首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY 1. After traumatic spinal cord injury (SCI), histological and neurological consequences are developing for several days and even weeks. However, little is known about the dynamics of changes in spinal axonal conductivity. The aim of this study was to record and compare repeated spinal cord evoked potentials (SCEP) after SCI in the rat during a 4 weeks’ interval. These recordings were used: (i) for studying the dynamics of functional changes in spinal axons after SCI, and (ii) to define the value of SCEP as an independent outcome parameter in SCI studies.2. We have used two pairs of chronically implanted epidural electrodes for stimulation/recording. The electrodes were placed below and above the site of injury, respectively. Animals with implanted electrodes underwent spinal cord compression injury induced by epidural balloon inflation at Th8–Th9 level. There were five experimental groups of animals, including one control group (sham-operated, no injury), and four injury groups (different degrees of SCI).3. After SCI, SCEP waveform was either significantly reduced or completely lost. Partial recovery of SCEPs was observed in all groups. The onset and extent of recovery clearly correlated with the severity of injury.There was good correlation between quantitated SCEP variables and the volumes of the compressing balloon. However, sensitivity of electropohysiological parameters was inferior compared to neurological and morphometric outcomes.4. Our study shows for the first time, that the dynamics of axonal recovery depends on the degree of injury. After mild injury, recovery of signal is rapid. However, after severe injury, axonal conductivity can re-appear after as long as 2 weeks postinjury.In conclusion, SCEPs can be used as an independent parameter of outcome after SCI, but in general, the sensitivity of electrophysiological data were worse than standard morphological and neurological evaluations.  相似文献   

2.

Introduction

While numerous studies have documented evidence for plasticity of the human brain there is little evidence that the human spinal cord can change after injury. Here, we employ a novel spinal fMRI design where we stimulate normal and abnormal sensory dermatomes in persons with traumatic spinal cord injury and perform a connectivity analysis to understand how spinal networks process information.

Methods

Spinal fMRI data was collected at 3 Tesla at two institutions from 38 individuals using the standard SEEP functional MR imaging techniques. Thermal stimulation was applied to four dermatomes in an interleaved timing pattern during each fMRI acquisition. SCI patients were stimulated in dermatomes both above (normal sensation) and below the level of their injury. Sub-group analysis was performed on healthy controls (n = 20), complete SCI (n = 3), incomplete SCI (n = 9) and SCI patients who recovered full function (n = 6).

Results

Patients with chronic incomplete SCI, when stimulated in a dermatome of normal sensation, showed an increased number of active voxels relative to controls (p = 0.025). There was an inverse relationship between the degree of sensory impairment and the number of active voxels in the region of the spinal cord corresponding to that dermatome of abnormal sensation (R2 = 0.93, p<0.001). Lastly, a connectivity analysis demonstrated a significantly increased number of intraspinal connections in incomplete SCI patients relative to controls suggesting altered processing of afferent sensory signals.

Conclusions

In this work we demonstrate the use of spinal fMRI to investigate changes in spinal processing of somatosensory information in the human spinal cord. We provide evidence for plasticity of the human spinal cord after traumatic injury based on an increase in the average number of active voxels in dermatomes of normal sensation in chronic SCI patients and an increased number of intraspinal connections in incomplete SCI patients relative to healthy controls.  相似文献   

3.
Embryonic neural stem cell (ENSC) transplantation is used experimentally for the improvement of spinal cord repair following spinal cord injury (SCI). However, the effects of such intervention on oxidative stress and cell death remain unknown. We used in vivo Comet assay in the acute and chronic SCI groups compared with the SCI+ENSC transplantation groups of experimental rats in order to evaluate DNA damage in the spinal cord. Chronic SCI resulted in the generation of oxidative DNA damage in the spinal cord brain and kidneys, as indicated by high Comet assay parameters, including the percentage of DNA in the tail (T%, or TD), tail moment (TM), and tail length (TL). The DNA damage levels significantly decreased after ENSC transplantation in the spinal cords of acute and chronic SCI groups within the lesion site and rostrally and caudally to the injury, and in the brains and kidneys of the chronic SCI group. Thus, ENSC transplantation is found to be an effective tool for limitation of DNA damage following spinal cord injury.  相似文献   

4.
脊髓损伤(spinal cord injury,SCI)是一种由于脊髓外部损伤或内部病变引起的暂时性或永久性的功能损伤,其症状包括肌肉功能损伤、自主运动功能减退或丧失等。目前,流行病学调查发现,我国SCI患病率较高,具有较高的社会和医疗负担。因此,合理引导SCI病人进行治疗和康复尤为重要。硫化氢(hydrogen sulfide,H2S)是一种重要的神经信号分子,近年来H2S对SCI康复的作用机制逐渐成为研究热点,例如一些国内外研究团队对SCI后缺血-再灌注损伤(ischemia reperfusion injury,I/R injury)、降低SCI后氧化应激及抗炎作用等机制,以及SCI康复临床治疗研究均取得了一定的成果。本文通过H2S对SCI康复的机制研究和临床治疗发展进行综述,旨在为后续研究及临床应用提供参考。  相似文献   

5.
脊髓损伤(spinal cord injury,SCI)是一种由于脊髓外部损伤或内部病变引起的暂时性或永久性的功能损伤,其症状包括肌肉功能损伤、自主运动功能减退或丧失等。目前,流行病学调查发现,我国SCI患病率较高,具有较高的社会和医疗负担。因此,合理引导SCI病人进行治疗和康复尤为重要。硫化氢(hydrogen sulfide,H2S)是一种重要的神经信号分子,近年来H2S对SCI康复的作用机制逐渐成为研究热点,例如一些国内外研究团队对SCI后缺血-再灌注损伤(ischemia reperfusion injury,I/R injury)、降低SCI后氧化应激及抗炎作用等机制,以及SCI康复临床治疗研究均取得了一定的成果。本文通过H2S对SCI康复的机制研究和临床治疗发展进行综述,旨在为后续研究及临床应用提供参考。  相似文献   

6.
Reduced spinal cord blood flow (SCBF) (i.e., ischemia) plays a key role in traumatic spinal cord injury (SCI) pathophysiology and is accordingly an important target for neuroprotective therapies. Although several techniques have been described to assess SCBF, they all have significant limitations. To overcome the latter, we propose the use of real-time contrast enhanced ultrasound imaging (CEU). Here we describe the application of this technique in a rat contusion model of SCI. A jugular catheter is first implanted for the repeated injection of contrast agent, a sodium chloride solution of sulphur hexafluoride encapsulated microbubbles. The spine is then stabilized with a custom-made 3D-frame and the spinal cord dura mater is exposed by a laminectomy at ThIX-ThXII. The ultrasound probe is then positioned at the posterior aspect of the dura mater (coated with ultrasound gel). To assess baseline SCBF, a single intravenous injection (400 µl) of contrast agent is applied to record its passage through the intact spinal cord microvasculature. A weight-drop device is subsequently used to generate a reproducible experimental contusion model of SCI. Contrast agent is re-injected 15 min following the injury to assess post-SCI SCBF changes. CEU allows for real time and in-vivo assessment of SCBF changes following SCI. In the uninjured animal, ultrasound imaging showed uneven blood flow along the intact spinal cord. Furthermore, 15 min post-SCI, there was critical ischemia at the level of the epicenter while SCBF remained preserved in the more remote intact areas. In the regions adjacent to the epicenter (both rostral and caudal), SCBF was significantly reduced. This corresponds to the previously described “ischemic penumbra zone”. This tool is of major interest for assessing the effects of therapies aimed at limiting ischemia and the resulting tissue necrosis subsequent to SCI.  相似文献   

7.
Methylprednisolone sodium succinate (MPSS) for treatment of acute spinal cord injury (SCI) has been associated with both benefits and adverse events. MPSS administration was the standard of care for acute SCI until recently when its use has become controversial. Patients with SCI have had little input in the debate, thus we sought to learn their opinions regarding administration of MPSS. A summary of the published literature to date on MPSS use for acute SCI was created and adjudicated by 28 SCI experts. This summary was then emailed to 384 chronic SCI patients along with a survey that interrogated the patients’ neurological deficits, communication with physicians and their views on MPSS administration. 77 out of 384 patients completed the survey. 28 respondents indicated being able to speak early after injury and of these 24 reported arriving at the hospital within 8 hours of injury. One recalled a physician speaking to them about MPSS and one patient reported choosing whether or not to receive MPSS. 59.4% felt that the small neurological benefits associated with MPSS were ‘very important’ to them (p<0.0001). Patients had ‘little concern’ for potential side-effects of MPSS (p = 0.001). Only 1.4% felt that MPSS should not be given to SCI patients regardless of degree of injury (p<0.0001). This is the first study to report SCI patients’ preferences regarding MPSS treatment for acute SCI. Patients favor the administration of MPSS for acute SCI, however few had input into whether or not it was administered. Conscious patients should be given greater opportunity to decide their treatment. These results also provide some guidance regarding MPSS administration in patients unable to communicate.  相似文献   

8.
Compression injuries of the murine spinal cord are valuable animal models for the study of spinal cord injury (SCI) and spinal regenerative therapy. The calibrated forceps model of compression injury is a convenient, low cost, and very reproducible animal model for SCI. We used a pair of modified forceps in accordance with the method published by Plemel et al. (2008) to laterally compress the spinal cord to a distance of 0.35 mm. In this video, we will demonstrate a dorsal laminectomy to expose the spinal cord, followed by compression of the spinal cord with the modified forceps. In the video, we will also address issues related to the care of paraplegic laboratory animals. This injury model produces mice that exhibit impairment in sensation, as well as impaired hindlimb locomotor function. Furthermore, this method of injury produces consistent aberrations in the pathology of the SCI, as determined by immunohistochemical methods. After watching this video, viewers should be able to determine the necessary supplies and methods for producing SCI of various severities in the mouse for studies on SCI and/or treatments designed to mitigate impairment after injury.  相似文献   

9.
Migraine headaches are a common neurological condition, negatively impacting health and quality of life. Among potential risk factors for migraine headache, risk of migraine headaches was elevated in individuals with spinal cord injury (SCI). The association between migraines and SCI is intriguing to consider from the perspective that migraine headaches may be acquired in response to damage in the spinal cord. The primary objective of this study was to further examine the association between SCI and migraine headache, controlling for potential confounding variables. A secondary objective was to determine the impact of migraine headaches on self-perceived health. Data from a sample of 61,047 participants were obtained from the cross-sectional Canadian Community Health Survey. Multivariable logistic regression was used to explore the association between SCI and migraine headache using probability weights and adjusting for confounders. The multivariable age- and sex-adjusted model revealed a strong association between SCI and migraine headache, with an adjusted odds ratio for migraine of 4.82 (95% confidence interval [3.02, 7.67]) among those with SCI compared to those without SCI. Further, individuals who experienced both SCI and migraine tended to report poorer perceived general health compared with the other groups (i.e., SCI and no migraine). In conclusion, this study established a strong association between SCI and migraine headache. Further research is needed to explore the possible mechanisms underlying this relationship. Improvements in clinical practice to minimize this issue could result in significant improvements in quality of life.  相似文献   

10.
Zinc concentrations in the dorsal horn of spinal cord are important for wound healing, neurological function, and reproduction. However, the response of the spinal cord to alterations in dietary zinc is unknown in rats after spinal cord injury (SCI). The current study explored cellular zinc levels and zinc transporter 1 (ZnT1) expression in the dorsal horn of spinal cord with different dietary zinc after SCI. A hundred and forty-four male Wistar rats were randomly divided into four groups: sham-operated group (30?mg Zn/kg), zinc-high dietary SCI model group (ZH, 180?mg Zn/kg), zinc-adequate dietary SCI model group (30?mg Zn/kg), and marginal zinc-deficient dietary SCI model group (MZD, 5?mg Zn/kg). To test the hypothesis that dietary zinc may regulate role of ZnT1 expression in dorsal horn after acute SCI, we traced ZnT1 proteins and zinc ions with immunohistochemistry, western blot, and autometallography. Zinc and ZnT1 levels of the dorsal horn in ZH significantly increased after surgery (P?<?0.05), reached peak level (P?<?0.05) on the seventh day, and subsequently levels of their expression began to decrease. But zinc levels and ZnT1 expression of spinal cord in MZD dietary groups decreased (P?<?0.05) in SCI. There was a positive correlation between ZnT1 protein and zinc content in spinal cord (R?=?0.49880, P?=?0.0492). We found that both zinc and ZnT1 expressions in spinal cord are regulated by dietary zinc. These results indicate that dietary zinc may regulate the expression of ZnT1 in the dorsal horn of spinal cord after SCI. ZnT1 may, at the same time, play a significant role in the maintenance of zinc homeostasis in SCI.  相似文献   

11.
Spinal cord injury (SCI) is associated with complex pathophysiological processes that follow the primary traumatic event and determine the extent of secondary damage and functional recovery. Numerous reports have used global and hypothesis-driven approaches to identify protein changes that contribute to the overall pathology of SCI in an effort to identify potential therapeutic interventions. In this study, we use a semi-automatic annotation approach to detect terms referring to genes or proteins dysregulated in the SCI literature and develop a curated SCI interactome. Network analysis of the SCI interactome revealed the presence of a rich-club organization corresponding to a “powerhouse” of highly interacting hub-proteins. Studying the modular organization of the network have shown that rich-club proteins cluster into modules that are specifically enriched for biological processes that fall under the categories of cell death, inflammation, injury recognition and systems development. Pathway analysis of the interactome and the rich-club revealed high similarity indicating the role of the rich-club proteins as hubs of the most prominent pathways in disease pathophysiology and illustrating the centrality of pro-and anti-survival signal competition in the pathology of SCI. In addition, evaluation of centrality measures of single nodes within the rich-club have revealed that neuronal growth factor (NGF), caspase 3, and H-Ras are the most central nodes and potentially an interesting targets for therapy. Our integrative approach uncovers the molecular architecture of SCI interactome, and provide an essential resource for evaluating significant therapeutic candidates.  相似文献   

12.
Permanent disruptions of gastrointestinal function are very common sequel of spinal cord injury (SCI). When motor and sensory nervous integrity are severely affected, neurogenic gastrointestinal dysfunction is an inevitable consequence. Autonomic nervous system miss function has significantly diminished or lost sensory sensations followed with incomplete evacuation of stool from the rectal vault, immobility, and reduced anal sphincter tone all of those predisposing to increased risk of fecal incontinence (FI). The FI is, beside paralysis of extremities, one of the symptoms most profoundly affecting quality of life (QOL) in patients with SCI. We are reviewing current perspectives in management of SCI, discussing some pathophysiology mechanisms which could be addressed and pointing toward actual practical concepts in use for evaluation and improvements necessary to sustain SCI patients QOL.  相似文献   

13.
14.
Spinal cord injury (SCI) is considered an incurable condition, having a heterogenous recovery and uncertain prognosis. Therefore, a reliable prediction of the improvement in the acute phase could benefit patients. Physicians are unanimous in insisting that at the initial damage of the spinal cord (SC), the patient should be carefully evaluated in order to help selecting an appropriate neuroprotective treatment. However, currently, neurologic impairment after SCI is measured and classified by functional examination. The identification of prognostic biomarkers of SCI would help to designate SC injured patients and correlate to diagnosis and correct treatment. Some proteins have already been identified as good potential biomarkers of central nervous system injury, both in cerebrospinal fluid (CSF) and blood serum. However, the problem for using them as biomarkers is the way they should be collected, as acquiring CSF through a lumbar puncture is significantly invasive. Remarkably, microRNAs (miRNAs) have emerged as interesting biomarker candidates because of their stability in biological fluids and their tissue specificity. Several miRNAs have been identified to have their expressions altered in SCI in many animal models, making them promising candidates as biomarkers after SCI. Moreover, there are yet no effective therapies for SCI. It is already known that altered lysophospholipids (LPs) signaling are involved in the biology of disorders, such as inflammation. Reports have demonstrated that LPs when locally distributed can regulate SCI repair and key secondary injury processes such as apoptosis and inflammation, and so could become in the future new therapeutic approaches for treating SCI.  相似文献   

15.
基因治疗脊髓损伤(SCI)既不存在胎儿神经组织移植的组织来源问题,且比外周神经组织移植引起的排异性低,是目前脊髓损伤治疗中最有前途的方法.基因治疗的转基因方式有两种:一是将目的基因直接导入体内靶细胞令其表达;二是将基因在体外导入适当的细胞内,并筛选出高效表达的移植细胞作为转基因中介移植到体内靶组织.不论采用何种方式,将基因导入细胞又可用多种手段实现:如微注射、脂质体等物理或化学手段;利用缺陷病毒作为载体感染细胞的生物学手段.因为用生物学手段转基因的细胞移植方法空间定位明确,所以目前最常采用它作为基因治疗效果的研究.虽然SCI基因治疗目前仍停留在实验探索阶段,一些问题尚待解决,但随着基因治疗技术方法的不断提高,它的临床应用前景可以预见.  相似文献   

16.
Neurogenic detrusor overactivity and the associated loss of bladder control are among the most challenging complications of spinal cord injury (SCI). Anticholinergic agents are the mainstay for medical treatment of detrusor overactivity. However, their use is limited by significant side effects such that a search for new treatments is warranted. Inosine is a naturally occurring purine nucleoside with neuroprotective, neurotrophic and antioxidant effects that is known to improve motor function in preclinical models of SCI. However, its effect on lower urinary tract function has not been determined. The objectives of this study were to determine the effect of systemic administration of inosine on voiding function following SCI and to delineate potential mechanisms of action. Sprague−Dawley rats underwent complete spinal cord transection, or cord compression by application of an aneurysm clip at T8 for 30 sec. Inosine (225 mg/kg) or vehicle was administered daily via intraperitoneal injection either immediately after injury or after a delay of 8 wk. At the end of treatment, voiding behavior was assessed by cystometry. Levels of synaptophysin (SYP), neurofilament 200 (NF200) and TRPV1 in bladder tissues were measured by immunofluorescence imaging. Inosine administration decreased overactivity in both SCI models, with a significant decrease in the frequency of spontaneous non−voiding contractions during filling, compared to vehicle−treated SCI rats (p<0.05), including under conditions of delayed treatment. Immunofluorescence staining demonstrated increased levels of the pan-neuronal marker SYP and the Adelta fiber marker NF200, but decreased staining for the C-fiber marker, TRPV1 in bladder tissues from inosine-treated rats compared to those from vehicle-treated animals, including after delayed treatment. These findings demonstrate that inosine prevents the development of detrusor overactivity and attenuates existing overactivity following SCI, and may achieve its effects through modulation of sensory neurotransmission.  相似文献   

17.
18.
Increasing evidence suggests that the basic foundations of the self lie in the brain systems that represent the body. Specific sensorimotor stimulation has been shown to alter the bodily self. However, little is known about how disconnection of the brain from the body affects the phenomenological sense of the body and the self. Spinal cord injury (SCI) patients who exhibit massively reduced somatomotor processes below the lesion in the absence of brain damage are suitable for testing the influence of body signals on two important components of the self–the sense of disembodiment and body ownership. We recruited 30 SCI patients and 16 healthy participants, and evaluated the following parameters: (i) depersonalization symptoms, using the Cambridge Depersonalization Scale (CDS), and (ii) measures of body ownership, as quantified by the rubber hand illusion (RHI) paradigm. We found higher CDS scores in SCI patients, which show increased detachment from their body and internal bodily sensations and decreasing global body ownership with higher lesion level. The RHI paradigm reveals no alterations in the illusory ownership of the hand between SCI patients and controls. Yet, there was no typical proprioceptive drift in SCI patients with intact tactile sensation on the hand, which might be related to cortical reorganization in these patients. These results suggest that disconnection of somatomotor inputs to the brain due to spinal cord lesions resulted in a disturbed sense of an embodied self. Furthermore, plasticity-related cortical changes might influence the dynamics of the bodily self.  相似文献   

19.
Tumor necrosis factor receptor-associated factor 2 (TRAF2) for signal transduction of the cell death receptor is well established. However, the role of TRAF2 in spinal cord injury (SCI) remains unclear. In this study, we detected the dynamic change patterns of TRAF2 expression using an acute spinal cord contusion (SCC) model in adult rats. Western blot analysis and immunohistochemistry identified significant upregulation of TRAF2 after SCI. Double-immunofluorescent staining demonstrated that the upregulated TRAF2 was found predominantly in neurons. Moreover, colocalization of TRAF2 with active caspase-3/-8 was detected in NeuN-positive cells. In vitro, we analyzed the association of TRAF2 with active caspase-3/8 on PC12 cells by western blot analysis, which paralleled the in vivo data. Knockdown ofTRAF2 with siRNA demonstrated its probable anti-apoptotic role in the process of neuronal apoptosis after SCI. To summarize, we have revealed for the first time the temporal and spatial expression profile of TRAF2 in SCI. Our data suggest that upregulation of TRAF2 triggered by trauma plays an important role in suppressing neuronal apoptosis after SCI.  相似文献   

20.
LIN28, an RNA-binding protein, is known to be involved in the regulation of many cellular processes, such as embryonic stem cell proliferation, cell fate succession, developmental timing, and oncogenesis. However, its expression and function in central nervous system still unclear. In this study, we performed an acute spinal cord contusion injury (SCI) model in adult rats and investigated the dynamic changes of LIN28 expression in spinal cord. Western blot and immunohistochemistry analysis revealed that LIN28 was present in normal spinal cord. It gradually increased, reached a peak at 3 day, and then nearly declined to the basal level at 14 days after SCI. Double immunofluorescence staining showed that LIN28 immunoreactivity was found in neurons, astrocytes and a handful of microglia. Interestingly, LIN28 expression was increased predominantly in astrocytes but not in neurons. Moreover, the colocalization of LIN28 and proliferating cell nuclear antigen was detected after injury. Western blot showed that LIN28 participated in lipopolysaccharide (LPS) induced astrocytes inflammatory responses by NF-κB signaling pathway. These results suggested that LIN28 may be involved in the pathologic process of SCI, and further research is needed to have a good understanding of its function and mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号