首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang  Wen-Jun  Ma  Yan-Mei  He  Mao-Tao  Zhang  Deng-Hai  Wang  Rui  Jing  Li  Zhang  Jian-Zhong 《Neurochemical research》2022,47(5):1369-1382
Neurochemical Research - Hyperglycemia aggravates cerebral ischemia/reperfusion (I/R) injury via vascular injury. There is still a lack of effective pharmaceutical preparations for cerebral I/R...  相似文献   

2.
The protective role of etanercept in myocardial ischemia/reperfusion is not well understood. The aim of this study was to investigate whether etanercept modulates neutrophil accumulation, TNF-α induction and oxidative stress in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia/reperfusion (MI/R) alone, MI/R+ etanercept. The results demonstrated that compared to MI/R, etanercept reduced myocardial infarction area, myocardial myeloperoxidase (MPO) levels, serum creatinine kinase (CK) and lactate dehydrogenase (LDH) levels, and both serum and myocardial TNF-α production. Etanercept also markedly enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reduced the level of malondialdehyde (MDA) in MI/R rats. In summary, our data suggested that etanercept has protective effects against MI/R injury in rats, which may be attributed to attenuating inflammation and oxidative stress.  相似文献   

3.
The purpose of this research was to evaluate the protective effects of apocynin on renal ischemia/reperfusion (I/R) injury (RI/RI) in rats. Rats preconditioned with apocynin were subjected to renal I/R. Zinc levels in serum and renal tissues, blood urea nitrogen (BUN), and serum creatinine (Scr) were detected. We further measured the activity of superoxide dismutase (SOD); the content of malondialdehyde (MDA), IL-4, IL-6, IL-10, and TNF-α; and the expression of metallothionein (MT) in the renal tissues. Results indicated that the levels of MDA, IL-4, IL-6, IL-10, TNF-α, and MT in the kidney tissue and serum BUN and Scr levels in RI/RI group were significantly higher than those in sham-operated group, while the levels of serum Zn and kidney Zn and SOD were reduced in RI/RI group. Apocynin treatment further decreased the levels of MDA, IL-6, TNF-α, and serum BUN and Scr, whereas it significantly increased the levels of Zn, SOD, IL-4, IL-10, and MT in the kidney tissue and serum Zn. These findings suggest that apocynin might play a protective role against RI/RI in rats through regulating zinc level and MT expression involving in oxidative stress.  相似文献   

4.
5.

Background

Liver ischemia reperfusion (I/R) injury is a common pathophysiological process in many clinical settings. Carvacrol, a food additive commonly used in essential oils, has displayed antimicrobials, antitumor and antidepressant-like activities. In the present study, we investigated the protective effects of carvacrol on I/R injury in the Wistar rat livers and an in vitro hypoxia/restoration (H/R) model.

Methods

The hepatoportal vein, hepatic arterial and hepatic duct of Wistar rats were isolated and clamped for 30 min, followed by a 2 h reperfusion. Buffalo rat liver (BRL) cells were incubated under hypoxia for 4 h, followed normoxic conditions for 10 h to establish the H/R model in vitro. Liver injury was evaluated by measuring serum levels of alanine aminotransferase (ALT) and aspatate aminotransferase (AST), and hepatic levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondiadehyde (MDA), and hepatic histology and TUNEL staining. MTT assay, flow cytometric analysis and Hoechst 33258 staining were used to evaluate the proliferation and apoptosis of BRL cells in vitro. Protein expression was examined by Western Blot analysis.

Results

Carvacrol protected against I/R-induced liver damage, evidenced by significantly reducing the serum levels of ALT and AST, histological alterations and apoptosis of liver cells in I/R rats. Carvacrol exhibited anti-oxidative activity in the I/R rats, reflected by significantly reducing the activity of SOD and the content of MDA, and restoring the activity of CAT and the content of GSH, in I/R rats. In the in vitro assays, carvacrol restored the viability and inhibited the apoptosis of BRL cells, which were subjected to a mimic I/R injury induced by hypoxia. In the investigation on molecular mechanisms, carvacrol downregulated the expression of Bax and upregulated the expression of Bcl-2, thus inhibited the activation of caspase-3. Carvacrol was also shown to enhance the phosphorylation of Akt.

Conclusion

The results suggest that carvacrol could alleviate I/R-induced liver injury by its anti-oxidative and anti-apoptotic activities, and warrant a further investigation for using carvacrol to protect I/R injury in clinic.  相似文献   

6.
7.

Background and Purpose

Myocardial infarction leads to heart failure. Autophagy is excessively activated in myocardial ischemia/reperfusion (I/R) in rats. The aim of this study is to investigate whether the protection of sevoflurane postconditioning (SPC) in myocardial I/R is through restored impaired autophagic flux.

Methods

Except for the sham control (SHAM) group, each rat underwent 30 min occlusion of the left anterior descending coronary (LAD) followed by 2 h reperfusion. Cardiac infarction was determined by 2,3,5-triphenyltetrazolium chloride triazole (TTC) staining. Cardiac function was examined by hemodynamics and echocardiography. The activation of autophagy was evaluated by autophagosome accumulation, LC3 conversion and p62 degradation. Potential molecular mechanisms were investigated by immunoblotting, real-time PCR and immunofluorescence staining.

Results

SPC improved the hemodynamic parameters, cardiac dysfunction, histopathological and ultrastructural damages, and decreased myocardial infarction size after myocardial I/R injury (P < 0.05 vs. I/R group). Compared with the cases in I/R group, myocardial ATP and NAD+ content, mitochondrial function related genes and proteins, and the expressions of SOD2 and HO-1 were increased, while the expressions of ROS and Vimentin were decreased in the SPC group (P < 0.05 vs. I/R group). SPC significantly activated Akt/mTOR signaling, and inhibited the formation of Vps34/Beclin1 complex via increasing expression of Bcl2 protein (P < 0.05 vs. I/R group). SPC suppressed elevated expressions of LC3 II/I ratio, Beclin1, Atg5 and Atg7 in I/R rat, which indicated that SPC inhibited over-activation of autophagy, and promoted autophagosome clearance. Meanwhile, SPC significantly suppressed the decline of Opa1 and increases of Drp1 and Parkin induced by I/R injury (P < 0.05 vs. I/R group). Moreover, SPC maintained the contents of ATP by reducing impaired mitochondria.

Conclusion

SPC protects rat hearts against I/R injury via ameliorating mitochondrial impairment, oxidative stress and rescuing autophagic clearance.  相似文献   

8.
Zhao  Yongmei  Ding  Mao  Yang  Nan  Huang  Yuyou  Sun  Chengjiao  Shi  Wenjuan 《Neurochemical research》2022,47(5):1419-1428
Neurochemical Research - Zinc is highly enriched in the central nervous system. Numerous evidences suggest that high concentration of zinc acts as a critical mediator of neuronal death in the...  相似文献   

9.
《Free radical research》2013,47(1):737-743
The objective of this study was to test the hypothesis that the extracellular oxidation of glutathione (GSH) may represent an important mechanism to limit hepatic ischemia/reperfusion injury in male Fischer rats in vivo. Basal plasma levels of glutatione disulfide (GSSG: 1.5 ± 0.2μM GSH-equivalents), glutathione (GSH: 6.2 ± 0.4 μM) and alanine aminotransferase activities (ALT 12 ± 2U/I) were significantly increased during the l h reperfusion period following l h of partial hepatic no-flow ischemia (GSSG: 19.7 ± 2.2μM; GSH 36.9 ± 7.4μM; ALT: 2260 ± 355 U/l). Pretreatment with 1,3-bis-(2-chloroethyl)-I-nitrosourea (40mg BCNU/kg), which inhibited glutathione reductase activity in the liver by 60%. did not affect any of these parameters. Biliary GSSG and GSH efflux rates were reduced and the GSSG-to-GSH ratio was not altered in controls and BCNU-treated rats at any time during ischemia and reperfusion. A 90% depletion of the hepatic glutathione content by phorone treatment (300 mg/kg) reduced the increase of plasma GSSG levels by 54%, totally suppressed the rise of plasma GSH concentrations and increased plasma ALT to 4290 ± 755 U/I during reperfusion. The data suggest that hepatic glutathione serves to limit ischemialreperfusion injury as a source of extracellular glutathione, not as a cofactor for the intracellular enzymatic detoxification of reactive oxygen species.  相似文献   

10.
Yang  Lan  Ma  Yan-Mei  Shen  Xi-Lin  Fan  Yu-Cheng  Zhang  Jian-Zhong  Li  P. Andy  Jing  Li 《Neurochemical research》2020,45(8):1888-1901

Selenium has been shown to possess antioxidant and neuroprotective effects by modulating mitochondrial function and activating mitochondrial biogenesis. Our previous study has also suggested that selenium protected neurons against glutamate toxicity and hyperglycemia-induced damage by regulating mitochondrial fission and fusion. However, it is still not known whether the mitochondrial biogenesis is involved in selenium alleviating hyperglycemia-aggravated cerebral ischemia reperfusion (I/R) injury. The object of this study is to define whether selenium protects neurons against hyperglycemia-aggravated cerebral I/R injury by promoting mitochondrial biogenesis. In vitro oxygen deprivation plus high glucose model decreased cell viability, enhanced reactive oxygen species production, and meanwhile stimulated mitochondrial biogenesis signaling. Pretreated with selenium significantly decreased cell death and further activated the mitochondrial biogenesis signaling. In vivo 30 min of middle cerebral artery occlusion in the rats under hyperglycemic condition enhanced neurological deficits, enlarged infarct volume, exacerbated neuronal damage and oxidative stress compared with normoglycemic ischemic rats after 24 h reperfusion. Consistent to the in vitro results, selenium treatment alleviated ischemic damage in hyperglycemic ischemic animals. Furthermore, selenium reduced the structural changes of mitochondria caused by hyperglycemic ischemia and further promoted the mitochondrial biogenesis signaling. Selenium activates mitochondrial biogenesis signaling, protects mitochondrial structure integrity and ameliorates cerebral I/R injury in hyperglycemic rats.

  相似文献   

11.
Wang  Shun-Da  Fu  Ying-Ying  Han  Xin-Yuan  Yong  Zhi-Jun  Li  Qing  Hu  Zhen  Liu  Zhen-Guo 《Neurochemical research》2021,46(4):866-877

Hyperbaric oxygen (HBO) therapy is considered a safe and feasible method that to provide neuroprotection against ischemic stroke. However, the therapy mechanisms of HBO have not been fully elucidated. We hypothesized that the mechanism underlying the protective effect of HBO preconditioning (HBO-PC) against cerebral ischemia/reperfusion injury was related to inhibition of mitochondrial apoptosis and energy metabolism disorder. To test this hypothesis, an ischemic stroke model was established by middle cerebral artery occlusion (MCAO) in rats. HBO-PC involved five consecutive days of pretreatment before MCAO. In additional experiments, X chromosome-linked inhibitor of apoptosis protein (XIAP) and second mitochondria-derived activator of caspases (SMAC) shRNA and NC plasmids were intraventricularly injected into rat brains after MCAO (2 h). After 24 h, all rats underwent motor function evaluation, which was assessed by modified Garcia scores. TTC staining for the cerebral infarct and cerebral edema, and TUNEL staining for cell apoptosis, were also analyzed. Reactive oxygen species and antioxidative enzymes in rat brains were detected, as well as mitochondrial complex enzyme activities, ATP levels, and Na+/K+ ATPase activity. Western blot was used to detect apoptotic proteins including Bcl-2, Bax, caspase-3, caspase-9, cyc-c, XIAP, and SMAC. HBO-PC remarkably reduced the infarct volume and improved neurological deficits. Furthermore, HBO-PC alleviated oxidative stress and regulated the expression of apoptosis-related proteins. Moreover, HBO-PC inhibited the decrease in ATP levels, mitochondrial complex enzyme activities, and Na+/K+ ATPase activity to maintain stable energy metabolism. XIAP knockdown weakened the protective effect of HBO, whereas SMAC knockdown strengthened its protective effect. The effects of HBO-PC can be attributed to inhibition of ischemia/hypoxia-induced mitochondrial apoptosis and energy metabolism disturbance. The action of HBO-PC is related to the XIAP and SMAC signaling pathways.

  相似文献   

12.
Zhang  Heng-Sheng  Ouyang  Bo  Ji  Xiong-Ying  Liu  Mei-Fang 《Neurochemical research》2021,46(7):1747-1758

Cerebral ischaemia/reperfusion (I/R) injury-induced irreversible brain injury is a major cause of mortality and functional impairment in ageing people. Gastrodin (GAS), derived from the traditional Chinese herbal medicine Tianma, has been reported to inhibit the progression of stroke, but the mechanism whereby GAS modulates the progression of cerebral I/R remains unclear. The middle cerebral artery occlusion method was used as a model of I/R in vivo. Rats were pretreated with GAS by intraperitoneal injection 7 days before I/R surgery and were then treated with GAS for 7 days after I/R surgery. Additionally, an oxygen–glucose deprivation/reoxygenation model using neuronal cells was established in vitro to simulate I/R injury. 2,3,5-Triphenyltetrazolium chloride and Nissl staining were used to evaluate infarct size and neuronal damage, respectively. Lactate dehydrogenase release and cell counting kit-8 assays were used to assess neuronal cell viability. Enzyme-linked immunosorbent assay, qPCR, flow cytometry and western blotting were performed to analyse the expression levels of inflammatory factors (IL-1β, IL-18), lncRNA NEAT1, miR-22-3p, NLRP3 and cleaved caspase-1. Luciferase reporter experiments were performed to verify the association between lncRNA NEAT1 and miR-22-3p. The results indicated that GAS could significantly improve the neurological scores of rats and reduce the area of cerebral infarction. Meanwhile, GAS inhibited pyroptosis by downregulating NLRP3, inflammatory factors (IL-1β, IL-18) and cleaved caspase-1. In addition, GAS attenuated I/R-induced inflammation in neuronal cells through the modulation of the lncRNA NEAT1/miR-22-3p axis. GAS significantly attenuated cerebral I/R injury via modulation of the lncRNA NEAT1/miR-22-3p axis. Thus, GAS might serve as a new agent for the treatment of cerebral I/R injury.

  相似文献   

13.

Background

Transient global cerebral ischemia/reperfusion (I/R) is a major perioperative complication, and diabetes increases the response of oxidative stress and inflammation induced by I/R. The objective of this study was to determine the protective effect of dexmedetomidine against transient global cerebral ischemia/reperfusion induced oxidative stress and inflammation in diabetic rats.

Methods

Sixty-four rats were assigned into four experimental groups: normoglycemia, normoglycemia + dexmedetomidine, hyperglycemia, and hyperglycemia + dexmedetomidine and all subsequent neurological examinations were evaluated by a blinded observer. Damage to the brain was histologically assessed using the TUNEL staining method while western blotting was used to investigate changes in the expression levels of apoptosis-related proteins as well as the microglia marker, ionized calcium-binding adapter molecule 1 (Iba1). Water content in the brain was also analyzed. In addition, hippocampal concentrations of malondialdehyde (MDA) and Nox2 (a member of the Nox family of NADPH oxidases), and the activity of superoxide dismutase and catalase were analyzed. Finally, changes in serum concentrations of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were detected.

Results

Results showed that diabetes increased brain water content, the number of apoptotic neurons, early neurological deficit scores, oxidative stress (MDA and Nox2) and inflammation (pro-inflammatory cytokines including TNF-α and IL-6) levels following transient global I/R injury, but that these symptoms were attenuated following administration of dexmedetomidine.

Conclusions

These findings suggest that dexmedetomidine can significantly alleviate damage resulting from I/R, and this mechanism may be related to a reduction in both oxidative stress and inflammation which is normally associated with I/R.  相似文献   

14.
本研究旨在探讨依达拉奉(edaravone,ED)在脑缺血再灌注损伤中发挥神经元保护作用与Nrf2信号分子间的关系。体内实验利用脑内脑中动脉闭塞(middle cerebral artery occlusion model,MCAO)建立SD大鼠脑缺血再灌注损伤模型,体外实验采用过氧化氢(H2O2)损伤PC12细胞建立氧化应激模型。通过TTC染色、HE染色、Nissl染色来检测大脑的病理状态。测定活性氧(reactive oxygen species,ROS)、丙二醛(malondialdehyde,MDA)含量、超氧化物歧化酶(superoxide dismutase,SOD)活性,来反映氧化应激水平。此外,通过Hoechst 33342染色和线粒体膜电位(mitochondrial membrane potential,MTP)测定,探究细胞水平的损伤。采用免疫组织化学和蛋白质印记测定Nrf2的表达。构建Nrf2敲除的PC12细胞系,证实Nrf2信号分子抑制氧化应激损伤的作用。结果提示,经依达拉奉给药后,在动物体内水平,TTC染色证实,脑缺血再灌注损伤(cerebral ischemia reperfusion injury,CIRI)大鼠的脑组织梗死体积减小(P<0.001),ROS和MDA水平下降(P<0.01),SOD活性上升(P<0.01);在细胞水平,凋亡细胞减少(P<0.05),MTP上升(P<0.01),ROS和MDA水平下降,SOD活性上升(P<0.01);在分子水平,免疫组化和Western印迹结果均提示,Nrf2蛋白质含量较正常组增加。H2O2诱导Nrf2基因敲除的PC12细胞损伤加重,且依达拉奉的治疗效果明显削弱。综上所述,Nrf2在依达拉奉减轻脑缺血再灌注诱导的氧化应激损伤中发挥关键作用。  相似文献   

15.
In traditional Chinese medicine, Ligusticum wallichii (Chuan Xiong) and its bioactive ingredient, tetramethylpyrazine (TMP), have been used to treat cardiovascular diseases and to relieve various neurological symptoms, such as those associated with ischemic injury. In the present study, we investigated whether ultrasound (US) exposure could enhance the protective effect of TMP against cerebral ischemia/reperfusion (I/R) injury. Glutamate-induced toxicity to pheochromocytoma (PC12) cells was used to model I/R injury. TMP was paired with US to examine whether this combination could alleviate glutamate-induced cytotoxicity. The administration of TMP effectively protected cells against glutamate-induced apoptosis, which could be further enhanced by US-mediated sonoporation. The anti-apoptotic effect of TMP was associated with the inhibition of oxidative stress and a change in the levels of apoptosis-related proteins, Bcl-2 and Bax. Furthermore, TMP reduced the expression of proinflammatory cytokines such as TNF-α and IL-8, which likely also contributes to its cytoprotective effects. Taken together, our findings suggest that ultrasound-enhanced TMP treatment might be a promising therapeutic strategy for ischemic stroke. Further study is required to optimize ultrasound treatment parameters.  相似文献   

16.
An  Ji-Ren  Su  Jia-Nan  Sun  Gui-Yan  Wang  Qing-Feng  Fan  Ya-Dong  Jiang  Nan  Yang  Yu-Feng  Shi  Yan 《Neurochemical research》2022,47(2):279-294
Neurochemical Research - Studies have shown that diabetes is associated with the occurrence of neurodegenerative diseases and cognitive decline. However, there is currently no effective treatment...  相似文献   

17.
摘要 目的:探右美托咪定缓解缺血性脑损伤记忆障碍大鼠记忆功能的作用机制。方法:选择雄性SD大鼠36只,随机分为三组,分别为:假手术组(12只)、缺血性脑损伤模型组(12只)、右美托咪定组(12只),除假手术组外其余动物均采用双侧颈动脉结扎术建立慢性脑缺血模型。假手术组和模型组给予生理盐水静注,右美托咪定组给予右美托咪定0.5 μg /kg,静注,均在15 min内滴完。比较大鼠给药前和给药后4 w的记忆情况以及线粒体凋亡因子Bcl-2、Cleaved Caspase-3、Caspase-9的表达水平。结果:(1)与假手术组相比,模型组和右美托咪定组大鼠逃逸潜伏期明显增高(P<0.05),右美托咪定组逃逸潜伏期与模型组相比有显著降低(P<0.05);与假手术组相比,模型组和右美托咪定组大鼠游泳路程明显延长(P<0.05),右美托咪定组游泳路程与模型组相比有显著降低(P<0.05);(2)与假手术组相比,模型组和右美托咪定组大鼠海马区部分凋亡因子Bcl-2,Cleaved Caspase-9,Cleaved Caspase-3的蛋白表达均有明显提升(P<0.05);与模型组相比,右美托咪定组在给药4 w后上述蛋白的表达有明显降低(P<0.05)。结论:右美托咪定对脑缺血记忆障碍大鼠的记忆功能有显著改善作用,其作用机制可能与抑制线粒体凋亡水平有关,具体信号通路还有待进一步探索。  相似文献   

18.

Background and Purpose

Mitochondrial dysfunction has been implicated in the cell death observed after cerebral ischemia, and several mechanisms for this dysfunction have been proposed. Reperfusion after transient cerebral ischemia may cause continued and even more severe damage to the brain. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. The purpose of this study was to observe the features of mitochondrial dysfunction in isolated mitochondria during the reperfusion period following focal cerebral ischemia.

Methods

Male Wistar rats were subjected to focal cerebral ischemia. Mitochondria were isolated using Percoll density gradient centrifugation. The isolated mitochondria were fixed for electron microscopic examination; calcium-induced mitochondrial swelling was quantified using spectrophotometry. Cyclophilin D was detected by Western blotting. Fluorescent probes were used to selectively stain mitochondria to measure their membrane potential and to measure reactive oxidative species production using flow cytometric analysis.

Results

Signs of damage were observed in the mitochondrial morphology after exposure to reperfusion. The mitochondrial swelling induced by Ca2+ increased gradually with the increasing calcium concentration, and this tendency was exacerbated as the reperfusion time was extended. Cyclophilin D protein expression peaked after 24 hours of reperfusion. The mitochondrial membrane potential was decreased significantly during the reperfusion period, with the greatest decrease observed after 24 hours of reperfusion. The surge in mitochondrial reactive oxidative species occurred after 2 hours of reperfusion and was maintained at a high level during the reperfusion period.

Conclusions

Reperfusion following focal cerebral ischemia induced significant mitochondrial morphological damage and Ca2+-induced mitochondrial swelling. The mechanism of this swelling may be mediated by the upregulation of the Cyclophilin D protein, the destruction of the mitochondrial membrane potential and the generation of excessive reactive oxidative species.  相似文献   

19.
目的:观察线粒体分裂蛋白抑制剂在大鼠脑缺血再灌注损伤中的作用,并初步探讨其在线粒体凋亡途径中的作用机制.方法:雄性Wistar大鼠48只,体重250~300 g,随机分为三组(n=16):假手术组(Sham组)、脑缺血再灌注组(I/R组)和mdivi-1预处理组(mdivi-1组),线栓法建立大鼠大脑中动脉闭塞(MCAO)模型,缺血2小时,再灌注24小时后应用流式细胞术检测神经元凋亡;Western blot法检测Cyt C蛋白的表达;RT-PCR法检测Cyt C mRNA的表达.结果:与Sham组比较,I/R组神经细胞凋亡率与CytC蛋白以及mRNA表达水平显著升高(P<0.01).应用mdivi-1预处理后细胞凋亡率与CytC蛋白以及mRNA表达水平明显降低(P<0.01).结论:线粒体分裂蛋白抑制剂可以明显减轻脑缺血再灌注损伤,其作用机制可能通过阻断线粒体-细胞色素C途径来抑制细胞凋亡.  相似文献   

20.

Background and Purpose

Retinal swelling, leading to irreversible visual impairment, is an important early complication in retinal ischemia/reperfusion (I/R) injury. Diosmin, a naturally occurring flavonoid glycoside, has been shown to have antioxidative and anti-inflammatory effects against I/R injury. The present study was performed to evaluate the retinal microvascular protective effect of diosmin in a model of I/R injury.

Methods

Unilateral retinal I/R was induced by increasing intraocular pressure to 110 mm Hg for 60 min followed by reperfusion. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. Rats were evaluated for retinal functional injury by electroretinogram (ERG) just before sacrifice. Retinas were harvested for HE staining, immunohistochemistry assay, ELISA, and western blotting analysis. Evans blue (EB) extravasation was determined to assess blood–retinal barrier (BRB) disruption and the structure of tight junctions (TJ) was examined by transmission electron microscopy.

Results

Diosmin significantly ameliorated the reduction of b-wave, a-wave, and b/a ratio in ERG, alleviated retinal edema, protected the TJ structure, and reduced EB extravasation. All of these effects of diosmin were associated with increased zonular occluden-1 (ZO-1) and occludin protein expression and decreased VEGF/PEDF ratio.

Conclusions

Maintenance of TJ integrity and reduced permeability of capillaries as well as improvements in retinal edema were observed with diosmin treatment, which may contribute to preservation of retinal function. This protective effect of diosmin may be at least partly attributed to its ability to regulate the VEGF/PEDF ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号