首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
SARS-CoV-2 infects humans through the binding of viral S-protein (spike protein) to human angiotensin I converting enzyme 2 (ACE2). The structure of the ACE2-S-protein complex has been deciphered and we focused on the 27 ACE2 residues that bind to S-protein. From human sequence databases, we identified nine ACE2 variants at ACE2–S-protein binding sites. We used both experimental assays and protein structure analysis to evaluate the effect of each variant on the binding affinity of ACE2 to S-protein. We found one variant causing complete binding disruption, two and three variants, respectively, strongly and mildly reducing the binding affinity, and two variants strongly enhancing the binding affinity. We then collected the ACE2 gene sequences from 57 nonhuman primates. Among the 6 apes and 20 Old World monkeys (OWMs) studied, we found no new variants. In contrast, all 11 New World monkeys (NWMs) studied share four variants each causing a strong reduction in binding affinity, the Philippine tarsier also possesses three such variants, and 18 of the 19 prosimian species studied share one variant causing a strong reduction in binding affinity. Moreover, one OWM and three prosimian variants increased binding affinity by >50%. Based on these findings, we proposed that the common ancestor of primates was strongly resistant to and that of NWMs was completely resistant to SARS-CoV-2 and so is the Philippine tarsier, whereas apes and OWMs, like most humans, are susceptible. This study increases our understanding of the differences in susceptibility to SARS-CoV-2 infection among primates.  相似文献   

3.
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is broadly accepted that SARS-CoV-2 utilizes its spike protein to recognize the extracellular domain of angiotensin-converting enzyme 2 (ACE2) to enter cells for viral infection. However, other mechanisms of SARS-CoV-2 cell entry may occur. We show quantitatively that the SARS-CoV-2 spike protein also binds to the extracellular domain of broadly expressed integrin α5β1 with an affinity comparable to that of SARS-CoV-2 binding to ACE2. More importantly, we provide direct evidence that such binding promotes the internalization of SARS-CoV-2 into non-ACE2 cells in a manner critically dependent upon the activation of the integrin. Our data demonstrate an alternative pathway for the cell entry of SARS-CoV-2, suggesting that upon initial ACE2-mediated invasion of the virus in the respiratory system, which is known to trigger an immune response and secretion of cytokines to activate integrin, the integrin-mediated cell invasion of SARS-CoV-2 into the respiratory system and other organs becomes effective, thereby promoting further infection and progression of COVID-19.  相似文献   

4.
The SARS-CoV-2 infection activates host kinases and causes high phosphorylation in both the host and the virus. There were around 70 phosphorylation sites found in SARS-CoV-2 viral proteins. Besides, almost 15,000 host phosphorylation sites were found in SARS-CoV-2-infected cells. COVID-19 is thought to enter cells via the well-known receptor Angiotensin-Converting Enzyme 2 (ACE2) and the serine protease TMPRSS2. Substantially, the COVID-19 infection doesn’t induce phosphorylation of the ACE2 receptor at Serin-680(s680). Metformin's numerous pleiotropic properties and extensive use in medicine including COVID-19, have inspired experts to call it the “aspirin of the twenty-first century”. Metformin's impact on COVID-19 has been verified in clinical investigations via ACE2 receptor phosphorylation at s680. In the infection of COVID-19, sodium-dependent transporters including the major neutral amino acid (B0AT1) is regulated by ACE2. The structure of B0AT1 complexing with the COVID-19 receptor ACE2 enabled significant progress in the creation of mRNA vaccines. We aimed to study the impact of the interaction of the phosphorylation form of ACE2-s680 with wild-type (WT) and different mutations of SARS-CoV-2 infection such as delta, omicron, and gamma (γ) on their entrance of host cells as well as the regulation of B0AT1by the SARS-CoV-2 receptor ACE2. Interestingly, compared to WT SARS-CoV-2, ACE2 receptor phosphorylation at s680 produces conformational alterations in all types of SARS-CoV-2. Furthermore, our results showed for the first time that this phosphorylation significantly influences ACE2 sites K625, K676, and R678, which are key mediators for ACE2-B0AT1 complex.  相似文献   

5.
Coronavirus disease-2019 (COVID-19) is a global pandemic with high infectivity and pathogenicity, accounting for tens of thousands of deaths worldwide. Recent studies have found that the pathogen of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), shares the same cell receptor angiotensin converting enzyme II (ACE2) as SARS-CoV. The pathological investigation of COVID-19 deaths showed that the lungs had characteristics of pulmonary fibrosis. However, how SARS-CoV-2 spreads from the lungs to other organs has not yet been determined. Here, we performed an unbiased evaluation of cell-type-specific expression of ACE2 in healthy and fibrotic lungs, as well as in normal and failed adult human hearts, using published single-cell RNA-seq data. We found that ACE2 expression in fibrotic lungs mainly locates in arterial vascular cells, which might provide a route for bloodstream spreading of SARS-CoV-2. Failed human hearts have a higher percentage of ACE2-expressing cardiomyocytes, and SARS-CoV-2 might attack cardiomyocytes through the bloodstream in patients with heart failure. Moreover, ACE2 was highly expressed in cells infected by respiratory syncytial virus or Middle East respiratory syndrome coronavirus and in mice treated by lipopolysaccharide. Our findings indicate that patients with pulmonary fibrosis, heart failure, and virus infection have a higher risk and are more susceptible to SARS-CoV-2 infection. The SARS-CoV-2 might attack other organs by getting into the bloodstream. This study provides new insights into SARS-CoV-2 blood entry and heart injury and might propose a therapeutic strategy to prevent patients from developing severe complications.  相似文献   

6.
7.
The COVID-19 pandemic remains a global threat, and host immunity remains the main mechanism of protection against the disease. The spike protein on the surface of SARS-CoV-2 is a major antigen and its engagement with human ACE2 receptor plays an essential role in viral entry into host cells. Consequently, antibodies targeting the ACE2-interacting surface (ACE2IS) located in the receptor-binding domain (RBD) of the spike protein can neutralize the virus. However, the understanding of immune responses to SARS-CoV-2 is still limited, and it is unclear how the virus protects this surface from recognition by antibodies. Here, we designed an RBD mutant that disrupts the ACE2IS and used it to characterize the prevalence of antibodies directed to the ACE2IS from convalescent sera of 94 COVID-19-positive patients. We found that only a small fraction of RBD-binding antibodies targeted the ACE2IS. To assess the immunogenicity of different parts of the spike protein, we performed in vitro antibody selection for the spike and the RBD proteins using both unbiased and biased selection strategies. Intriguingly, unbiased selection yielded antibodies that predominantly targeted regions outside the ACE2IS, whereas ACE2IS-binding antibodies were readily identified from biased selection designed to enrich such antibodies. Furthermore, antibodies from an unbiased selection using the RBD preferentially bound to the surfaces that are inaccessible in the context of whole spike protein. These results suggest that the ACE2IS has evolved less immunogenic than the other regions of the spike protein, which has important implications in the development of vaccines against SARS-CoV-2.  相似文献   

8.
Respiratory transmission is the primary route of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Angiotensin I converting enzyme 2 (ACE2) is the known receptor of SARS-CoV-2 surface spike glycoprotein for entry into human cells. A recent study reported absent to low expression of ACE2 in a variety of human lung epithelial cell samples. Three bioprojects (PRJEB4337, PRJNA270632 and PRJNA280600) invariably found abundant expression of ACE1 (a homolog of ACE2 and also known as ACE) in human lungs compared to very low expression of ACE2. In fact, ACE1 has a wider and more abundant tissue distribution compared to ACE2. Although it is not obvious from the primary sequence alignment of ACE1 and ACE2, comparison of X-ray crystallographic structures show striking similarities in the regions of the peptidase domains (PD) of these proteins, which is known (for ACE2) to interact with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Critical amino acids in ACE2 that mediate interaction with the viral spike protein are present and organized in the same order in the PD of ACE1. In silico analysis predicts comparable interaction of SARS-CoV-2 spike protein with ACE1 and ACE2. In addition, this study predicts from a list of 1263 already approved drugs that may interact with ACE2 and/or ACE1 and potentially interfere with the entry of SARS-CoV-2 inside the host cells.  相似文献   

9.
Human angiotensin-converting enzyme 2 (ACE2) is the primary host cell receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binding and cell entry. Administration of high concentrations of soluble ACE2 can be utilized as a decoy to block the interaction of the virus with cellular ACE2 receptors and potentially be used as a strategy for treatment or prevention of coronavirus disease 2019. Human ACE2 is heavily glycosylated and its glycans impact on binding to the SARS-CoV-2 spike protein and virus infectivity. Here, we describe the production of a recombinant soluble ACE2-fragment crystallizable (Fc) variant in glycoengineered Nicotiana benthamiana. Our data reveal that the produced dimeric ACE2-Fc variant is glycosylated with mainly complex human-type N-glycans and functional with regard to enzyme activity, affinity to the SARS-CoV-2 receptor-binding domain, and wild-type virus neutralization.  相似文献   

10.
《Cell metabolism》2022,34(6):857-873.e9
  1. Download : Download high-res image (269KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
SARS-CoV-2 invades host cells mainly through the interaction of its spike-protein with host cell membrane ACE2. Various antibodies targeting S-protein have been developed to combat COVID-19 pandemic; however, the potential risk of antibody-dependent enhancement and novel spike mutants-induced neutralization loss or antibody resistance still remain. Alternative preventative agents or therapeutics are still urgently needed. In this study, we designed series of peptides with either ACE2 protecting or Spike-protein neutralizing activities. Molecular docking predicted that, among these peptides, ACE2 protecting peptide AYp28 and Spike-protein neutralizing peptide AYn1 showed strongest intermolecular interaction to ACE2 and Spike-protein, respectively, which were further confirmed by both cell- and non-cell-based in vitro assays. In addition, both peptides inhibited the invasion of pseudotype SARS-CoV-2 into HEK293T/hACE2 cells, either alone or in combination. Moreover, the intranasal administration of AYp28 could partially block pseudovirus invasion in hACE2 transgenic mice. Much more importantly, no significant toxicity was observed in peptides-treated cells. AYp28 showed no impacts on ACE2 function. Taken together, the data from our present study predicted promising preventative and therapeutic values of peptides against COVID-19, and may prove the concept that cocktail containing ACE2 protecting peptides and spike neutralizing peptides could serve as a safe and effective approach for SARS-CoV-2 prevention and therapy.  相似文献   

13.
《Cell》2023,186(16):3427-3442.e22
  1. Download : Download high-res image (300KB)
  2. Download : Download full-size image
  相似文献   

14.
The seasonal nature of outbreaks of respiratory viral infections with increased transmission during low temperatures has been well established. Accordingly, temperature has been suggested to play a role on the viability and transmissibility of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The receptor-binding domain (RBD) of the Spike glycoprotein is known to bind to its host receptor angiotensin-converting enzyme 2 (ACE2) to initiate viral fusion. Using biochemical, biophysical, and functional assays to dissect the effect of temperature on the receptor–Spike interaction, we observed a significant and stepwise increase in RBD-ACE2 affinity at low temperatures, resulting in slower dissociation kinetics. This translated into enhanced interaction of the full Spike glycoprotein with the ACE2 receptor and higher viral attachment at low temperatures. Interestingly, the RBD N501Y mutation, present in emerging variants of concern (VOCs) that are fueling the pandemic worldwide (including the B.1.1.7 (α) lineage), bypassed this requirement. This data suggests that the acquisition of N501Y reflects an adaptation to warmer climates, a hypothesis that remains to be tested.  相似文献   

15.
SARS-CoV-2, the virus responsible for the global coronavirus disease (COVID-19) pandemic, attacks multiple organs of the human body by binding to angiotensin-converting enzyme 2 (ACE2) to enter cells. More than 20 million people have already been infected by the virus. ACE2 is not only a functional receptor of COVID-19 but also an important endogenous antagonist of the renin-angiotensin system (RAS). A large number of studies have shown that ACE2 can reverse myocardial injury in various cardiovascular diseases (CVDs) as well as is exert anti-inflammatory, antioxidant, anti-apoptotic and anticardiomyocyte fibrosis effects by regulating transforming growth factor beta, mitogen-activated protein kinases, calcium ions in cells and other major pathways. The ACE2/angiotensin-(1-7)/Mas receptor axis plays a decisive role in the cardiovascular system to combat the negative effects of the ACE/angiotensin II/angiotensin II type 1 receptor axis. However, the underlying mechanism of ACE2 in cardiac protection remains unclear. Some approaches for enhancing ACE2 expression in CVDs have been suggested, which may provide targets for the development of novel clinical therapies. In this review, we aimed to identify and summarize the role of ACE2 in CVDs.  相似文献   

16.
Infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) results in diverse outcomes. The symptoms appear to be more severe in males older than 65 and people with underlying health conditions; approximately one in five individuals could be at risk worldwide. The virus’s sequence was rapidly established days after the first cases were reported and identified an RNA virus from the Coronaviridae family closely related to a Betacoronavirus virus found in bats in China. SARS-CoV-2 is the seventh coronavirus known to infect humans, and with the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS), the only ones to cause severe diseases. Lessons from these two previous outbreaks guided the identification of critical therapeutic targets such as the spike viral proteins promoting the virus’s cellular entry through the angiotensin-converting enzyme 2 (ACE2) receptor expressed on the surface of multiple types of eukaryotic cells. Although several therapeutic agents are currently evaluated, none seems to provide a clear path for a cure. Also, various types of vaccines are developed in record time to address the urgency of efficient SARS-CoV-2 prevention. Currently, 58 vaccines are evaluated in clinical trials, including 11 in phase III, and 3 of them reported efficacy above 90 %. The results so far from the clinical trials suggest the availability of multiple effective vaccines within months.  相似文献   

17.
SARS-CoV-2, the newly identified human coronavirus causing severe pneumonia pandemic, was probably originated from Chinese horseshoe bats. However, direct transmission of the virus from bats to humans is unlikely due to lack of direct contact, implying the existence of unknown intermediate hosts. Angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2s of certain species can be utilized by SARS-CoV-2. Here, we evaluated and ranked the receptor-utilizing capability of ACE2s from various species by phylogenetic clustering and sequence alignment with the currently known ACE2s utilized by SARS-CoV-2. As a result, we predicted that SARS-CoV-2 tends to utilize ACE2s of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2.  相似文献   

18.
The severity of SARS-CoV-2 infection is highly variable and yet the molecular basis for this effect remains elusive. One potential contribution are differences in the glycosylation of target human cells, particularly as SARS-CoV-2 has the capacity to bind sialic acid which is a common, and highly variable, terminal modification of glycans. The viral spike glycoprotein (S) of SARS-CoV-2 and the human cellular receptor, angiotensin-converting enzyme 2 (ACE2) are both densely glycosylated. We therefore sought to investigate whether the glycosylation state of ACE2 impacts the interaction with SARS-CoV-2 viral spike. We generated a panel of engineered ACE2 glycoforms which were analyzed by mass spectrometry to reveal the site-specific glycan modifications. We then probed the impact of ACE2 glycosylation on S binding and revealed a subtle sensitivity with hypersialylated or oligomannose-type glycans slightly impeding the interaction. In contrast, deglycosylation of ACE2 did not influence SARS-CoV-2 binding. Overall, ACE2 glycosylation does not significantly influence viral spike binding. We suggest that any role of glycosylation in the pathobiology of SARS-CoV-2 will lie beyond its immediate impact of receptor glycosylation on virus binding.  相似文献   

19.
Background: Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) allow entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells and play essential roles in cancer therapy. However, the functions of ACE2 and TMPRSS2 in kidney cancer remain unclear, especially as kidneys are targets for SARS-CoV-2 infection.Methods: UCSC Xena project, the Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) databases (GSE30589 and GSE59185) were searched for gene expression in human tissues, gene expression data, and clinical information. Several bioinformatics methods were utilized to analyze the correlation between ACE2 and TMPRSS2 with respect to the prognosis of kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP).Results: ACE2 expression was significantly upregulated in tumor tissue, while its downregulation was associated with low survival in KIRC and KIRP patients. TMPRSS2 was downregulated in KIRC and KIRP, and its expression was not correlated with patient survival. According to clinical risk factor-based prediction models, ACE2 exhibits predictive accuracy for kidney cancer prognosis and is correlated with metabolism and immune infiltration. In an animal model, ACE2 expression was remarkably downregulated in SARS-CoV-2-infected cells compared to in the control.Conclusion: ACE2 expression is highly correlated with various metabolic pathways and is involved in immune infiltration.it plays a crucial role than TMPRSS2 in diagnosing and prognosis of kidney cancer patients. The overlap in ACE2 expression between kidney cancer and SARS-CoV-2 infection suggests that patients with KIRC or KIRP are at high risk of developing serious symptoms.  相似文献   

20.
At the end of 2019, an outbreak of a severe respiratory disease occurred in Wuhan China, and an increase in cases of unknown pneumonia was alerted. In January 2020, a new coronavirus named SARS-CoV-2 was identified as the cause. The virus spreads primarily through the respiratory tract, and lymphopenia and cytokine storms have been observed in severely ill patients. This suggests the existence of an immune dysregulation as an accompanying event during a serious illness caused by this virus. Natural killer (NK) cells are innate immune responders, critical for virus shedding and immunomodulation. Despite its importance in viral infections, the contribution of NK cells in the fight against SARS-CoV-2 has yet to be deciphered. Different studies in patients with COVID-19 suggest a significant reduction in the number and function of NK cells due to their exhaustion. In this review, we summarize the current understanding of how NK cells respond to SARS-CoV-2 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号