首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.

Background

The sensitivity of Optical Coherence Tomography (OCT) images to identify retinal tissue morphology characterized by early neural loss from normal healthy eyes is tested by calculating structural information and fractal dimension. OCT data from 74 healthy eyes and 43 eyes with type 1 diabetes mellitus with mild diabetic retinopathy (MDR) on biomicroscopy was analyzed using a custom-built algorithm (OCTRIMA) to measure locally the intraretinal layer thickness. A power spectrum method was used to calculate the fractal dimension in intraretinal regions of interest identified in the images. ANOVA followed by Newman-Keuls post-hoc analyses were used to test for differences between pathological and normal groups. A modified p value of <0.001 was considered statistically significant. Receiver operating characteristic (ROC) curves were constructed to describe the ability of each parameter to discriminate between eyes of pathological patients and normal healthy eyes.

Results

Fractal dimension was higher for all the layers (except the GCL + IPL and INL) in MDR eyes compared to normal healthy eyes. When comparing MDR with normal healthy eyes, the highest AUROC values estimated for the fractal dimension were observed for GCL + IPL and INL. The maximum discrimination value for fractal dimension of 0.96 (standard error =0.025) for the GCL + IPL complex was obtained at a FD ≤ 1.66 (cut off point, asymptotic 95% Confidence Interval: lower-upper bound = 0.905-1.002). Moreover, the highest AUROC values estimated for the thickness measurements were observed for the OPL, GCL + IPL and OS. Particularly, when comparing MDR eyes with control healthy eyes, we found that the fractal dimension of the GCL + IPL complex was significantly better at diagnosing early DR, compared to the standard thickness measurement.

Conclusions

Our results suggest that the GCL + IPL complex, OPL and OS are more susceptible to initial damage when comparing MDR with control healthy eyes. Fractal analysis provided a better sensitivity, offering a potential diagnostic predictor for detecting early neurodegeneration in the retina.  相似文献   

2.
张渭滨 《激光生物学报》1997,6(4):1209-1214
生物大分子的分形性质与其三维结构,柔性,疏水性,进而与活性有重要关系。本文采用动态与静态光散射技术测量了丙酮酸脱氢酶的分维df,讨论了上述两种光散方法测量分维各自适用的范围。  相似文献   

3.
Attempts were made to evaluate intrinsic biological units of growth of teak trees, which were identified as age and size at inflection point of diameter at breast height. The observations were further utilized in estimating fractal dimension of the tree crown, which is an important eco-physiological characteristic of the species. A total of 38 teak plantations belonging to different age groups and site quality classes were selected for estimating the intrinsic units. Altogether, 57 stumps were identified for gathering information on age and size at inflection point at stump level (10 cm above ground) from the selected plantations. Photographs of the upper surface of the selected stumps were taken using a digital camera. Counting of annual rings/ring age and recording the radial distance from pith to each of the annual rings were done directly (visually) by using Photoshop and CorelDRAW software in a computer. Thus the age and size at inflection point at stump level were estimated. The values of intrinsic units at breast height level were estimated using allometric relations. The present study revealed that these units viz., (namely) age and size (diameter) at inflection point were 6 years and 6 cm at stump level, respectively. The corresponding values at breast-height level were estimated as 8 years and 10.6 cm including the bark. Fractal dimension was calculated based on the growth parameters, which were estimated through stump analysis. The fractal dimension worked out to 2.13 for the species. The value of fractal dimension obtained was biologically justifiable considering the light demanding nature of the species.  相似文献   

4.
We assayed the diurnal concentrations of growth hormone (GH) and prolactin (PRL) in 6 healthy male volunteers to evaluate the self-similar features in the time series of each hormone on the basis of fractal theory and to determine the fractal dimension as an index of the complexity of the diurnal variation. In addition, we assessed the effects of a 6-hour delay in the sleep period on the complexity of the diurnal variaton of these hormones. There was a statistically significant fractal feature in the serum levels of GH both under the nocturnal-sleep and delayed-sleep conditions in all subjects. The time series of the serum PRL concentrations also showed a statistically significant fractal feature under the nocturnal-sleep and delayed-sleep conditions in all subjects. The fractal dimensions of the patterns of the GH or PRL levels were 1.879 and 1.929 or 1.754 and 1.785 under the nocturnal-sleep and delayed-sleep conditions, respectively. Two-way ANOVA revealed no significant difference in the fractal dimension between the two sleep conditions but did reveal a significant difference between the fractal dimensions of the GH and PRL levels. These results showed (1) that delayed sleep had no significant effect on the complexity of the diurnal pattern of these hormones, and (2) that the diurnal pattern of the GH levels was more complex than that of the PRL levels.  相似文献   

5.
基于分形理论的木材顺纹理断裂研究   总被引:1,自引:0,他引:1  
研究5种木材顺纹理断裂性质和断面分形特征,测量断口表面的分形维数,建立了分形维数与断裂韧性间的关系.研究结果表明:(1)不同树种因其构造差异对裂纹扩展的阻力不同,这种差异同样也表现在材料断裂表面的形貌特征上;(2)木材顺纹理断裂韧性K(IC)^(TL)与分形维数D之间有很高的正比关系:y=0.036x+2.162,(R^2=0.98),揭示了断口分形维数与材料性能之间的内在联系.  相似文献   

6.
The current study investigated the exposure of the Mediterranean mussel (Mytilus galloprovincialis) to gold nanoparticles decorated zinc oxide (Au-ZnO NPs) and phosphonate [Diethyl (3-cyano-1-hydroxy-1-phenyl-2-methylpropyl)] phosphate (PC). The mussels were exposed to concentrations of 50 and 100 µg L-1 of both compounds alone, as well as to a mixture of both pollutants (i.e. Mix). The singular and the combined effect of each pollutant was investigated by measuring the concentration of various metals (i.e., Cu, Fe, Mn, Zn and Au) in the the digestive glands and gills of mussels, their filtration capacity (FC), respiration rate (RR) and the response of oxidative biomarkers, respectively, following 14 days of exposure. The concentrations of Cu, Fe, Mn, Zn and Au increased directly with Au-ZnO NPs in mussel tissues, but significantly only for Zn. In contrast, the mixture of Au-ZnO100 NPs and PC100 did not induce any significant increase in the content of metals in digetsve glands and gills, suggesting antagonistic interactions between contaminants. In addition, FC and RR levels decreased following exposure to Au-ZnO100 NPs and PC100 treatments and no significant alterations were observed after the exposure to 50 µg.L-1 of both contaminants and Mix. Hydrogen peroxide (H2O2) level, GSH/GSSG ratio, superoxide dismutase (SOD), catalase (CAT) and acetylcholinesterase (AChE) activities showed significant changes following the exposure to both Au-ZnO NPs and PC, in the gills and the digestive glands of the mussel. However, no significant modifications were observed in both organs following the exposure to Mix. The current study advances the understanding of the toxicity of NPs and phosphonates on M. galloprovincialis and sets the path for future ecotoxicological studies regarding the synergic effects of these substances on marine species. Moreover, the current experiment suggests that the oxidative stress and the neurotoxic pathways are responsive following the exposure of marine invertebrates to both nanoparticles and phosphonates, with potential antagonist interactions of these substances on the physiology of targeted species.  相似文献   

7.
Cellular pyruvate is an essential metabolite at the crossroads of glycolysis and oxidative phosphorylation, capable of supporting fermentative glycolysis by reduction to lactate mediated by lactate dehydrogenase (LDH) among other functions. Several inherited diseases of mitochondrial metabolism impact extracellular (plasma) pyruvate concentrations, and [1-13C]pyruvate infusion is used in isotope-labeled metabolic tracing studies, including hyperpolarized magnetic resonance spectroscopic imaging. However, how these extracellular pyruvate sources impact intracellular metabolism is not clear. Herein, we examined the effects of excess exogenous pyruvate on intracellular LDH activity, extracellular acidification rates (ECARs) as a measure of lactate production, and hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates across a panel of tumor and normal cells. Combined LDH activity and LDHB/LDHA expression analysis intimated various heterotetrameric isoforms comprising LDHA and LDHB in tumor cells, not only canonical LDHA. Millimolar concentrations of exogenous pyruvate induced substrate inhibition of LDH activity in both enzymatic assays ex vivo and in live cells, abrogated glycolytic ECAR, and inhibited hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in cellulo. Of importance, the extent of exogenous pyruvate-induced inhibition of LDH and glycolytic ECAR in live cells was highly dependent on pyruvate influx, functionally mediated by monocarboxylate transporter-1 localized to the plasma membrane. These data provided evidence that highly concentrated bolus injections of pyruvate in vivo may transiently inhibit LDH activity in a tissue type- and monocarboxylate transporter-1–dependent manner. Maintaining plasma pyruvate at submillimolar concentrations could potentially minimize transient metabolic perturbations, improve pyruvate therapy, and enhance quantification of metabolic studies, including hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging and stable isotope tracer experiments.  相似文献   

8.
The rate coefficient for 22Na release from previously labeled human erythrocytes was determined in the presence of 0.1–10 mM sodium fluoride (F). The oxidized nicotinamide adenine dinucleotide (NAD+) level at the end of 2 hr of incubation in tris(hydroxymethyl)aminomethane (Tris)-Ringer medium was also measured. Both parameters decreased proportionately as F concentration was raised. Both F-induced changes were immediate and were reversed by 10 mM pyruvate. The decrease in NAD+ concentration following enolase inhibition by F is attributed to a diminished rate of formation in the reaction catalyzed by lactic dehydrogenase (LDH) with undiminished continued utilization in the reaction catalyzed by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). It is postulated that the NAD+ lowering limited the GAPDH step, resulting in proportionate decreases in the rates of phosphoglycerate kinase (PGK) and Na,K-dependent adenosine triphosphatase (Na,K-ATPase), a reaction sequence thought to link glycolysis with active Na extrusion. Adding pyruvate with F increased NAD+ production at the LDH step, thus reactivating GAPDH, PGK, and Na,K-ATPase and leading to the observed restoration of 22Na release. The results suggest, therefore, that F inhibits active Na transport in intact human erythrocytes indirectly through a lowering of NAD+, although, direct inhibition of the Na,K-ATPase by F may possibly occur simultaneously.  相似文献   

9.
Fractal properties of forest spatial structure   总被引:2,自引:0,他引:2  
The definition of fractal dimension of natural objects, which enables to deal with scale dependence of fractal dimension is discussed. Abrupt changes of fractal dimension of spatial structure of terrestrial ecosystems are considered in the context of hierarchical paradigm. On this ground the procedure is proposed for segmentation of a territory, which takes into account the scale dependence of spatial variability of ecological parameters. Using remotely sensed data — normalized difference vegetation index (NDVI) and thermal radiation in the infrared band — fractal dimensions and critical scales are evaluated for different forest types with the help of software, developed for this purpose. The results obtained corroborate the potentialities of fractal approach in ecology. These methods and results can be used for discrimination of remotely sensed data; but further investigations, including detailed comparison of fractal characteristics of remotely sensed forest images with results of on-site field studies are necessary to validate them.  相似文献   

10.
Lactate is potentially a major energy source in brain, particularly following hypoxia/ischemia; however, the regulation of brain lactate metabolism is not well understood. Lactate dehydrogenase (LDH) isozymes in cytosol from primary cultures of neurons and astrocytes, and freshly isolated synaptic terminals (synaptosomes) from adult rat brain were separated by electrophoresis, visualized with an activity-based stain, and quantified. The activity and kinetics of LDH were determined in the same preparations. In synaptosomes, the forward reaction (pyruvate + NADH + H+ → lactate + NAD+), which had a V max of 1,163 μmol/min/mg protein was 62% of the rate in astrocyte cytoplasm. In contrast, the reverse reaction (lactate + NAD+ → pyruvate + NADH + H+), which had a V max of 268 μmol/min/mg protein was 237% of the rate in astrocytes. Although the relative distribution was different, all five isozymes of LDH were present in synaptosomes and primary cultures of cortical neurons and astrocytes from rat brain. LDH1 was 14.1% of the isozyme in synaptic terminals, but only 2.6% and 2.4% in neurons and astrocytes, respectively. LDH5 was considerably lower in synaptic terminals than in neurons and astrocytes, representing 20.4%, 37.3% and 34.8% of the isozyme in these preparations, respectively. The distribution of LDH isozymes in primary cultures of cortical neurons does not directly reflect the kinetics of LDH and the capacity for lactate oxidation. However, the kinetics of LDH in brain are consistent with the possible release of lactate by astrocytes and oxidative use of lactate for energy in synaptic terminals. Special issue dedicated to John P. Blass.  相似文献   

11.
The use of zinc oxide nanoparticles (nanoZnO) as sunscreens has raised concerns about their safety and release in the aquatic environment through swimming activities and within municipally treated wastewaters. This study's purpose was to examine the effects of nanoZnO on the elemental composition (metallome) in exposed freshwater mussels, Elliptio complanata. Mussels were exposed for 21 days to an environmentally realistic (low) concentration (2 μg/L) of nanoZnO and zinc chloride. The mussels were also exposed to a physically and chemically treated municipal effluent (ME), both alone and in the presence of both forms of Zn. The metallome profile was characterized by the following 15 elements in gills, digestive gland and gonad tissues: Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, V and Zn. The levels of metallothioneins (MT) and lipid peroxidation (LPO) in the digestive gland were also measured as biomarkers of toxic effects. The data revealed that exposure to nanoZnO increased the total levels of Zn, MT and LPO in the digestive gland. Discriminate function analysis revealed that the digestive gland responded the most to exposure to either nanoZnO or Zn2 +. For nanoZnO, the observed changes in Al, As and Mo in the digestive gland offered the best discrimination from dissolved Zn2 +. Co-exposure of nanoZnO with the ME changed the metallome profile closer to dissolved Zn2 +, suggesting a common interaction site within the ME. This was observed in changes in Ni, Cu, Se and Zn in the digestive gland of exposed mussels. Canonical analysis of essential and non-essential elements revealed that exposure to nanoZnO increased the relationships between LPO and the sum of essential elements in the digestive gland. Conversely, exposure to dissolved Zn2 + and the ME decreased the relationship between the sum of non-essential elements and LPO and MT. In conclusion, the use of a “metallomic” approach was used to discriminate changes following exposure to nanoZnO and dissolved Zn in freshwater mussels and provided insights into the interaction of forms of Zn in ME towards mussels.  相似文献   

12.
Due to their high chemical stability, lithium titanate (Li2TiO3) nanoparticles (LTT NPs) now are projected to be transferred into different nanotechnology areas like nano pharmacology and nano medicine. With the increased applications of LTT NPs for numerous purposes, the concerns about their potential human toxicity effects and their environmental impact are also increased. However, toxicity data for LTT NPs related to human health are very limited. Therefore we aimed to investigate toxicity potentials of various concentrations (0–1,000 ppm) of LTT NPs (<100 nm) in cultured primary rat hepatocytes. Cell viability was detected by [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT) assay and lactate dehydrogenase (LDH) release, while total antioxidant capacity (TAC) and total oxidative stress (TOS) levels were determined to evaluate the oxidative injury. DNA damage was analyzed by scoring liver micronuclei rates and by determining 8-oxo-2-deoxyguanosine (8-OH-dG) levels. The results of MTT and LDH assays showed that higher concentrations of dispersed LTT NPs (500 and 1,000 ppm) decreased cell viability. Also, LTT NPs increased TOS (300, 500 and 1,000 ppm) levels and decreased TAC (300, 500 and 1,000 ppm) levels in cultured hepatocytes. The results of genotoxicity tests revealed that LTT NPs did not cause significant increases of micronucleated hepatocytes and 8-OH-dG as compared to control culture. In conclusion, the obtained results showed for the first time that LTT NPs had dose dependent effects on oxidative damage and cytotoxicity but not genotoxicity in cultured primary rat hepatocytes for the first time.  相似文献   

13.
The fast-paced development of nanotechnology needs the support of effective safety testing. We have developed a screening platform measuring simultaneously several cellular parameters for exposure to various concentrations of nanoparticles (NPs). Cell lines representative of different organ cell types, including lung, endothelium, liver, kidney, macrophages, glia, and neuronal cells were exposed to 50 nm amine-modified polystyrene (PS-NH2) NPs previously reported to induce apoptosis and to 50 nm sulphonated and carboxyl-modified polystyrene NPs that were reported to be silent. All cell lines apart from Raw 264.7 executed apoptosis in response to PS-NH2 NPs, showing specific sequences of EC50 thresholds; lysosomal acidification was the most sensitive parameter. Loss of mitochondrial membrane potential and plasma membrane integrity measured by High Content Analysis resulted comparably sensitive to the equivalent OECD-recommended assays, allowing increased output. Analysis of the acidic compartments revealed good cerrelation between size/fluorescence intensity and dose of PS-NH2 NPs applied; moreover steatosis and phospholipidosis were observed, consistent with the lysosomal alterations revealed by Lysotracker green; similar responses were observed when comparing astrocytoma cells with primary astrocytes. We have established a platform providing mechanistic insights on the response to exposure to nanoparticles. Such platform holds great potential for in vitro screening of nanomaterials in highthroughput format.  相似文献   

14.
Anthropogenic disturbance may affect animal behaviour and should generally be minimised. We examined how anthropogenic disturbance (24 h food deprivation) affected circadian rhythms in laboratory mussels Mytilus edulis exposed to natural light in the absence of tides. Repeated measures data were collected on mussel gape angle, exhalant pumping and valve adduction using a Hall sensor system over eight consecutive 24 h periods when exposed to two feeding conditions after 24 h food deprivation. Mussels (fed once per day at either midday or midnight) exposed to natural light showed a clear day–night rhythm with increased nocturnal activity: significantly greater gape angle, increased exhalant pumping and had significantly higher valve adduction rates. However, circadian rhythms were less clear directly after anthropogenic food deprivation, in terms of the circadian rhythm in gape angle becoming significantly more apparent over the following days. Unlike mussels fed at midnight, those fed at midday displayed no significant change in gape angle from the hour before to the hour after they were fed, i.e. mussels given food at midday reacted to this food less than mussels fed at midnight. We suggest that independent of feeding time, laboratory mussels exposed to natural light and free from anthropogenic disturbance increase feeding activity at night because their circadian rhythms are strongly influenced by light levels. This study emphasises that the behaviour of animals in the laboratory and in the wild can be altered by anthropogenic disturbances such as vibrations caused by experimental setups and artificial illumination at night.  相似文献   

15.
Summary Muscle LDH activities were measured in two anuran amphibians with different behaviour and ecology, Rana perezi and Bufo calamita. Both pyruvate reduction and lactate oxidation were measured at temperatures of 15, 20 and 30°C, and at pH 7.0, 7.4, and 8.0. Pyruvate and lactate muscle concentrations were determined in individuals at rest and after exercise. R. perezi muscle used anaerobic glycolysis during 3 min of exhaustive exercise, with rising pyruvate and lactate concentrations. Enforced walking for 30 min caused high variability in lactate concentration in B. calamita muscle. Temperature and pH changes affected apparent Km values for pyruvate. When these factors varied simultaneously, enzyme affinity tended not to change. Thus, the thermodynamic effect on pyruvate reduction activity is high, especially at physiological substrate concentrations. In contrast, lactate oxidation activity tended to stabilize when temperature and pH varied jointly. Inhibition by substrate, pyruvate or lactate, seemed to have no importance in vivo.During exercise there was a rise in pyruvate concentration, and a probable decrease in pH, which increased pyruvate reduction reaction and decreased lactate oxidation, contributing to lactate accumulation in Rana perezi muscle. B. calamita muscle did not show pyruvate increase after exercise and its LDH was less dependent on pH at physiological concentrations. Pyruvate reduction rate did not therefore increase. R. perezi muscle enzyme had features of anaerobic LDH while B. calamita LDH muscle was more similar to mammalian heart enzyme, with differences in accordance with the different behaviour of these anurans.Abbreviations LDH lactate dehydrogenase  相似文献   

16.
The occurrence of freshwater harmful algal bloom toxins impacting the coastal ocean is an emerging threat, and the potential for invertebrate prey items to concentrate toxin and cause harm to human and wildlife consumers is not yet fully recognized. We examined toxin uptake and release in marine mussels for both particulate and dissolved phases of the hepatotoxin microcystin, produced by the freshwater cyanobacterial genus Microcystis. We also extended our experimental investigation of particulate toxin to include oysters (Crassostrea sp.) grown commercially for aquaculture. California mussels (Mytilus californianus) and oysters were exposed to Microcystis and microcystin toxin for 24 h at varying concentrations, and then were placed in constantly flowing seawater and sampled through time simulating riverine flushing events to the coastal ocean. Mussels exposed to particulate microcystin purged the toxin slowly, with toxin detectable for at least 8 weeks post-exposure and maximum toxin of 39.11 ng/g after exposure to 26.65 μg/L microcystins. Dissolved toxin was also taken up by California mussels, with maximum concentrations of 20.74 ng/g after exposure to 7.74 μg/L microcystin, but was purged more rapidly. Oysters also took up particulate toxin but purged it more quickly than mussels. Additionally, naturally occurring marine mussels collected from San Francisco Bay tested positive for high levels of microcystin toxin. These results suggest that ephemeral discharge of Microcystis or microcystin to estuaries and the coastal ocean accumulate in higher trophic levels for weeks to months following exposure.  相似文献   

17.
We applied a newly-established method in haemolymph of mussels, Mytilus galloprovincialis, exposed to different concentrations of heavy metals, such as zinc and cadmium and organic pollutants, such as PAHs and lindane, for the detection of total antioxidant capacity (TAC). The susceptibility of exposed mussels was increased in relation to oxidative stress induced by contaminants tested. Oxidative modifications of proteins were estimated by measuring protein carbonyl content (PCC) and malondialdehyde levels (MDA). For PCC measurement, a highly sensitive and accurate ELISA method, which requires only 5 µg of protein, was used. The significant increase of PCC and MDA in haemolymph of exposed mussels reinforces its role as biomarkers of oxidative stress. Significant correlation of TAC assay, PCC and MDA was conducted in order to evaluate the utility of PCC and TAC assay, used in the present study, as tools for determining oxidative effects of pollutants in mussels. The results reinforce the application of PCC method as useful tool for the determination of PCC alterations in haemolymph of mussels exposed to different levels of contaminants. In addition, the TAC method gives encouraging results, concerning its ability to predict antioxidant efficiency in haemolymph of mussels exposed to inorganic and organic contaminants.  相似文献   

18.
The increased use of engineered nanoparticles (ENPs) in consumer products raises the concern of environmental release and subsequent impacts in natural communities. We tested for physiological and demographic impacts of ZnO, a prevalent metal oxide ENP, on the mussel Mytilus galloprovincialis. We exposed mussels of two size classes, <4.5 and ≥4.5 cm shell length, to 0.1–2 mg l−1 ZnO ENPs in seawater for 12 wk, and measured the effect on mussel respiration, accumulation of Zn, growth, and survival. After 12 wk of exposure to ZnO ENPs, respiration rates of mussels increased with ZnO concentration. Mussels had up to three fold more Zn in tissues than control groups after 12 wk of exposure, but patterns of Zn accumulation varied with mussel size and Zn concentrations. Small mussels accumulated Zn 10 times faster than large mussels at 0.5 mg l−1, while large mussels accumulated Zn four times faster than small mussels at 2 mg l−1. Mussels exposed to 2 mg l−1 ZnO grew 40% less than mussels in our control group for both size classes. Survival significantly decreased only in groups exposed to the highest ZnO concentration (2 mg l−1) and was lower for small mussels than large. Our results indicate that ZnO ENPs are toxic to mussels but at levels unlikely to be reached in natural marine waters.  相似文献   

19.
An experiment was conducted to follow the fate of the cyanobacterial toxin, nodularin, produced by Nodularia spumigena through ingestion by Mytilus edulis and re-ingestion of faecal material (coprophagy). Mussels were fed with cultures of N. spumigena, and the faeces that were produced were fed to other mussels not previously exposed to N. spumigena. Concentrations of nodularin were measured in the food (N. spumigena), the mussels and in the faeces in order to make a toxin budget. High concentrations of nodularin were found in the mussels and their faeces after 48 h incubation with N. spumigena. When the toxic faeces were fed to new mussels, the toxin content of faeces was reduced from 95 μg nod g−1 dry weight (DW) to 1 μg nod g−1 DW through the process of coprophagy. Hence, when toxic faeces were fed to mussels, the nodularin concentration of the resulting faecal material was reduced by 99%. Pseudofaeces were produced when the mussels were grazing on N. spumigena, but not when grazing on faeces. The pseudofaeces contained high concentrations of nodularin and apparently intact N. spumigena cells. However, these cells were growth-inhibited and their potential contribution to seeding a bloom is probably limited. Our data indicate that a large fraction of ingested nodularin in M. edulis is egested with the faeces, and that the concentration of nodularin in the faeces is reduced when faeces are re-ingested.  相似文献   

20.
This study was conducted to investigate the ecotoxicological effects of exposure to copper oxide nanoparticles (CuO NPs) on the gill of the swan mussel Anodonta cygnea using several approaches including qualitative and quantitative histopathology, ultra-morphology (scanning electron microscopy [SEM]) and measures of clearance rate (CR) and bioaccumulation of CuO NPs. Histological alterations in mussels exposed to 0.25 (T1), 2.5 (T2) and 25.0?µg L?1 (T3) CuO NPs for 12 days include changes in the length and form of gill lamellae, changes in inter-lamellar spaces, epithelial hyperplasia, atrophy and tissue rupture. Ultra-morphological changes following CuO NP exposure included epithelial hyperplasia and hypertrophy, epithelial lifting, tissue rupture (water channel fusion) and extensive necrosis of the gill surfaces. IGill (gill damage severity) index values for both histopathological and ultra-morphological data were significantly (P?0.05) higher in T3. The CR of mussels was significantly (P??1 g?1 dry weight]) in comparison to controls (CR?=?108?±?47.14 [L min?1 g?1 dry weight]). CuO NPs accumulated in exposed mussels at all exposure concentrations until day 4, but there was no further change in accumulation levels by the end of the exposure period. The accumulated content of CuO NPs was significantly (P??1 exposure concentration. Based on these results, significant accumulation of CuO NPs in the gills of swan mussel could affect histological and ultra-structural characteristics of this organ and consequently have deleterious impacts on its filtration activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号