首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we investigated the potential of minocycline to influence cuprizone induced demyelination in the grey and white matter. To induce demyelination C57BL/6 mice were fed with cuprizone for up to 6 weeks and were analysed at different timepoints (week 0, 4, 5, 6). Mice treated with minocycline had less demyelination of the cortex and corpus callosum compared with sham treated animals. In the cortex decreased numbers of activated and proliferating microglia were found after 6 weeks of cuprizone feeding, while there were no significant effects for microglial infiltration of the corpus callosum. In addition to the beneficial effects on demyelination, minocycline prevented from motor coordination disturbance as shown in the beam walking test. For astrogliosis and the numbers of OPC and oligodendrocytes no treatment effects were found. In summary, minocycline treatment diminished the course of demyelination in the grey and white matter and prevented disturbances in motor coordination.  相似文献   

2.
For the treatment of patients with multiple sclerosis there are no regenerative approaches to enhance remyelination. Mesenchymal stem cells (MSC) have been proposed to exert such regenerative functions. Intravenous administration of human MSC reduced the clinical severity of experimental autoimmune encephalomyelitis (EAE), an animal model mimicking some aspects of multiple sclerosis. However, it is not clear if this effect was achieved by systemic immunomodulation or if there is an active neuroregeneration in the central nervous system (CNS). In order to investigate remyelination and regeneration in the CNS we analysed the effects of intravenously and intranasally applied murine and human bone marrow-derived MSC on cuprizone induced demyelination, a toxic animal model which allows analysis of remyelination without the influence of the peripheral immune system. In contrast to EAE no effects of MSC on de- and remyelination and glial cell reactions were found. In addition, neither murine nor human MSC entered the lesions in the CNS in this toxic model. In conclusion, MSC are not directed into CNS lesions in the cuprizone model where the blood-brain-barrier is intact and thus cannot provide support for regenerative processes.  相似文献   

3.
Cuprizone administration in mice provides a reproducible model of demyelination and spontaneous remyelination, and has been useful in understanding important aspects of human disease, including multiple sclerosis. In this study, we apply high spatial resolution quantitative MRI techniques to establish the spatio-temporal patterns of acute demyelination in C57BL/6 mice after 6 weeks of cuprizone administration, and subsequent remyelination after 6 weeks of post-cuprizone recovery. MRI measurements were complemented with Black Gold II stain for myelin and immunohistochemical stains for associated tissue changes. Gene expression was evaluated using the Allen Gene Expression Atlas. Twenty-five C57BL/6 male mice were split into control and cuprizone groups; MRI data were obtained at baseline, after 6 weeks of cuprizone, and 6 weeks post-cuprizone. High-resolution (100μm isotropic) whole-brain coverage magnetization transfer ratio (MTR) parametric maps demonstrated concurrent caudal-to-rostral and medial-to-lateral gradients of MTR decrease within corpus callosum (CC) that correlated well with demyelination assessed histologically. Our results show that demyelination was not limited to the midsagittal line of the corpus callosum, and also that opposing gradients of demyelination occur in the lateral and medial CC. T2-weighted MRI gray/white matter contrast was strong at baseline, weak after 6 weeks of cuprizone treatment, and returned to a limited extent after recovery. MTR decreases during demyelination were observed throughout the brain, most clearly in callosal white matter. Myelin damage and repair appear to be influenced by proximity to oligodendrocyte progenitor cell populations and exhibit an inverse correlation with myelin basic protein gene expression. These findings suggest that susceptibility to injury and ability to repair vary across the brain, and whole-brain analysis is necessary to accurately characterize this model. Whole-brain parametric mapping across time is essential for gaining a real understanding of disease processes in-vivo. MTR increases in healthy mice throughout adolescence and adulthood were observed, illustrating the need for appropriate age-matched controls. Elucidating the unique and site-specific demyelination in the cuprizone model may offer new insights into in mechanisms of both damage and repair in human demyelinating diseases.  相似文献   

4.
5.
Aging is an inevitable process that occurs in the whole body system accompanying with many functional and morphological changes. Inflammation is known as one of age-related factors, and inflammatory changes could enhance mortality risk. In this study, we compared immunoreactivities of inflammatory cytokines, such as interleukin (IL)-2 (a pro-inflammatory cytokine), its receptor (IL-2R), IL-4 (an anti-inflammatory cytokine), and its receptor (IL-4R) in the cervical and lumbar spinal cord of young adult (2–3 years old) and aged (10–12 years old) beagle dogs using immunohistochemistry and western blotting. IL-2 and IL-2R-immunoreactive nerve cells were found throughout the gray matter of the cervical and lumbar spinal cord of young adult and aged dogs. In the spinal cord neurons of the aged dog, immunoreactivity and protein levels were apparently increased compared with those in the young adult dog. Change patterns of IL-4- and IL-4R-immunoreactive cells and their protein levels were also similar to those in IL-2 and IL-2R; however, IL-4 and IL-4R immunoreactivity in the periphery of the neuronal cytoplasm in the aged dog was much stronger than that in the young adult dog. These results indicate that the increase of inflammatory cytokines and their receptors in the aged spinal cord might be related to maintaining a balance of inflammatory reaction in the spinal cord during normal aging.  相似文献   

6.

Background

Cell–based therapy holds great promises for demyelinating diseases. Human-derived fetal and adult oligodendrocyte progenitors (OPC) gave encouraging results in experimental models of dysmyelination but their limited proliferation in vitro and their potential immunogenicity might restrict their use in clinical applications. Virtually unlimited numbers of oligodendroglial cells could be generated from long-term self-renewing human (h)-derived neural stem cells (hNSC). However, robust oligodendrocyte production from hNSC has not been reported so far, indicating the need for improved understanding of the molecular and environmental signals controlling hNSC progression through the oligodendroglial lineage. The aim of this work was to obtain enriched and renewable cultures of hNSC-derived oligodendroglial cells by means of epigenetic manipulation.

Methodology/Principal Findings

We report here the generation of large numbers of hNSC-derived oligodendroglial cells by concurrent/sequential in vitro exposure to combinations of growth factors (FGF2, PDGF-AA), neurotrophins (NT3) and hormones (T3). In particular, the combination FGF2+NT3+PDGF-AA resulted in the maintenance and enrichment of an oligodendroglial cell population displaying immature phenotype (i.e., proliferation capacity and expression of PDGFRα, Olig1 and Sox10), limited self-renewal and increased migratory activity in vitro. These cells generate large numbers of oligodendroglial progeny at the early stages of maturation, both in vitro and after transplantation in models of CNS demyelination.

Conclusions/Significance

We describe a reliable method to generate large numbers of oligodendrocytes from a renewable source of somatic, non-immortalized NSC from the human foetal brain. We also provide insights on the mechanisms underlying the pro-oligodendrogenic effect of the treatments in vitro and discuss potential issues responsible for the limited myelinating capacity shown by hNSC-derived oligodendrocytes in vivo.  相似文献   

7.
8.
We investigated distribution and age-related changes in two isoforms of GABA synthesizing enzymes, glutamic acid decarboxylase (GAD) 65 and 67, in the lumbar levels (L(5)-L(6)) of the dog spinal cord. Male German shepherds were used at 1-2 years (young adult dogs) and 10-12 years (aged dogs) of age. GAD65 immunoreaction was observed in neuropil, not in cell bodies, in all laminae of the adult lumbar spinal cord: Many punctate GAD65-immunoreactive structures were shown in all laminae. The density of GAD65 immunoreactive structures was highest in laminae I-III, and lowest in lamina VII. In the aged dog, the distribution pattern of GAD65 immunoreactivity was similar to that in the adult dog; however the density of GAD65-immunoreactive structures and its protein levels were significantly increased in the aged lumbar spinal cord. GAD67 immunoreaction in the adult dog was also distributed in all laminae of the lumbar spinal cord like GAD65; however, we found that small GAD67-immunoreactive cell bodies were observed in laminae II, III and VIII. In the aged dogs, GAD67 immunoreactivity and its protein levels were also increased compared to those in the adult group. In conclusion, our results indicate that the distribution of GAD65-immunoreactive structures is different from GAD67-immunoreactive structures and that their immunoreactivity in the aged dogs is much higher than the adult dogs.  相似文献   

9.
We examined the effects of visual deprivation at birth on the development of the corpus callosum in a large group of congenitally blind individuals. We acquired high-resolution T1-weighted MRI scans in 28 congenitally blind and 28 normal sighted subjects matched for age and gender. There was no overall group effect of visual deprivation on the total surface area of the corpus callosum. However, subdividing the corpus callosum into five subdivisions revealed significant regional changes in its three most posterior parts. Compared to the sighted controls, congenitally blind individuals showed a 12% reduction in the splenium, and a 20% increase in the isthmus and the posterior part of the body. A shape analysis further revealed that the bending angle of the corpus callosum was more convex in congenitally blind compared to the sighted control subjects. The observed morphometric changes in the corpus callosum are in line with the well-described cross-modal functional and structural neuroplastic changes in congenital blindness.  相似文献   

10.
目的:探讨双环己酮草酰二腙(cuprizone)诱导大鼠脑白质脱髓鞘及其病因,证实双环己酮草酰二腙引起脑白质脱髓鞘与细胞凋亡有关。方法:用环己酮草酰二腙制备大鼠脑白质脱髓鞘模型(酮腙组),与安定(安定组)、苯巴比妥(苯巴比妥组)、生理盐水对照组(对照组)比较,应用电镜技术及caspase3免疫组化染色,观察各组第14天、28天、42天时脑组织结构变化及细胞凋亡的信号传导通路。结果:电镜显示,安定组、苯巴比妥组、酮腙14天组和对照组白质结构完整致密,无脱髓鞘现象;酮腙28天组可见髓鞘排列较紊乱,部分结构松解变性,但无典型脱髓鞘改变;酮腙42天组胼胝体压部可见髓鞘肿胀,多部位髓鞘被涡轮状空泡所裂解。caspase3染色:酮腙28天、42天组可见皮层下白质、胼胝体、脑干及小脑白质caspase3阳性染色,与安定组、苯巴比妥组、对照组和酮腙14天组比较差异具有统计学意义(P<0.05);酮腙42天组caspase3阳性染色明显多于28天组,差异具有统计学意义(P<0.05)。结论:环己酮草酰二腙可诱导大鼠脑白质脱髓鞘、空泡样变;病变白质区存在大量caspase3阳性染色,且早于脱髓鞘。提示:caspase蛋白酶级联反应参与了环己酮草酰二腙诱导脑白质脱髓鞘的过程,进一步说明细胞凋亡可能是脑白质脱髓鞘原因之一。  相似文献   

11.
Perfluorooctane sulfonate (PFOS) is a ubiquitous pollutant and found in the environment and in biota. The neurotoxicity of PFOS has received much concern among its various toxic effects when given during developing period of brain. However, little is known about the neurotoxic effects and potential mechanisms of PFOS in the mature brain. Our study demonstrated the neurotoxicity and the potential mechanisms of PFOS in the hippocampus of adult mice for the first time. The impairments of spatial learning and memory were observed by water maze studies after exposure to PFOS for three months. Significant apoptosis was found in hippocampal cells after PFOS exposure, accompanied with a increase of glutamate in the hippocampus and decreases of dopamine (DA) and 3,4-dihydrophenylacetic acid (DOPAC) in Caudate Putamen in the 10.75 mg/kg PFOS group. By two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) analysis, seven related proteins in the hippocampus that responded to PFOS exposure were identified, among which, Mib1 protein (an E3 ubiquitin-protein ligase), Herc5 (hect domain and RLD 5 isoform 2) and Tyro3 (TYRO3 protein tyrosine kinase 3) were found down-regulated, while Sdha (Succinate dehydrogenase flavoprotein subunit), Gzma (Isoform HF1 of Granzyme A precursor), Plau (Urokinase-type plasminogen activator precursor) and Lig4 (DNA ligase 4) were found up-regulated in the 10.75 mg/kg PFOS-treated group compare with control group. Furthermore, we also found that (i) increased expression of caspase-3 protein and decreased expression of Bcl-2, Bcl-XL and survivin proteins, (ii) the increased glutamate release in the hippocampus. All these might contribute to the dysfunction of hippocampus which finally account for the impairments of spatial learning and memory in adult mice.  相似文献   

12.
The ability of epidermal chalones to produce inhibition of epidermal mitotic and DNA synthetic activities was investigated in young (2 month old) and old (27 month old) mice. Extracts of epidermal chalone were prepared from the skin of mice of these different ages, and these extracts were then tested for their inhibitory capacities against the same age group from which they were extracted, and also against the mice of the other age group. It was found that the ability of mouse skin to produce tissue-specific agents with mitotic and DNA-synthetic inhibitory capabilities did not change significantly with increasing age. There were however, decreases in both the labeling and mitotic indices with aging in untreated mice. These data suggest that chalone-type inhibitory mechanisms are not primarily responsible for the increased cell cycle times seen to occur with aging in normal tissues.  相似文献   

13.
14.
The current study sought to examine the relative influence of genetic and environmental factors on corpus callosum (CC) microstructure in a community sample of older adult twins. Analyses were undertaken in 284 healthy older twins (66% female; 79 MZ and 63 DZ pairs) from the Older Australian Twins Study. The average age of the sample was 69.82 (SD = 4.76) years. Brain imaging scans were collected and DTI measures were estimated for the whole CC as well as its five subregions. Parcellation of the CC was performed using Analyze. In addition, white matter lesion (WMLs) burden was estimated. Heritability and genetic correlation analyses were undertaken using the SOLAR software package. Age, sex, scanner, handedness and blood pressure were considered as covariates. Heritability (h2) analysis for the DTI metrics of whole CC, indicated significant h2 for fractional anisotropy (FA) (h2 = 0.56; p = 2.89×10−10), mean diffusivity (MD) (h2 = 0.52; p = 0.30×10−6), radial diffusivity (RD) (h2 = 0.49; p = 0.2×10−6) and axial diffusivity (AD) (h2 = 0.37; p = 8.15×10−5). We also performed bivariate genetic correlation analyses between (i) whole CC DTI measures and (ii) whole CC DTI measures with total brain WML burden. Across the DTI measures for the whole CC, MD and RD shared 84% of the common genetic variance, followed by MD- AD (77%), FA - RD (52%), RD - AD (37%) and FA – MD (11%). For total WMLs, significant genetic correlations indicated that there was 19% shared common genetic variance with whole CC MD, followed by CC RD (17%), CC AD (16%) and CC FA (5%). Our findings suggest that the CC microstructure is under moderate genetic control. There was also evidence of shared genetic factors between the CC DTI measures. In contrast, there was less shared genetic variance between WMLs and the CC DTI metrics, suggesting fewer common genetic variants.  相似文献   

15.
Microglia are main form of active immune defense, and they are constantly moving and analyzing the CNS for damaged neurons and infectious agents. In this study, we compared microglia in the spinal cord of the young adult (1–2 years old) and aged (10–12 years old) German Shepherd dogs via immunohistochemistry and western blot analysis for ionized calcium-binding adapter molecule 1 (Iba-1), a microglial marker. In addition, we also observed the interferon-γ (IFN-γ), a pro-inflammatory cytokine, and interleukin-1β (IL-1β), produced by activated microglia/macrophage, protein levels in these groups. At first, we found that neuronal nuclei (NeuN, a neuronal marker)-immunoreactive neurons were distributed throughout the grey mate of the spinal cord, and there were no significant differences between the adult and aged groups. Most of Iba-1-immunoreactive microglia were morphologically ramified microglia (resting form) in the adult group, while some Iba-1-immunoreactive microglia were morphologically activated microglia in the aged group. In western blot analysis, Iba-1, IFN-γ and IL-1β expression were increased in the aged group. This result may be associated with age-dependent changes in the spinal cord.  相似文献   

16.
Similarities between age-related changes in the canine and human brain have resulted in the general acceptance of the canine brain as a model of human brain aging. The hippocampus is essentially required for intact cognitive ability and appears to be particularly vulnerable to the aging process. We observed changes in ionized calcium-binding adapter molecule 1 (Iba-1, a microglial marker) immunoreactivity and protein levels in the hippocampal dentate gyrus and CA1 region of adult (2-3 years) and aged (10-12 years) dogs. We also observed the interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, protein levels in these groups. In the dentate gyrus and CA1 region of the adult dog, Iba-1 immunoreactive microglia were well distributed and their processes were highly ramified. However, in the aged dog, the processes of Iba-1 immunoreactive microglia were hypertrophied in the dentate gyrus. Moreover, Iba-1 protein level in the dentate gyrus in the aged dog was higher than in the adult dog. IFN-gamma expression was increased in the dentate gyrus homogenates of aged dogs than adult dogs. In addition, we found that some neurons were positive to Fluoro-Jade B (a marker for neuronal degeneration) in the dentate polymorphic layer, but not in the hippocampal CA1 region in the aged dog. These results suggest that Iba-1 immunoreactive microglia are hypertrophied in the dentate gyrus in the aged dog.  相似文献   

17.
Abstract: Aging in rats is associated with a loss of hippocampal neurons, which may contribute to age-related cognitive deficits. Several lines of evidence suggest that stress and glucocorticoids may contribute to age-related declines in hippocampal neuronal number. Excitatory amino acids (EAAs) have been implicated in the glucocorticoid endangerment and stress-induced morphological changes of hippocampal neurons of young rats. Previously, we have reported that acute immobilization stress can increase extracellular concentrations of the endogenous excitatory amino acid, glutamate, in the hippocampus. The present study examined the effect of an acute bout of immobilization stress on glutamate levels in the hippocampus and medial prefrontal cortex of young (3–4-month) and aged (22–24-month) Fischer 344 rats. In addition, the effect of stress on spectrin proteolysis in these two brain regions was also examined. Spectrin is a cytoskeleton protein that contributes to neuronal integrity and proteolysis of this protein has been proposed as an important component of EAA-induced neuronal death. There was no difference in basal glutamate levels between young and old rats in the hippocampus or medial prefrontal cortex. During the period of restraint stress a modest increase in glutamate levels in the hippocampus of young and aged rats was observed. After the termination of the stress procedure, hippocampal glutamate concentrations continued to rise in the aged rats, reaching a level approximately five times higher than the young rats, and remained elevated for at least 2 h after the termination of the stress. A similar pattern was also observed in the medial prefrontal cortex with an augmented post-stress-induced glutamate response observed in the aged rats. There was no increase in spectrin proteolysis in the hippocampus or medial prefrontal cortex of young or aged rats after stress or under basal nonstress conditions. The enhanced poststress glutamate response in the aged rats may contribute to the increased sensitivity of aged rats to neurotoxic insults.  相似文献   

18.
It has been reported that young animals are less vulnerable to brain ischemia. In the present study, we compared gliosis in the hippocampal CA1 region of the young gerbil with those in the adult gerbil induced by 5?min of transient cerebral ischemia by immunohistochemistry and western blot for glial cells. We used male gerbils of postnatal month 1 (PM 1) as the young and PM 6 as the adult. Neuronal death in CA1 pyramidal neurons in the adult gerbil occurred at 4?days posti-schemia; the neuronal death in the young gerbil occurred at 7?days post-ischemia. The findings of glial changes in the young gerbil after ischemic damage were distinctively different from those in the adult gerbil. Glial fibrillary acidic protein-immunoreactive astrocytes, ionized calcium-binding adapter molecule (Iba-1), and isolectin B4-immunoreactive microglia in the ischemic CA1 region were activated much later in the young gerbil than in the adult gerbil. In brief, very less gliosis occurred in the hippocampal CA1 region of the young gerbil than in the adult gerbil after transient cerebral ischemia.  相似文献   

19.
20.
Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号