共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Robins DM Albertelli MA O'Mahony OA 《The Journal of steroid biochemistry and molecular biology》2008,108(3-5):230-236
Androgen, acting via the androgen receptor (AR), is central to male development, differentiation and hormone-dependent diseases such as prostate cancer. AR is actively involved in the initiation of prostate cancer, the transition to androgen independence, and many mechanisms of resistance to therapy. To examine genetic variation of AR in cancer, we created mice by germ-line gene targeting in which human AR sequence replaces that of the mouse. Since shorter length of a polymorphic N-terminal glutamine (Q) tract has been linked to prostate cancer risk, we introduced alleles with 12, 21 or 48 Qs to test this association. The three “humanized” AR mouse strains (h/mAR) are normal physiologically, as well as by cellular and molecular criteria, although slight differences are detected in AR target gene expression, correlating inversely with Q tract length. However, distinct allele-dependent differences in tumorigenesis are evident when these mice are crossed to a transgenic prostate cancer model. Remarkably, Q tract variation also differentially impacts disease progression following androgen depletion. This finding emphasizes the importance of AR function in androgen-independent as well as androgen-dependent disease. These mice provide a novel genetic paradigm in which to dissect opposing functions of AR in tumor suppression versus oncogenesis. 相似文献
3.
4.
Ajit Prakash Sreekanth Rajan Ho Sup Yoon 《Protein science : a publication of the Protein Society》2016,25(4):905-910
Human FKBP25 (hFKBP25) is a nuclear immunophilin and interacts with several nuclear proteins, hence involving in many nuclear events. Similar to other FKBPs, FK506 binding domain (FKBD) of hFKBP25 also binds to immunosuppressive drugs such as rapamycin and FK506, albeit with a lower affinity for the latter. The molecular basis underlying this difference in affinity could not be addressed due to the lack of the crystal structure of hFKBD25 in complex with FK506. Here, we report the crystal structure of hFKBD25 in complex with FK506 determined at 1.8 Å resolution and its comparison with the hFKBD25–rapamycin complex, bringing out the microheterogeneity in the mode of interaction of these drugs, which could possibly explain the lower affinity for FK506. 相似文献
5.
Avila DM Zoppi S McPhaul MJ 《The Journal of steroid biochemistry and molecular biology》2001,76(1-5):135-142
The actions of androgens, principally testosterone and 5alpha-dihydrotestosterone, are mediated by a specific receptor protein, the androgen receptor (AR), which is encoded by a single-copy gene located on the human X-chromosome. This receptor protein is a prototypical member of the nuclear receptor family and modulates a range of processes during embryogenesis and in the adult. During embryogenesis, normal AR function is critical to the development of the male phenotype and defects of the AR cause a range of phenotypic abnormalities of male sexual development. Complete loss of AR function has been traced to a number of distinct types of genetic events, including abnormalities of mRNA splicing, the introduction of premature termination codons, and amino acid substitution mutations. An interesting subset of mutations is that in which the AR is completely undetectable using sensitive immunoassays. In all instances, these functional abnormalities are associated with a phenotype of complete androgen insensitivity (complete testicular feminization). By contrast, partial defects of AR function are almost invariably caused by amino acid substitutions within the DNA- and hormone-binding domains of the receptor protein. Such partial defects of receptor function may be caused by changes in either receptor function or receptor abundance.The alterations of AR function and expression that have been characterized in clinical prostatic cancers and in prostate cancer cell lines differ in several important respects. A number of studies have documented the emergence of considerable heterogeneity of AR expression at early stages in the development of prostate cancer. Despite these early changes of AR expression, a substantial body of information suggests that the AR is expressed in advanced forms of prostate cancer, in some cases as the result of amplification events. While infrequent in localized tumors, mutations of the AR have been identified in a number of advanced prostatic cancers and in some instances appear to alter the ligand specificity of the AR. Finally, it appears that other signaling pathways can act to influence AR function. 相似文献
6.
Chen G Goto Y Sakamoto R Tanaka K Matsubara E Nakamura M Zheng H Lu J Takayanagi R Nomura M 《Biochemical and biophysical research communications》2011,404(3):809-815
Sonic hedgehog (SHH) signaling, acting in a combinatorial manner with androgen signaling, is essential for prostate patterning and development. Recently, elevated activation of SHH signaling has been shown to play important roles in proliferation, progression and metastasis of prostate cancer. In this report, we demonstrate for the first time, that GLI1, which has been shown to play a central role in SHH signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor (AR)-mediated transactivation, at least in part, by directly interacting with AR. Our observations suggest that the SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state by compensating, or even superseding androgen signaling. 相似文献
7.
Bradbury RH Hales NJ Rabow AA Walker GE Acton DG Andrews DM Ballard P Brooks NA Colclough N Girdwood A Hancox UJ Jones O Jude D Loddick SA Mortlock AA 《Bioorganic & medicinal chemistry letters》2011,21(18):5442-5445
Chemical starting points were investigated for downregulation of the androgen receptor as an approach to treatment of advanced prostate cancer. Although prototypic steroidal downregulators such as 6a designed for intramuscular administration showed insufficient cellular potency, a medicinal chemistry program derived from a novel androgen receptor ligand 8a led to 6-[4-(4-cyanobenzyl)piperazin-1-yl]-3-(trifluoromethyl)[1,2,4]triazolo[4,3-b]pyridazine (10b), for which high plasma levels following oral administration in a preclinical model compensate for moderate cellular potency. 相似文献
8.
Marie-Hélène Teiten François Gaascht Serge Eifes Mario Dicato Marc Diederich 《Genes & nutrition》2010,5(1):61-74
The long latency and high incidence of prostate carcinogenesis provides the opportunity to intervene with chemoprevention in order to prevent or eradicate prostate malignancies. We present here an overview of the chemopreventive potential of curcumin (diferuloylmethane), a well-known natural compound that exhibits therapeutic promise for prostate cancer. In fact, it interferes with prostate cancer proliferation and metastasis development through the down-regulation of androgen receptor and epidermal growth factor receptor, but also through the induction of cell cycle arrest. It regulates the inflammatory response through the inhibition of pro-inflammatory mediators and the NF-κB signaling pathway. These results are consistent with this compound’s ability to up-induce pro-apoptotic proteins and to down-regulate the anti-apoptotic counterparts. Alone or in combination with TRAIL-mediated immunotherapy or radiotherapy, curcumin is also reported to be a good inducer of prostate cancer cell death by apoptosis. Curcumin appears thus as a non-toxic alternative for prostate cancer prevention, treatment or co-treatment. 相似文献
9.
The androgen receptor plays a pivotal role in the prostate. Its primary function is to provide responsive gene products for differentiation and growth, but under abnormal conditions it contributes to the development of prostate cancer. The goal of this review is to elucidate the molecular functions of the androgen receptor and its role in prostate cancer. Initially the function of the androgen receptor will be described. Next, the clinical diagnosis, epidemiological impact, and treatments of androgen-dependent and -independent prostate cancer will be discussed. Finally we will examine how the mechanism of androgen action has played a role in the translation of new therapies and how this may influence future treatment modalities of prostate cancer. 相似文献
10.
目的通过FKBP52基因敲除小鼠模型探索FKBP52在小鼠前列腺发育过程中的作用。方法分别对胚胎第17.5天、新生的和出生后3周的野生型和FKBP52基因敲除小鼠的前列腺进行切片HE染色,观察不同发育时期里野生型和FKBP52基因敲除小鼠前列腺发育的异同。结果(1)小鼠前列腺发育的起始不依赖于FKBP52基因的参与;(2)随着胚胎的发育,FKBP52在雄鼠前列腺发育中的作用逐渐显现出来,即FKBP52的缺失会导致前列腺叶发育受阻,最终不能形成成熟的前列腺。结论FKBP52在小鼠前列腺的发育过程中具有重要作用,它不参与前列腺的发育起始过程,但其缺失会导致前列腺发育受阻,即不能形成成熟的前列腺。 相似文献
11.
Rao PS Jaggi M Smith DJ Hemstreet GP Balaji KC 《Biochemical and biophysical research communications》2003,310(3):1032-1038
Prostate cancer (PC) patients die from progression to androgen independence (AI) and chemoresistance (CR). Protein kinase Cmu (PKCmu) a novel member of the PKC family of signal transduction proteins is downregulated in AI PC. Studying PKCmu interactors in the yeast two-hybrid system identified metallothionein 2A (MT 2A) as an interactor of PKCmu kinase domain (KD) in PC, which was quantified by beta-gal assay, confirmed in PC cells by immunoprecipitation, and PKCmu-MT 2A co-localization in vivo by immunofluorescence studies. PKCmu domain interaction studies revealed that MT 2A interacted strongly with KD, relatively weakly with C1, and failed to interact with C2, PH or kinase mutant domains. Peptide library and in silico analysis strongly suggest that MT 2A is a novel substrate of PKCmu and our data indicate that the PKCmu-MT 2A interaction depends on PKCmu kinase activity. Because metallothioneins are associated with cell proliferation and CR, the PKCmu-MT 2A interaction may contribute to CR and/or AI in PC. 相似文献
12.
Aberrant androgen receptor (AR) signaling plays a critical role in androgen-dependent prostate cancer (PCa), as well as in castration-resistant PCa (CRPC). Oxidative stress seems to contribute to the tumorigenesis and progression of PCa, as well as the development of CRPC, via activation of AR signaling. This notion is supported by the fact that there is an aberrant or improper regulation of the redox status in these disorders. Additionally, androgen-deprivation-induced oxidative stress seems to be involved in the pathogenesis of several disorders caused by androgen-deprivation therapy (ADT), including osteoporosis, neurodegenerative disease, and cardiovascular disease. Oxidative stress can be suppressed with antioxidants or via a reduction in reactive oxygen species production. Thus, developing new therapeutic agents that reduce oxidative stress might be useful in preventing the conversion of androgen-dependent PCa into CRPC, as well as reducing the adverse effects associated with ADT. The objective of this review is to provide an overview regarding the relationship between oxidative stress and AR signaling in the context of PCa and especially CRPC. Additionally, we discuss the potential use of antioxidant therapies in the treatment of PCa. 相似文献
13.
Pengliang Shen Xiaoming Cao Libin Sun Yu Qian Bo Wu Xin Wang Guowei Shi Dongwen Wang 《Biochemistry and Biophysics Reports》2021
Kruppel-like factors (KLFs) play an important role in many biological processes including cell proliferation, differentiation and development. Our study showed that the level of KLF9 is lower in PCa cell lines compared to a benign prostate cell line; the androgen-independent cell line PC3 expresses significantly lower KLF9 than the androgen-dependent cell line, LNCaP. Forced overexpression of KLF9 suppressed cell growth, colony formation, and induced cell apoptosis in LNCaP cells. We also found that KLF9 expression was induced in response to apoptosis caused by flutamide, and further addition of dihydrotestosterone antagonized the action of flutamide and significantly decreased KLF9 expression. Furthermore, activation of the androgen receptor (AR) was inhibited by the overexpression of KLF9. Our research shows that KLF9 is lower in androgen-independent cell lines than in androgen-dependent cell lines; Overexpression of KLF9 dramatically suppresses the proliferation, anchorage-independent growth, and induces apoptosis in androgen-dependent cells; KLF9 inhibition on prostate cancer cell growth may be acting through the AR pathway. Our results therefore suggest that KLF9 may play a significant role in the transition from androgen-dependent to androgen-independent prostate cancer and is a potential target of prevention and therapy. 相似文献
14.
Prostate cancer is dependent on circulating testosterone in its early stages and is treatable with radiation and surgery. However, recurrent prostate tumors advance to an androgen-independent state in which they progress in the absence of circulating testosterone, leading to metastasis and death. During the development of androgen independence, prostate cancer cells are known to increase intracellular testosterone synthesis, which maintains cancer cell growth in the absence of significant amounts of circulating testosterone. Overexpression of the androgen receptor (AR) occurs in androgen-independent prostate cancer and has been proposed as another mechanism promoting the development of androgen independence. The LNCaP-AR cell line is engineered to overexpress AR but is otherwise similar to the widely studied LNCaP cell line. We have previously shown that pomegranate extracts inhibit both androgen-dependent and androgen-independent prostate cancer cell growth. In this study, we examined the effects of pomegranate polyphenols, ellagitannin-rich extract and whole juice extract on the expression of genes for key androgen-synthesizing enzymes and the AR. We measured expression of the HSD3B2 (3beta-hydroxysteroid dehydrogenase type 2), AKR1C3 (aldo-keto reductase family 1 member C3) and SRD5A1 (steroid 5alpha reductase type 1) genes for the respective androgen-synthesizing enzymes in LNCaP, LNCaP-AR and DU-145 human prostate cancer cells. A twofold suppression of gene expression was considered statistically significant. Pomegranate polyphenols inhibited gene expression and AR most consistently in the LNCaP-AR cell line (P=.05). Therefore, inhibition by pomegranate polyphenols of gene expression involved in androgen-synthesizing enzymes and the AR may be of particular importance in androgen-independent prostate cancer cells and the subset of human prostate cancers where AR is up-regulated. 相似文献
15.
16.
17.
Zhe Zhang Long Chen Hexiang Wang Nihal Ahmad Xiaoqi Liu 《Cell cycle (Georgetown, Tex.)》2015,14(13):2142-2148
Prostate cancer (PCa) is the second leading cause of cancer-related death in males in the United States. Majority of prostate cancers are originally androgen-dependent and sensitive to androgen-deprivation therapy (ADT), however, most of them eventually relapse and progress into incurable castration-resistant prostate cancer (CRPC). Of note, the activity of androgen receptor (AR) is still required in CRPC stage. The mitotic kinase polo-like kinase 1 (Plk1) is significantly elevated in PCa and its expression correlates with tumor grade. In this study, we assess the effects of Plk1 on AR signaling in both androgen-dependent and androgen-independent PCa cells. We demonstrate that the expression level of Plk1 correlated with tumorigenicity and that inhibition of Plk1 caused reduction of AR expression and AR activity. Furthermore, Plk1 inhibitor BI2536 down-regulated SREBP-dependent expression of enzymes involved in androgen biosynthesis. Of interest, Plk1 level was also reduced when AR activity was inhibited by the antagonist MDV3100. Finally, we show that BI2536 treatment significantly inhibited tumor growth in LNCaP CRPC xenografts. Overall, our data support the concept that Plk1 inhibitor such as BI2536 prevents AR signaling pathway and might have therapeutic potential for CRPC patients. 相似文献
18.
Zhiwei WangDaming Gao Hidefumi FukushimaHiroyuki Inuzuka Pengda LiuLixin Wan Fazlul H. SarkarWenyi Wei 《生物化学与生物物理学报:癌评论》2012,1825(1):11-17
Prostate cancer is the most frequently diagnosed tumor in men and the second most common cause of cancer-related death for males in the United States. It has been shown that multiple signaling pathways are involved in the pathogenesis of prostate cancer, such as androgen receptor (AR), Akt, Wnt, Hedgehog (Hh) and Notch. Recently, burgeoning amounts of evidence have implicated that the F-box protein Skp2 (S-phase kinase associated protein 2), a well-characterized oncoprotein, also plays a critical role in the development and progression of prostate cancer. Therefore, this review discusses the recent literature regarding the function and regulation of Skp2 in the pathogenesis of prostate cancer. Furthermore, we highlight that Skp2 may represent an attractive therapeutic target, thus warrants further development of agents to target Skp2, which could have significant therapeutic impact on prostate cancer. 相似文献
19.
The majority of human prostate cancer cell lines, including the two "classical" cell lines DU-145 and PC-3, are reported to be androgen receptor (AR)-negative. However, other studies have provided evidence that the DU-145 and PC-3 cell lines express AR mRNA. These contradictory observations prompted us to investigate whether DU-145 and PC-3 cell lines express the androgen receptor. Using antipeptide antibodies directed against three distinct regions of the human AR protein and an improved method to detect AR protein in immunoblotting, we report that DU-145 and PC-3 cell lines express AR protein. We found that the relative levels of the AR mRNA and protein that were detected in DU-145 and PC-3 cell lines were lower than the LNCaP, an AR-positive cell line. Moreover, the antibody directed against the non-variant region (amino acids 299-315), but not the variant N- or C-terminal region (amino acids 1-20 and 900-919, respectively) of the human AR protein, detected the expression of AR in all prostate cancer cell lines. Notably, treatment of these cell lines with dihydrotestosterone (DHT) resulted in measurable increases in the AR protein levels and considerable nuclear accumulation. Although, treatment of DU-145 and PC-3 cells with DHT did not result in stimulation of the activity of an AR-responsive reporter, knockdown of AR expression in PC-3 cells resulted in decreases in p21(CIP1) protein levels, and a measurable decrease in the activity of the p21-luc-reporter. Our observations demonstrate the expression of AR protein in DU-145 and PC-3 prostate cancer cell lines. 相似文献
20.
Kollara A Diamandis EP Brown TJ 《The Journal of steroid biochemistry and molecular biology》2003,84(5):493-502
Androgen independent PC-3 cells lack androgen receptor (AR) expression and do not produce kallikrein 2 (hK2) or 3 (prostate-specific antigen, PSA). In this paper, we examined the ability of androgens to stimulate PSA and hK2 production in AR transfected PC-3 cells (PC-3(AR)) and compared this to LNCaP cells. PSA and hK2 were measured in the culture medium and cell lysates using an ELISA-based immunofluorometric assay. Only androgens were able to induce PSA and hK2 secretion in PC-3(AR) cells in a dose- and time-dependent manner depending on the level of AR present. The level of androgen-induced PSA and hK2 secretion in PC-3(AR) cells was approximately 1.5 and 0.9% that induced in LNCaP cells, respectively. Insulin-like growth factor-I (IGF-I), which has been shown to activate AR in the absence of ligand, did not activate PSA secretion in the absence of androgen, but further increased the dihydrotestosterone-induced PSA secretion in PC-3(AR) cells. The lack of PSA and hK2 production in parental PC-3 cells is thus a result of their lack of AR expression. PSA and/or hK2 production in PC-3(AR) cells can thus serve as an endogenous reporter system to investigate AR action or to screen putative endocrine disrupters. 相似文献