共查询到20条相似文献,搜索用时 15 毫秒
1.
鸡单核苷酸多态性与高清晰度QTL图谱的构建 总被引:4,自引:1,他引:3
作为一种重要的经济动物和模式动物, 鸡SNP多样性的研究以及鸡主要经济性状QTL定位的研究近年来成绩斐然。文章综述了上述研究成果, 并就SNP标记在鸡QTL精细定位方面的研究前景进行了展望。 相似文献
2.
To fine map the previously detected quantitative trait loci (QTLs) affecting milk production traits on bovine chromosome 6 (BTA6), 15 microsatellite markers situated within an interval of 14.3 cM spanning from BMS690 to BM4528 were selected and 918 daughters of 8 sires were genotyped. Two mapping approaches, haplotype sharing based LD mapping and single marker regression mapping, were used to analyze the data. Both approaches revealed a quantitative trait locus (QTL) with significant effects on milk yield, fat yield and protein yield located in the segment flanked by markers BMS483 and MNB209, which spans a genetic distance of 0.6 cM and a physical distance of 1.5 Mb. In addition, the single marker regression mapping also revealed a QTL affecting fat percentage and protein percentage at marker DIK2291. Our fine mapping work will facilitate the cloning of candidate genes underlying the QTLs for milk production traits. 相似文献
3.
R. W. Logan R. F. Robledo J. M. Recla V. M. Philip J. A. Bubier J. J. Jay C. Harwood T. Wilcox D. M. Gatti C. J. Bult G. A. Churchill E. J. Chesler 《Genes, Brain & Behavior》2013,12(4):424-437
Historically our ability to identify genetic variants underlying complex behavioral traits in mice has been limited by low mapping resolution of conventional mouse crosses. The newly developed Diversity Outbred (DO) population promises to deliver improved resolution that will circumvent costly fine‐mapping studies. The DO is derived from the same founder strains as the Collaborative Cross (CC), including three wild‐derived strains. Thus the DO provides more allelic diversity and greater potential for discovery compared to crosses involving standard mouse strains. We have characterized 283 male and female DO mice using open‐field, light–dark box, tail‐suspension and visual‐cliff avoidance tests to generate 38 behavioral measures. We identified several quantitative trait loci (QTL) for these traits with support intervals ranging from 1 to 3 Mb in size. These intervals contain relatively few genes (ranging from 5 to 96). For a majority of QTL, using the founder allelic effects together with whole genome sequence data, we could further narrow the positional candidates. Several QTL replicate previously published loci. Novel loci were also identified for anxiety‐ and activity‐related traits. Half of the QTLs are associated with wild‐derived alleles, confirming the value to behavioral genetics of added genetic diversity in the DO. In the presence of wild‐alleles we sometimes observe behaviors that are qualitatively different from the expected response. Our results demonstrate that high‐precision mapping of behavioral traits can be achieved with moderate numbers of DO animals, representing a significant advance in our ability to leverage the mouse as a tool for behavioral genetics . 相似文献
4.
Jihad M Abdallah Bruno Goffinet Christine Cierco-Ayrolles Miguel Pérez-Enciso 《遗传、选种与进化》2003,35(6):513-532
Recently, the use of linkage disequilibrium (LD) to locate genes which affect quantitative traits (QTL) has received an increasing interest, but the plausibility of fine mapping using linkage disequilibrium techniques for QTL has not been well studied. The main objectives of this work were to (1) measure the extent and pattern of LD between a putative QTL and nearby markers in finite populations and (2) investigate the usefulness of LD in fine mapping QTL in simulated populations using a dense map of multiallelic or biallelic marker loci. The test of association between a marker and QTL and the power of the test were calculated based on single-marker regression analysis. The results show the presence of substantial linkage disequilibrium with closely linked marker loci after 100 to 200 generations of random mating. Although the power to test the association with a frequent QTL of large effect was satisfactory, the power was low for the QTL with a small effect and/or low frequency. More powerful, multi-locus methods may be required to map low frequent QTL with small genetic effects, as well as combining both linkage and linkage disequilibrium information. The results also showed that multiallelic markers are more useful than biallelic markers to detect linkage disequilibrium and association at an equal distance. 相似文献
5.
Hung HY Browne C Guill K Coles N Eller M Garcia A Lepak N Melia-Hancock S Oropeza-Rosas M Salvo S Upadyayula N Buckler ES Flint-Garcia S McMullen MD Rocheford TR Holland JB 《Heredity》2012,108(5):490-499
Appropriate selection of parents for the development of mapping populations is pivotal to maximizing the power of quantitative trait loci detection. Trait genotypic variation within a family is indicative of the family's informativeness for genetic studies. Accurate prediction of the most useful parental combinations within a species would help guide quantitative genetics studies. We tested the reliability of genotypic and phenotypic distance estimators between pairs of maize inbred lines to predict genotypic variation for quantitative traits within families derived from biparental crosses. We developed 25 families composed of ~200 random recombinant inbred lines each from crosses between a common reference parent inbred, B73, and 25 diverse maize inbreds. Parents and families were evaluated for 19 quantitative traits across up to 11 environments. Genetic distances (GDs) among parents were estimated with 44 simple sequence repeat and 2303 single-nucleotide polymorphism markers. GDs among parents had no predictive value for progeny variation, which is most likely due to the choice of neutral markers. In contrast, we observed for about half of the traits measured a positive correlation between phenotypic parental distances and within-family genetic variance estimates. Consequently, the choice of promising segregating populations can be based on selecting phenotypically diverse parents. These results are congruent with models of genetic architecture that posit numerous genes affecting quantitative traits, each segregating for allelic series, with dispersal of allelic effects across diverse genetic material. This architecture, common to many quantitative traits in maize, limits the predictive value of parental genotypic or phenotypic values on progeny variance. 相似文献
6.
文章通过对所构建的水稻突变体库进行大规模筛选,获得一个稳定遗传的矮秆突变体,与野生型日本晴相比,该突变体表现为植株矮化、叶片卷曲、分蘖减少和不育等性状,命名为dtl1(dwarf and twist leaf 1)。dtl1属于nl型矮秆,激素检测表明,矮秆性状与赤霉素和油菜素内酯无关。遗传分析显示,突变性状受单一隐性核基因控制。利用dtl1与籼稻品种Taichung Native 1杂交构建F2群体,将该突变基因DTL1定位于水稻第10染色体长臂2个SSR标记RM25923和RM6673之间约70.4 kb区域内,并与InDel标记Z10-29共分离,在该区域预测有13个候选基因,但未见调控水稻株高相关基因的报道,因此,认为DTL1基因是一个新的控制水稻株高的基因。 相似文献
7.
Ovulation rate (OR) is an important component of litter size, but mutation(s) in gene(s) underlying OR QTL have yet to be identified in pigs. Markers within an OR QTL on SSC3 were genotyped in three white composite lines selected for ten generations for increased OR or uterine capacity (UC), with one line being an unselected control. Numbers of corpora lutea (CL) and UC (number of fully formed fetuses) were collected at approximately 105 days of gestation, as well as ovary weight (OW), uterine length (UL) and uterine weight (UW) measurements at 160 d of age in generation 12 and 13 females from all three lines. Six microsatellites and ten single nucleotide polymorphisms (SNPs; 0–42 cM) were genotyped in pigs from all lines of generations 11 through 13. The allele frequencies of 24269.1, SW2429, 7907.2 and 7637.2 were different (P < 0.01) in the OR line compared to the control line. A significant (P < 0.05) association of CL with 24269.1 (additive effect 0.65 ± 0.32) was detected, and additive genotypic effects approached significance for markers at 28 through 35 cM (16963.2, 27514.1 and SWR1637). Haplotyping of 7637.2 and 16963.2 (31 through 32 cM) identified a significant additive association of haplotype 1 with CL (?0.62 ± 0.30). These markers were also associated with OW (24296.1 and SWR1637), UL (16963.2, 27514.1 and haplotypes of 7637.2/16963.2) and UW (haplotypes of 7637.2/16963.2). This study verifies an OR QTL on SSC3. However, based on the data, it was concluded that there may be two genes, at 13 through 18 cM and 28 through 35 cM, controlling OR on SSC3p. 相似文献
8.
9.
产量是最为复杂的数量性状,对它的遗传机理了解甚微。近15年来,许多学者利用随机分离群体定位了许多影响水稻产量及其组分的QTL,即以QTL定位的方法对产量潜力进行遗传剖析。试验证明上位性效应对产量及其组分性状遗传变异起着重要作用,但目前大多数QTL研究仍侧重于发掘和克隆单个主效QTL,然而对单一基因/QTL的深入了解还不足以诠释复杂性状遗传基础的全貌,还没有为育种家提供足够的可应用于分子标记辅助育种的遗传信息并用于提高水稻产量。笔者认为今后的数量性状研究尚需加强复杂性状QTL遗传网络的发掘,在改良水稻品种性状的同时发展并完善QTL研究。 相似文献
10.
Methods for multiple-marker mapping of quantitative trait loci in half-sib populations 总被引:12,自引:0,他引:12
S. A. Knott J. M. Elsen C. S. Haley 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,93(1-2):71-80
In this paper we consider the detection of individual loci controlling quantitative traits of interest (quantitative trait loci or QTLs) in the large half-sib family structure found in some species. Two simple approaches using multiple markers are proposed, one using least squares and the other maximum likelihood. These methods are intended to provide a relatively fast screening of the entire genome to pinpoint regions of interest for further investigation. They are compared with a more traditional single-marker least-squares approach. The use of multiple markers is shown to increase power and has the advantage of providing an estimate for the location of the QTL. The maximum-likelihood and the least-squares approaches using multiple markers give similar power and estimates for the QTL location, although the likelihood approach also provides estimates of the QTL effect and sire heterozygote frequency. A number of assumptions have been made in order to make the likelihood calculations feasible, however, and computationally it is still more demanding than the least-squares approach. The least-squares approach using multiple markers provides a fast method that can easily be extended to include additional effects. 相似文献
11.
12.
Svetec N Werzner A Wilches R Pavlidis P Alvarez-Castro JM Broman KW Metzler D Stephan W 《Molecular ecology》2011,20(3):530-544
Drosophila melanogaster is a cosmopolitan species that colonizes a great variety of environments. One trait that shows abundant evidence for naturally segregating genetic variance in different populations of D. melanogaster is cold tolerance. Previous work has found quantitative trait loci (QTL) exclusively on the second and the third chromosomes. To gain insight into the genetic architecture of cold tolerance on the X chromosome and to compare the results with our analyses of selective sweeps, a mapping population was derived from a cross between substitution lines that solely differed in the origin of their X chromosome: one originates from a European inbred line and the other one from an African inbred line. We found a total of six QTL for cold tolerance factors on the X chromosome of D. melanogaster. Although the composite interval mapping revealed slightly different QTL profiles between sexes, a coherent model suggests that most QTL overlapped between sexes, and each explained around 5–14% of the genetic variance (which may be slightly overestimated). The allelic effects were largely additive, but we also detected two significant interactions. Taken together, this provides evidence for multiple QTL that are spread along the entire X chromosome and whose effects range from low to intermediate. One detected transgressive QTL influences cold tolerance in different ways for the two sexes. While females benefit from the European allele increasing their cold tolerance, males tend to do better with the African allele. Finally, using selective sweep mapping, the candidate gene CG16700 for cold tolerance colocalizing with a QTL was identified. 相似文献
13.
14.
Selective genotyping of extreme progeny is a powerful method to increase the information content per individual when looking for quantitative trait loci (QTLs) using molecular markers for which a map is known. However, if marker information from the selected individuals is used to construct the map of the markers, this can lead to distorted segregation of the markers that in turn can lead to the estimation of a spurious linkage between independently inherited markers. The mistaken estimation of linkage between independently inherited markers will occur when there are two (or more) independently inherited QTLs linked to two (or more) markers and the same individuals are used to estimate the map of the markers and to do the QTL estimation. The incorrect linkage occurs because in selecting individuals from the tails of the phenotypic distribution we will also be selecting certain combinations of the markers instead of obtaining a random sample of the true distribution of the marker genotypes. Analytical results are outlined and the analyses of a simulated data set illustrate the problems that could arise when data from individuals chosen by selective genotyping are incorrectly employed to construct a marker map. A strategy is proposed to remedy this problem. 相似文献
15.
S. van der Beek J. A. M. van Arendonk A. F. Groen 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,91(6-7):1115-1124
QTL mapping experiments involve many animals to be genotyped and performance tested. Consequently, experimental designs need to be optimized to minimize the costs of data collection and genotyping. The present study has analyzed the power and efficiency of experiments with two or three-generation family structures containing full-sib families, half-sib families, or both. The focus was on data from one outbred population because the main interest is to locate genes that can be used for within-line selection. For a two generation experiment more animals had to be typed for marker loci to obtain a certain power than for a three generation experiment. Fewer trait values, however, had to be obtained for a two-generation experiment than for a three-generation experiment. A two or three-generation family structure with full-sib offspring was more efficient than a two or three-generation family structure with half-sib offspring. A family structure with full-sib grand-offspring, however, was less efficient than a family structure with half-sib grand-offspring. For the most efficient family structure each pair of parents had full-sib offspring that were genotyped for the marker. For the most-efficient family structure each full-sib offspring had half-sib grand-offspring for which trait values were obtained. For equal power with a heritability of 0.1 and 100 grand-offspring per full-sib offspring, 30-times less marker typings were required for this most efficient family structure than for a two-generation half-sib structure in which marker genotypes and trait values were obtained for half-sib offspring. The effect of heritability and the type of analysis (single marker or interval analysis) on the efficiency of a family structure is described. The results of this study should help to design QTL mapping experiments in an outbred population. 相似文献
16.
X. L. Tan A. Vanavichit S. Amornsilpa S. Trangoonrung 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1998,97(5-6):994-999
The inheritance of fertility restoration of rice cytoplasmic male sterility of the wild abortive type was studied by means
of QTL mapping. The two segregating populations examined showed high frequencies of highly sterile and highly fertile progenies,
but a low frequency of partially sterile and partially fertile progenies. The distributions suggested that fertility restoration
was mainly controlled by major genes. Based on a linkage map constructed with 57 RFLP and 61 AFLP markers on a B1F1 population, composite interval mapping (CIM) revealed that the fertility was restored by the additive effects of two restorer
loci located on chromosome 10. One QTL, tightly linked to RFLP marker C1361 in the middle of the long arm of chromosome 10,
explained 71.5% of the phenotypic variance. The second QTL was located between RFLP markers R2309 and RG257 on the short arm
and explained 27.3% of the phenotypic variance. Similar results were obtained using the simple interval mapping (SIM) methods.
Recived: 8 January 1998/Accepted: 22 April 1998 相似文献
17.
Joint linkage association mapping (JLAM) combines the advantages of linkage mapping and association mapping, and is a powerful tool to dissect the genetic architecture of complex traits. The main goal of this study was to use a cross-validation strategy, resample model averaging and empirical data analyses to compare seven different biometrical models for JLAM with regard to the correction for population structure and the quantitative trait loci (QTL) detection power. Three linear models and four linear mixed models with different approaches to control for population stratification were evaluated. Models A, B and C were linear models with either cofactors (Model-A), or cofactors and a population effect (Model-B), or a model in which the cofactors and the single-nucleotide polymorphism effect were modeled as nested within population (Model-C). The mixed models, D, E, F and G, included a random population effect (Model-D), or a random population effect with defined variance structure (Model-E), a kinship matrix defining the degree of relatedness among the genotypes (Model-F), or a kinship matrix and principal coordinates (Model-G). The tested models were conceptually different and were also found to differ in terms of power to detect QTL. Model-B with the cofactors and a population effect, effectively controlled population structure and possessed a high predictive power. The varying allele substitution effects in different populations suggest as a promising strategy for JLAM to use Model-B for the detection of QTL and then to estimate their effects by applying Model-C. 相似文献
18.
Two previously described QTL mapping methods, which combine linkage analysis (LA) and linkage disequilibrium analysis (LD), were compared for their ability to detect and map multiple QTL. The methods were tested on five different simulated data sets in which the exact QTL positions were known. Every simulated data set contained two QTL, but the distances between these QTL were varied from 15 to 150 cM. The results show that the single QTL mapping method (LDLA) gave good results as long as the distance between the QTL was large (> 90 cM). When the distance between the QTL was reduced, the single QTL method had problems positioning the two QTL and tended to position only one QTL, i.e. a ghost QTL, in between the two real QTL positions. The multi QTL mapping method (MP-LDLA) gave good results for all evaluated distances between the QTL. For the large distances between the QTL (> 90 cM) the single QTL method more often positioned the QTL in the correct marker bracket, but considering the broader likelihood peaks of the single point method it could be argued that the multi QTL method was more precise. Since the distances were reduced the multi QTL method was clearly more accurate than the single QTL method. The two methods combine well, and together provide a good tool to position single or multiple QTL in practical situations, where the number of QTL and their positions are unknown. 相似文献
19.
Assessment of DNA pooling strategies for mapping of QTLs 总被引:6,自引:1,他引:6
G. L. Wang A. H. Paterson 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1994,88(3-4):355-361
The synthesis of DNA pools from segregating populations is an efficient strategy for identifying DNA markers closely linked to genes or genomic regions of interest. To-date, DNA pooling based solely upon phenotypic information, or bulked segregant analysis, has been employed only in the analysis of simply-inherited traits. We have assessed the utility of phenotype-based DNA pools for tagging (e.g., identifying DNA markers closely-linked to) quantitative trait loci (QTLs), segregating in the presence of other such loci, and expressing phenotypes which are influenced by the environment. Theoretical estimates suggest that QTL alleles with phenotypic effects of 0.75–1.0 standard deviations (SD), or larger, should be detectable in back-cross (BC), F2 and recombinant inbred (RI) or doubled haploid (DH) populations of manageable size (100–200 plants/lines). However, post hoc analysis of three data sets, used in QTL mapping of tomato and rice, indicate that the majority of QTLs identified had allele effects of less than 0.75 SD, and thus could not be easily tagged in DNA pools. Segregation distortion can have a large effect on the allelic composition of DNA pools, necessitating the use of more individuals in the pools to minimize false positive and false negative results. In general, we suggest that use of phenotype-based DNA pools might be successful in tagging QTLs of very large effect, but is unlikely to permit comprehensive identification of the majority of QTLs affecting a complex trait. DNA pools constructed from a priori information should, however, be useful in identifying new DNA markers for regions of the genome known to contain QTLs. 相似文献
20.
Ravi Prakash Shukla Gopal Ji Tiwari Babita Joshi Kah Song-Beng Sushma Tamta N. Manikanda Boopathi Satya Narayan Jena 《Physiology and Molecular Biology of Plants》2021,27(8):1731
A recombinant inbred line mapping population of intra-species upland cotton was generated from a cross between the drought-tolerant female parent (AS2) and the susceptible male parent (MCU13). A linkage map was constructed deploying 1,116 GBS-based SNPs and public domain-based 782 SSRs spanning a total genetic distance of 28,083.03 cM with an average chromosomal span length of 1,080.12 cM with inter-marker distance of 10.19 cM.A total of 19 quantitative trait loci (QTLs) were identified in nine chromosomes for field drought tolerance traits. Chromosomes 3 and 8 harbored important drought tolerant QTLs for chlorophyll stability index trait while for relative water content trait, three QTLs on chromosome 8 and one QTL each on chromosome 4, 12 were identified. One QTL on each chromosome 8, 5, and 7, and two QTLs on chromosome 15 linking to proline content were identified. For the nitrate reductase activity trait, two QTLs were identified on chromosome 3 and one on each chromosome 8, 13, and 26. To complement our QTL study, a meta-analysis was conducted along with the public domain database and resulted in a consensus map for chromosome 8. Under field drought stress, chromosome 8 harbored a drought tolerance QTL hotspot with two in-house QTLs for chlorophyll stability index (qCSI01, qCSI02) and three public domain QTLs (qLP.FDT_1, qLP.FDT_2, qCC.ST_3). Identified QTL hotspot on chromosome 8 could play a crucial role in exploring abiotic stress-associated genes/alleles for drought trait improvement.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01041-y. 相似文献