic selection of the S allele. Additionally, cultural values and frequency of S allele carriers negatively predict global prevalence of anxiety and mood disorder. Finally, mediation analyses further indicate that increased frequency of S allele carriers predicted decreased anxiety and mood disorder prevalence owing to increased collectivistic cultural values. Taken together, our findings suggest culture–gene coevolution between allelic frequency of 5-HTTLPR and cultural values of individualism–collectivism and support the notion that cultural values buffer genetically susceptible populations from increased prevalence of affective disorders. Implications of the current findings for understanding culture–gene coevolution of human brain and behaviour as well as how this coevolutionary process may contribute to global variation in pathogen prevalence and epidemiology of affective disorders, such as anxiety and depression, are discussed.  相似文献   

15.
A large inbred kindred from Pakistan in which an isolated type of split-hand/split-foot anomaly is transmitted as an X-chromosomal trait has previously been described. An X/autosomal translocation and an X-chromosomal rearrangement have been excluded by cytogenetic studies. In order to map the gene responsible for this disorder, linkage analysis has been performed by using 14 highly polymorphic DNA markers distributed over the whole X chromosome. Two-point linkage analysis between the disease locus and X-chromosomal marker loci gives maximal lod scores at = 0.00 with the loci DXS294 (Z max= 5.13) and HPRT (Z max= 4.43), respectively, suggesting that the gene for the X-chromosomal split-hand/split-foot anomaly is localized at Xq26–q26.1.  相似文献   

16.
Summary The -crystallins of the human eye lens are encoded by a multigene family of which at least six genes have recently been assigned to chromosome 2. We have now localized these genes to the distal region of the long arm of chromosome 2 (region q33-36, most probably q34-35) using somatic cell hybrids containing different parts of this chromosome and by in situ hybridization. The -crystallin genes map to the same chromosomal region as IDH-1. Similar linkage exists between the loci Len-1 and Idh-1 on mouse chromosome 1.  相似文献   

17.
Summary Insulin-like growth-factor-binding proteins (IGFBPs) constitute a family of structurally related proteins that specifically bind insulin-like growth factors and modulate their functions. In this study, the chromosomal localization was determined for the gene encoding IGFBP4, i.e. inhibitory-IGFBP. A polymerase chain reaction (PCR) fragment corresponding to the previously published cDNA sequence was used to isolate overlapping cosmid clones. By fluorescent in situ hybridization to metaphase chromosomes, the IGFBP4 gene was then localized to chromosomal region 17q21–21.1. This result was in agreement with PCR analysis of a panel of somatic cell hybrids.  相似文献   

18.
Summary The gene encoding a tissue inhibitor of metalloproteinases, TIMP, has previously been shown to be X-linked in both the human and mouse genomes. We have used a series of somatic cell hybrids segregating translocation and deletion X chromosomes to map the TIMP gene on the human X chromosome. In combination with previous data, the gene can be assigned to Xp11.23Xp11.4. Genetic linkage analyses demonstrate that TIMP is linked to the more distal ornithine transcarbamylase (OTC) locus at a distance of about 22 centimorgans. The data are consistent with the conclusion that TIMP maps to a conserved synteny and linkage group on the proximal short arm of the human X chromosome and on the pericentric region of the mouse X chromosome, including loci for synapsin-1, a member of the raf oncogene family, OTC, and TIMP.  相似文献   

19.
Honey  N. K.  Sakaguchi  A. Y.  Lalley  P. A.  Quinto  C.  Rutter  W. J.  Naylor  S. L. 《Human genetics》1986,72(1):27-31
Summary A rat cDNA probe for preprocarboxypeptidase A was used to follow the segregation of the human gene for carboxypeptidase A (CPA) in 49 human x mouse somatic cell hybrids using Southern filter hybridization techniques. CPA was assigned to human chromosome 7q22qter. Similarly, the probe was used to follow the segregation of the mouse gene for carboxypeptidase A (Cpa) in 19 mouse x Chinese hamster somatic cell hybrids. Cpa was assigned to mouse chromosome 6. The gene for carboxypeptidase A forms part of a syntenic group that is conserved in man and mouse.Preliminary chromosomal assignments of carboxypeptidase A in man and mouse have been made in abstract (Honey et al. 1983a, b)  相似文献   

20.
Regional chromosomal localisation of APOA2 to 1q21–1q23   总被引:2,自引:0,他引:2  
Middleton-Price  H. R.  van den Berghe  J. A.  Scott  J.  Knott  T. J.  Malcolm  S. 《Human genetics》1988,79(3):283-285
Summary Using in situ hybridisation, we have mapped APOA2 to the 1q21–1q23 region of chromosome 1. DNA hybridisation to somatic cell hybrids made from cells carrying a balanced translocation between X and 1 confirms the localisation as proximal to 1q23. This was further confirmed by the presence of two polymorphic alleles in a cell line carrying a deletion of 1q25–1q32.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号