首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
《Journal of molecular biology》2019,431(24):5063-5074
The PWWP domain of DNMT3 DNA methyltransferases binds to histone H3 tails containing methylated K36, and this activity is important for heterochromatic targeting. Here, we show that the PWWP domain of mouse DNMT3A binds to H3K36me2 and H3K36me3 with a slight preference for H3K36me2. PWWP domains have also been reported to bind to DNA, and the close proximity of H3K36 and nucleosomal DNA suggests a combined binding to H3K36me2/3 and DNA. We show here that the DNMT3A PWWP domain binds to DNA with a weak preference for AT-rich sequences and that the designed charge reversal R362E mutation disrupts DNA binding. The K295E mutation, as well as K295I recently identified in paraganglioma, a rare neuroendocrine neoplasm, disrupts both DNA and H3K36me2/3 binding, which is in agreement with the proximity of K295 to residues involved in K36me2/3 methyllysine binding. Nucleosome pulldown experiments show that DNA binding and H3K36me2/3 binding are important for the interaction of the DNMT3A PWWP domain with nucleosomes. Localization studies of transiently transfected fluorescently-tagged wild-type and PWWP-mutated full-length DNMT3A indicate that both interactions contribute to the subnuclear localization of DNMT3A in mouse cells. In summary, our data demonstrate that the combined binding of the DNMT3A PWWP domain to the H3 tail containing K36me2/3 and to the nucleosomal or linker DNA is important for its chromatin interaction and subnuclear targeting of DNMT3A in living cells.  相似文献   

5.
6.
7.
8.
The existence and relative importance of β3-adrenoceptors in man is still controversial. The aim of the present study was 1) to find further evidence for the existence of functional β3-adrenoceptors in human fat, and 2) to investigate factors that may influence this β3-adrenoceptor function. Fifty individuals were examined. Lipolysis mediated by the selective β3-adrenoceptor agonist CGP 12177 in omental fat cells correlated with the response in subcutaneous fat cells. However, lipolysis was more pronounced in omental as compared to subcutaneous adipocytes, the intrinsic activity for CGP 12177 was 41% and 33%, respectively, while dobutamine, terbutaline and norepinephrine were full agonists. Both the lipolytic response and the sensitivity to CGP 12177 correlated with the effects of norepinephrine in the omental fat cells (r2= 0. 68 and 0. 50, respectively, p=0. 0001). The β2-adrenoceptor mediated lipolytic response did also correlate with the responses induced by β1- and β2-agonists and by postreceptor acting agents. The antagonistic properties (pA2) of the β-adrenoceptor subtypes were also investigated. The pA2 for the selective β1- and β2-adrenoceptor antagonists versus CGP 12177-induced lipolysis were 2 to 3 log units lower than those for the β1-antagonist versus dobutamine or for the β2-antagonist versus terbutaline. Furthermore, bupranolol had a significantly better antagonistic effect (pA2 7. 17, p<0. 001) on the CGP 12177-induced lipolysis than had the β1- and β2-adrenoceptor antagonists (pA2 6. 26 and 6. 05, respectively). These data clearly support the existence of a third human β-adrenoceptor. Several factors may contribute to the contradictory β3-adrenoceptor results in man. The sensitivity of the different lipolytic systems vary considerably. Omental fat cells are preferable to subcutaneous cells for β3-adrenoceptor studies in man. The β3-responses are more attenuated in isolated fat cell preparations than in tissue fragments. Furthermore, as the β3-adrenoceptor activity correlates to the norepinephrine activity, more pronounced effects will be expected in catecholamine sensitive subjects. At present, the number of tools available for β3-adrenoceptor studies are limited, and the receptor is hard to study, why it is essential to perform β3-adrenoceptor studies under optimal conditions in order to obtain conclusive effects.  相似文献   

9.
10.
In healthy adult mice, the β cell population is not maintained by stem cells but instead by the replication of differentiated β cells. It is not known, however, whether all β cells contribute equally to growth and maintenance, as it may be that some cells replicate while others do not. Understanding precisely which cells are responsible for β cell replication will inform attempts to expand β cells in vitro, a potential source for cell replacement therapy to treat diabetes. Two experiments were performed to address this issue. First, the level of fluorescence generated by a pulse of histone 2B–green fluorescent protein (H2BGFP) expression was followed over time to determine how this marker is diluted with cell division; a uniform loss of label across the entire β cell population was observed. Second, clonal analysis of dividing β cells was completed; all clones were of comparable size. These results support the conclusion that the β cell pool is homogeneous with respect to replicative capacity and suggest that all β cells are candidates for in vitro expansion. Given similar observations in the hepatocyte population, we speculate that for tissues lacking an adult stem cell, they are replenished equally by replication of all differentiated cells.  相似文献   

11.
摘要 目的:探讨苦参碱对神经病理性大鼠背根神经节P2X3受体、疼痛行为学和疼痛阈值的影响。方法:选择Sprague-Dawley雄性大鼠30只,随机分为3组,包括模型组、试验组和假手术组。于大鼠造模成功1 d后,试验组给予30 mg/(kgod)的剂量在腹腔注射苦参碱溶液,1次/d;给予假手术组和模型组腹腔注射等量浓度为0.9 %的氯化钠溶液,1次/d,共14 d。进行自发疼痛行为学评分检测、机械痛阈值检测、热痛阈值检测、P2X2和P2X3mRNA相对表达量检测、P2X2和P2X3蛋白表达水平检测,以及氧化应激指标水平检测。结果:术后模型组与试验组自发性疼痛行为学评分与假手术组比均升高,自术后第5天起,与模型组比,试验组自发性疼痛行为学评分明显低于模型组(P<0.05);自术后第3天起,相较于假手术组,模型组机械痛阈值、热痛阈值显著下降,相较于模型组,试验组自术后第5天起机械痛阈值、热痛阈值显著上升(均P<0.05);术后第14天试验组与假手术组机械痛阈值、热痛阈值对比无差异(P>0.05);模型组P2X2和P2X3mRNA、P2X2及P2X3蛋白比假手术组和试验组高(均P<0.05),试验组和假手术组P2X2、P2X3mRNA、P2X2及P2X3蛋白比较无差异(P>0.05);干预前及干预1、2周后模型组大鼠脊髓组织SOD比假手术组低,MDA比假手术组高;试验组大鼠脊髓组织SOD比模型组高,MDA比模型组低(均P<0.05)。结论:苦参碱可有效缓解神经病理性痛的所引发的机械痛觉和热痛觉,镇痛作用较好,机制可能在于其可使大鼠背根神经元中P2X2、P2X3受体下降相关,同时其在抑制神经病理性大鼠脊髓组织氧化应激反应方面有一定的作用,与其在对神经病理性痛大鼠脊髓组织神经元凋亡的抑制有密切关系。  相似文献   

12.
DNA methylation is generally known to inactivate gene expression. The DNA methyltransferases (DNMTs), DNMT3A and DNMT3B, catalyze somatic cell lineage‐specific DNA methylation, while DNMT3A and DNMT3L catalyze germ cell lineage‐specific DNA methylation. How such lineage‐ and gene‐specific DNA methylation patterns are created remains to be elucidated. To better understand the regulatory mechanisms underlying DNA methylation, we generated transgenic mice that constitutively expressed DNMT3A and DNMT3L, and analyzed DNA methylation, gene expression, and their subsequent impact on ontogeny. All transgenic mice were born normally but died within 20 weeks accompanied with cardiac hypertrophy. Several genes were repressed in the hearts of transgenic mice compared with those in wild‐type mice. CpG islands of these downregulated genes were highly methylated in the transgenic mice. This abnormal methylation occurred in the perinatal stage. Conversely, monoallelic DNA methylation at imprinted loci was faithfully maintained in all transgenic mice, except H19. Thus, the loci preferred by DNMT3A and DNMT3L differ between somatic and germ cell lineages.  相似文献   

13.
Matrix metalloproteinases (MMPs), a group of more than 20 zinc-containing endopeptidases, are up-regulated in many diseases, but the use of MMP inhibitors for therapeutic purposes has often been disappointing, possibly for the limited specificity of the drugs used in clinical trials. In principle, individual MMPs could be specifically drugged by monoclonal antibodies, either by inhibition of their catalytic activity or by antibody-based pharmacodelivery strategies. In this article we describe the isolation and affinity maturation of recombinant antibodies (SP1, SP2, SP3) specific to the murine catalytic domains of MMP-1A, MMP-2 and MMP-3. These novel reagents allowed a systematic comparative immunofluorescence analysis of the expression patterns of their cognate antigens in a variety of healthy, cancerous and arthritic murine tissues. While all three MMPs were strongly expressed in tumor and arthritis specimens, MMP-1A was completely undetectable in the normal tissues tested, while MMP-2 and MMP-3 exhibited a weak expression in certain normal tissues (e.g., liver). The new antibodies may serve as building blocks for the development of antibody-based therapy strategies in mouse models of pathology.  相似文献   

14.
We evaluated cellular mechanisms involved in the activation pathway of matrix prometalloproteinase-2 (pro-MMP-2), an enzyme implicated in the malignant progression of many tumor types. Membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves the N-terminal prodomain of pro-MMP-2 thus generating the activation intermediate that then matures into the fully active enzyme of MMP-2. Our results provide evidence on how a collaboration between MT1-MMP and integrin αvβ3 promotes more efficient activation and specific, transient docking of the activation intermediate and, further, the mature, active enzyme of MMP-2 at discrete regions of cells. We show that coexpression of MT1-MMP and integrin αvβ3 in MCF7 breast carcinoma cells specifically enhances in trans autocatalytic maturation of MMP-2. The association of MMP-2′s C-terminal hemopexin-like domain with those molecules of integrin αvβ3 which are proximal to MT1-MMP facilitates MMP-2 maturation. Vitronectin, a specific ligand of integrin αvβ3, competitively blocked the integrin-dependent maturation of MMP-2. Immunofluorescence and immunoprecipitation studies supported clustering of MT1-MMP and integrin αvβ3 at discrete regions of the cell surface. Evidently, the identified mechanisms appear to be instrumental to clustering active MMP-2 directly at the invadopodia and invasive front of αvβ3-expressing cells or in their close vicinity, thereby accelerating tumor cell locomotion.  相似文献   

15.
Myocardial infarction triggers oxidative DNA damage, apoptosis and adverse cardiac remodeling in the heart. Small ubiquitin-like modifier (SUMO) proteins mediate post-translational SUMOylation of the cardiac proteins in response to oxidative stress signals. Upregulation of isoform SUMO2 could attenuate myocardial injury via increasing protein SUMOylation. The present study aimed to discover the identity and cardioprotective activities of SUMOylated proteins. A plasmid vector for expressing N-Strep-SUMO2 protein was generated and introduced into H9c2 rat cardiomyocytes. The SUMOylated proteins were isolated with Strep-Tactin® agarose beads and identified by MALDI-TOF-MS technology. As a result, γ-actin was identified from a predominant protein band of ~42 kDa and verified by Western blotting. The roles of SUMO2 and γ-actin SUMOylation were subsequently determined in a mouse model of myocardial infarction induced by ligating left anterior descending coronary artery and H9c2 cells challenged by hypoxia-reoxygenation. In vitro lentiviral-mediated SUMO2 expression in H9c2 cells were used to explore the role of SUMOylation of γ-actin. SUMOylation of γ-actin by SUMO2 was proven to be a new cardioprotective mechanism from the following aspects: 1) SUMO2 overexpression reduced the number of TUNEL positive cells, the levels of 8-OHdG and p-γ-H2ax while promoted the nuclear deposition of γ-actin in mouse model and H9c2 cell model of myocardial infarction; 2) SUMO-2 silencing decreased the levels of nuclear γ-actin and SUMOylation while exacerbated DNA damage; 3) Mutated γ-actin (K68R/K284R) void of SUMOylation sites failed to protect cardiomyocytes against hypoxia-reoxygenation challenge. The present study suggested that SUMO2 upregulation promoted DNA damage repair and attenuated myocardial injury via increasing SUMOylation of γ-actin in the cell nucleus.  相似文献   

16.
Keratinocytes synthesize and secrete urokinase-type plasminogen activator (uPA) which is bound in an autocrine manner to a specific receptor (uPA-R) at the keratinocyte surface. Plasminogen that is also bound to specific membrane binding sites is readily activated by uPA-R-bound uPA. Thus, plasmin is provided for proteolysis of pericellular glycoproteins. The expression of uPA and the uPA-R is confined to migrating keratinocytes during epidermal wound healing, rather than to keratinocytes of the normal epidermis. The regulatory factors of uPA/uPA-R expression in keratinocytes remained largely elusive. Proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β), are present in epidermal wounds. We have therefore tested IL-1β and TNF-α for their influence on surface-associated plasminogen activation in a human keratinocyte cell line (HaCaT) as well as in primary cultures of normal human epidermal keratinocytes. Both cytokines induced the secretion of uPA into the culture supernatants and a concomitant increase in uPA activity as well as in uPA and uPA-R antigen at the cell surface. The increase was preceded by an increase in specific mRNA. The induction was accompanied by an accelerated uPA-dependent and plasmin-mediated detachment of HaCaT cells from the culture substratum. Taken together, the proinflammatory cytokines IL-1β and TNF-α induced a coordinated increase in uPA and uPA-R as well as increased pericellular plasmin-mediated proteolysis in human epidermal keratinocytes. This function might be an element of the molecular cell biological events during epidermal wound healing.  相似文献   

17.
Lymphatic vessel growth requires extensive remodeling of the extracellular matrix, a process hypothesized to be related to the expression and function of the matrix metalloproteinases. We used a protein based screening strategy to demonstrate increased matrix matalloproteinase-10 expression in human lymphatic endothelial cells undergoing collagen I induced tubulogenesis. Knock-down experiments showed that matrix metalloproteinase-10 regulated lymphatic endothelial cell tubulogenesis. β1 integrin signaling via the ERK/MAPK pathway increased matrix metalloproteinase-10 mRNA and protein expression in human lymphatic endothelial cells. These findings demonstrate a novel mechanism by which β1 integrin regulates matrix metalloproteinase-10 expression during lymphatic vessel remodeling.  相似文献   

18.
Osteopontin (OPN), a 41-kDa phosphorylated glycoprotein, has been detected in rat aorta and carotid arteries, and expression of its mRNA in blood vessels is strongly increased in response to vascular injury. To investigate the potential role of OPN in vascular pathophysiology, we studied the effect of rat OPN on aortic smooth muscle cell migration and proliferation in vitro. OPN enhanced the migration of rat smooth muscle cells in a time- and concentration-dependent manner with an EC50 value of 46 ± 11 nmol/liter (n = 5). The maximal increase in cell migration by OPN was 29-fold over basal levels. OPN-induced smooth muscle cell migration was inhibited in a concentration-dependent manner by the monoclonal antibody F11, which recognizes the rat integrin subunit β3. In contrast, polyclonal antiserum recognizing the rat integrin β1 subunit did not inhibit smooth muscle cell migration in response to OPN, but did block fibronectin-promoted migration. Moreover, OPN-induced smooth muscle cell migration was dependent on the presence of extracellular divalent cations and was significantly inhibited by anti-OPN antibodies. OPN did not stimulate [3H]thymidine incorporation into cultured smooth muscle cells, indicating that it selectively enhanced migration. In view of the pathological significance of arterial smooth muscle cell migration in the formation of intimal thickening, our results suggest that smooth muscle cell recognition of OPN, probably through the vitronectin receptor, αvβ3, could play a role in the cells' response to vascular injury and especially neointima formation.  相似文献   

19.
20.
Events that control developmental changes occur during specific windows of gestation and if disrupted, can lead to dysmorphogenesis or embryolethality. One largely understudied aspect of developmental control is redox regulation, where the untimely disruption of intracellular redox potentials (Eh) may alter development, suggesting that tight control of developmental‐stage–specific redox states is necessary to support normal development. In this study, mouse gestational day 8.5 embryos in whole embryo culture were treated with 10 μM dithiole‐3‐thione (D3T), an inducer of nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2). After 14 hr, D3T‐treated and ‐untreated conceptuses were challenged with 200 μM hydrogen peroxide (H2O2) to induce oxidant‐induced change to intracellular Ehs. Redox potentials of glutathione (GSH), thioredoxin‐1 (Trx1), and mitochondrial thioredoxin‐2 (Trx2) were then measured over a 2‐hr rebounding period following H2O2 treatment. D3T treatment increased embryonic expression of known Nrf2‐regulated genes, including those responsible for redox regulation of major intracellular redox couples. Exposure to H2O2 without prior D3T treatment produced significant oxidation of GSH, Trx1, and Trx2, based on Eh values, where GSH and Trx2 Eh recovered, reaching to pre‐H2O2 Eh ranges, but Trx1 Eh remained oxidized. Following H2O2 addition in culture to embryos that received D3T pretreatments, GSH, Trx1, and Trx2 were insulated from significant oxidation. These data show that Nrf2 activation may serve as a means to protect the embryo from chemically induced oxidative stress through the preservation of intracellular redox states during development, allowing normal morphogenesis to ensue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号