首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The zebrafish has emerged as a powerful model organism for studying intestinal development1-5, physiology6-11, disease12-16, and host-microbe interactions17-25. Experimental approaches for studying intestinal biology often require the in vivo introduction of selected materials into the lumen of the intestine. In the larval zebrafish model, this is typically accomplished by immersing fish in a solution of the selected material, or by injection through the abdominal wall. Using the immersion method, it is difficult to accurately monitor or control the route or timing of material delivery to the intestine. For this reason, immersion exposure can cause unintended toxicity and other effects on extraintestinal tissues, limiting the potential range of material amounts that can be delivered into the intestine. Also, the amount of material ingested during immersion exposure can vary significantly between individual larvae26. Although these problems are not encountered during direct injection through the abdominal wall, proper injection is difficult and causes tissue damage which could influence experimental results.We introduce a method for microgavage of zebrafish larvae. The goal of this method is to provide a safe, effective, and consistent way to deliver material directly to the lumen of the anterior intestine in larval zebrafish with controlled timing. Microgavage utilizes standard embryo microinjection and stereomicroscopy equipment common to most laboratories that perform zebrafish research. Once fish are properly positioned in methylcellulose, gavage can be performed quickly at a rate of approximately 7-10 fish/ min, and post-gavage survival approaches 100% depending on the gavaged material. We also show that microgavage can permit loading of the intestinal lumen with high concentrations of materials that are lethal to fish when exposed by immersion. To demonstrate the utility of this method, we present a fluorescent dextran microgavage assay that can be used to quantify transit from the intestinal lumen to extraintestinal spaces. This test can be used to verify proper execution of the microgavage procedure, and also provides a novel zebrafish assay to examine intestinal epithelial barrier integrity under different experimental conditions (e.g. genetic manipulation, drug treatment, or exposure to environmental factors). Furthermore, we show how gavage can be used to evaluate intestinal motility by gavaging fluorescent microspheres and monitoring their subsequent transit. Microgavage can be applied to deliver diverse materials such as live microorganisms, secreted microbial factors/toxins, pharmacological agents, and physiological probes. With these capabilities, the larval zebrafish microgavage method has the potential to enhance a broad range of research fields using the zebrafish model system.  相似文献   

2.
We have created a novel high-throughput imaging system for the analysis of behavior in 7-day-old zebrafish larvae in multi-lane plates. This system measures spontaneous behaviors and the response to an aversive stimulus, which is shown to the larvae via a PowerPoint presentation. The recorded images are analyzed with an ImageJ macro, which automatically splits the color channels, subtracts the background, and applies a threshold to identify individual larvae placement in the lanes. We can then import the coordinates into an Excel sheet to quantify swim speed, preference for edge or side of the lane, resting behavior, thigmotaxis, distance between larvae, and avoidance behavior. Subtle changes in behavior are easily detected using our system, making it useful for behavioral analyses after exposure to environmental toxicants or pharmaceuticals.  相似文献   

3.
4.
The necessary replacement of fish meal with other protein source in diets of commercially important fish has prompted the study of the effect of the inclusion of different vegetable proteins sources on growth performance and on the gastro-intestinal tract. Currently, soybean meal is the primary protein source as a fish meal replacement because of its low price and high availability. Likewise, it is been documented that the ingestion of soybean meal by several fish species, such as salmonids and carp, triggers a type of intestinal inflammation called enteritis. In this paper, we analyzed the effects of the ingestion of soybean meal and two of its components, soy protein and soy saponin, on zebrafish to establish the basis for using zebrafish larvae as a model for fish nutrition. We took advantage of the existence of different transgenic lines, which allowed us to perform in vivo analysis. Our results indicated that larvae that were feed with soybean meal developed a clear intestinal inflammation as early as two day after beginning the diet. Moreover, we determined that is not the soy protein present in the diet but the soy saponin that is primarily responsible for triggering the immune response. These findings support the use of zebrafish screening assays to identify novel ingredients that would to improved current fish diets or would formulate new ones.  相似文献   

5.
Neurochemical Research - Epilepsy affects 50 million people around the world, and the patients experience cognitive, psychological and social consequences. Despite the considerable quantity of...  相似文献   

6.
Highlights? Larvae aggregate in the light even after loss of retinal and pineal photoreception ? Dark-driven photokinesis is absent in eyeless otpa mutant larvae ? The melanopsin opn4a is coexpressed with otpa and selectively lost in otp mutants ? otpa neurons of the preoptic area are deep brain photoreceptors for dark photokinesis  相似文献   

7.
8.
The zebrafish larval tail fin is ideal for studying tissue regeneration due to the simple architecture of the larval fin-fold, which comprises of two layers of skin that enclose undifferentiated mesenchyme, and because the larval tail fin regenerates rapidly within 2-3 days. Using this system, we demonstrate a method for capturing the repair dynamics of the amputated tail fin with time-lapse video brightfield stereomicroscopy. We demonstrate that fin amputation triggers a contraction of the amputation wound and extrusion of cells around the wound margin, leading to their subsequent clearance. Fin regeneration proceeds from proximal to distal direction after a short delay. In addition, developmental growth of the larva can be observed during all stages. The presented method provides an opportunity for observing and analyzing whole tissue-scale behaviors such as fin development and growth in a simple microscope setting, which is easily adaptable to any stereomicroscope with time-lapse capabilities.  相似文献   

9.
Zebrafish larvae provide models of muscle development, muscle disease and muscle-related chemical toxicity, but related studies often lack functional measures of muscle health. In this video article, we demonstrate a method to measure force generation during contraction of zebrafish larval trunk muscle. Force measurements are accomplished by placing an anesthetized larva into a chamber filled with a salt solution. The anterior end of the larva is tied to a force transducer and the posterior end of the larva is tied to a length controller. An isometric twitch contraction is elicited by electric field stimulation and the force response is recorded for analysis. Force generation during contraction provides a measure of overall muscle health and specifically provides a measure of muscle function. Although we describe this technique for use with wild-type larvae, this method can be used with genetically modified larvae or with larvae treated with drugs or toxicants, to characterize muscle disease models and evaluate treatments, or to study muscle development, injury, or chemical toxicity.  相似文献   

10.
目的 采用模式动物斑马鱼作为研究对象,观察氯丙嗪(chlorpromazine,CPZ)暴露对胚胎和幼鱼早期神经发育的影响.方法 在一般毒性评价的基础上,通过整体胚胎细胞凋亡检测和脑组织病理学检查,了解CPZ对神经发育的器质性改变;采用神经行为学方法,包括幼鱼触动逃避反应、自发运动以及惊恐逃避反射等,研究氯丙嗪暴露所致的神经发育功能性障碍.结果斑马鱼胚胎受精后6 h(6 hpf)~72 hpf暴露于CPZ(≥5 mg/L)可引起胚胎和幼鱼死亡、致畸和幼鱼孵化延迟,并呈浓度和时间依赖性;采用吖啶橙染色检测36 hpf整体胚胎凋亡细胞,发现凋亡细胞主要集中在胚胎中脑、后脑、丘脑以及中后脑连接区、脊索和尾部等处;脑组织病理学检测发现,7dpf幼鱼颅腔增大、脑体积减小、脑细胞缩小且细胞间隙增宽.6~72 hpf CPZ(≥0.0625 mg/L)暴露后,幼鱼神经行为学研究发现,CPZ(≥0.125 mg/L)可引起3dpf幼鱼触觉运动能力下降;CPZ(≥0 5 mg/L)可浓度依赖性地抑制幼鱼自发运动,并出现僵直不动、震颤或快速刻板式转圈运动等行为改变;光惊恐实验中,暗环境下各暴露组幼鱼对突发强光刺激均表现为惊跳逃避,并且暗-光交替期运动加速度变化与对照组无显著差异;在撤除光源后,1mg/L和2 mg/L暴露组幼鱼暗适应时程缩短,而0.125 mg/L和0.25 mg/L暴露组暗适应时程延长,提示CPZ对外界刺激引发的幼鱼活跃游动有抑制和促进双重毒性作用.结论 CPZ暴露对斑马鱼胚胎和幼鱼具有明显的神经发育毒性作用.模式动物斑马鱼作为一种高通量筛选模型在外源性化合物神经发育毒性评价中具有较好的应用前景.  相似文献   

11.
In this video article we describe a zebrafish model of AKI using gentamicin as the nephrotoxicant. The technique consists of intravenous microinjections on 2 dpf zebrafish. This technique represents an efficient and rapid method to deliver soluble substances into the bloodstream of zebrafish larvae, allowing for the injection of 15-20 fish per hour. In addition to AKI studies, this microinjection technique can also be used for other types of experimental studies such as angiography. We provide a detailed protocol of the technique from equipment required to visual measures of decreased kidney function. In addition, we also demonstrate the process of fixation, whole mount immunohistochemistry with a kidney tubule marker, plastic embedding and sectioning of the larval zebrafish. We demonstrate that zebrafish larvae injected with gentamicin show morphological features consistent with AKI: edema, loss of cell polarity in proximal tubular epithelial cells, and morphological disruption of the tubule.  相似文献   

12.
三氯生(2,4,4’-三氯均二苯脲, triclosan, TCS)是环境中应用最为广泛的新兴外源性污染物之一,可强烈地吸附在土壤、沉积物、胶体中。TCS具有生物蓄积作用,在生物体内的富集浓度远超过在水、土壤等环境中的浓度,并且可通过生物富集作用进入食物链。本实验以斑马鱼(Danio rerio)胚胎为模型,探讨不同浓度的TCS暴露对斑马鱼胚胎、幼鱼发育的影响。结果发现, TCS暴露对斑马鱼胚胎和幼鱼具有较强的致畸、致死效应。为了进一步了解TCS对斑马鱼眼部超微结构的影响,将其眼部电镜切片放在透射电镜下观察。结果显示, TCS暴露后斑马鱼幼鱼眼部感光细胞外节盘数量明显减少,外网状层及内网状层较对照组明显变薄且空泡化严重,外核层细胞核固缩现象严重甚至部分细胞核出现溶解的现象。实验结果表明TCS暴露对斑马鱼幼鱼眼部发育有潜在的毒性作用,这可为进一步探讨TCS对人体潜在的毒性作用提供科学、可靠的依据。  相似文献   

13.
The zebrafish model is an emerging system for the study of neuromuscular disorders. In the study of neuromuscular diseases, the integrity of the muscle membrane is a critical disease determinant. To date, numerous neuromuscular conditions display degenerating muscle fibers with abnormal membrane integrity; this is most commonly observed in muscular dystrophies. Evans Blue Dye (EBD) is a vital, cell permeable dye that is rapidly taken into degenerating, damaged, or apoptotic cells; in contrast, it is not taken up by cells with an intact membrane. EBD injection is commonly employed to ascertain muscle integrity in mouse models of neuromuscular diseases. However, such EBD experiments require muscle dissection and/or sectioning prior to analysis. In contrast, EBD uptake in zebrafish is visualized in live, intact preparations. Here, we demonstrate a simple and straightforward methodology for performing EBD injections and analysis in live zebrafish. In addition, we demonstrate a co-injection strategy to increase efficacy of EBD analysis. Overall, this video article provides an outline to perform EBD injection and characterization in zebrafish models of neuromuscular disease.  相似文献   

14.
Neurochemical Research - Epilepsy affects around 50 million people worldwide, and an important number of patients (30%) fail to respond to any available antiepileptic drug. Previous studies have...  相似文献   

15.
16.
目的 当动物重复某种行为以逃避危险或获取奖励而无法成功时,会产生放弃。放弃是一种常见且基本的行为,在小鼠等模式动物中已经被广泛研究,但是其部分神经机制仍未被阐明。幼年斑马鱼适合进行全脑光学成像,是神经科学领域的重要模式生物。已经有研究者通过持续电击等消极刺激诱发斑马鱼放弃行为,然而奖励刺激能否引起斑马鱼放弃尚无报道。本文对奖励刺激引起的斑马鱼放弃行为进行了探究。方法 通过给予斑马鱼虚拟的食物视觉刺激,检验斑马鱼对虚拟食物的捕食情况,比较斑马鱼捕食频率和单次捕食时长随时间的变化。结果 虚拟的食物视觉刺激可以引起斑马鱼的捕食行为,接受25 min虚拟刺激后,8日龄以上斑马鱼的捕食频率和单次捕食时长均出现显著下降。结论 此研究丰富了斑马鱼放弃行为的研究范式,实验结果表明,缺失真实奖励的虚拟食物刺激可以诱导斑马鱼放弃捕食行为,这将进一步加深对动物放弃行为的理解,推动对其神经机制的研究。  相似文献   

17.
Confocal Raman microspectroscopy and fluorescence imaging are two well-established methods providing functional insight into the extracellular matrix and into living cells and tissues, respectively, down to single molecule detection. In living tissues, however, cells and extracellular matrix coexist and interact. To acquire information on this cell-matrix interaction, we developed a technique for colocalized, correlative multispectral tissue analysis by implementing high-sensitivity, wide-field fluorescence imaging on a confocal Raman microscope. As a proof of principle, we study early stages of bone formation in the zebrafish (Danio rerio) larvae because the zebrafish has emerged as a model organism to study vertebrate development. The newly formed bones were stained using a calcium fluorescent marker and the maturation process was imaged and chemically characterized in vivo. Results obtained from early stages of mineral deposition in the zebrafish fin bone unequivocally show the presence of hydrogen phosphate containing mineral phases in addition to the carbonated apatite mineral. The approach developed here opens significant opportunities in molecular imaging of metabolic activities, intracellular sensing, and trafficking as well as in vivo exploration of cell-tissue interfaces under (patho-)physiological conditions.  相似文献   

18.
Confocal Raman microspectroscopy and fluorescence imaging are two well-established methods providing functional insight into the extracellular matrix and into living cells and tissues, respectively, down to single molecule detection. In living tissues, however, cells and extracellular matrix coexist and interact. To acquire information on this cell-matrix interaction, we developed a technique for colocalized, correlative multispectral tissue analysis by implementing high-sensitivity, wide-field fluorescence imaging on a confocal Raman microscope. As a proof of principle, we study early stages of bone formation in the zebrafish (Danio rerio) larvae because the zebrafish has emerged as a model organism to study vertebrate development. The newly formed bones were stained using a calcium fluorescent marker and the maturation process was imaged and chemically characterized in vivo. Results obtained from early stages of mineral deposition in the zebrafish fin bone unequivocally show the presence of hydrogen phosphate containing mineral phases in addition to the carbonated apatite mineral. The approach developed here opens significant opportunities in molecular imaging of metabolic activities, intracellular sensing, and trafficking as well as in vivo exploration of cell-tissue interfaces under (patho-)physiological conditions.Understanding fundamental biological processes relies on probing intra- and extracellular environments, targeted delivery inside living cells and tissues, and real-time detection and imaging of chemical markers and biomolecules (1,2). Typically, information about molecules in cellular environments is obtained by fluorescence microscopy (3). This is a powerful imaging tool for localizing and imaging samples but requires fluorescent labels and markers and lacks capabilities for quantitative mapping of the chemical composition in complex systems. In this regard, confocal Raman spectroscopic imaging is becoming increasingly popular for label-free chemical detection, due to the inherent scattering nature of all biomolecules (4,5). However, confocal Raman imaging alone does not allow live, high-resolution imaging of larger regions of interest in complex biological tissues. Transcutaneous Raman spectroscopy has the potential as a tool for in vivo bone quality assessment (6), whereas the time- and space-resolved Raman spectroscopy allows the visualization in vivo of the distributions of molecular species in human and yeast cells (4,5,7). Here we developed a correlative Raman and fluorescence imaging method that combines the strengths and compensates for the shortcomings of each of these imaging modalities and allows studying in vivo processes in complex animal models such as zebrafish larvae. There are two main advantages of this approach over previous studies (8,9): low light intensity and high acquisition rate, making it well suited for real-time investigation of live samples.Fig. 1, a and b, shows a schematic representation of the experimental setup and of the optical path, respectively. The two techniques are implemented on a commercially available Raman microscope body to perform simultaneously confocal Raman spectroscopy and wide-field fluorescence imaging (see the Supporting Material for details of components). Briefly, the multimodality of the setup is provided by a combination of dichroic mirrors (DM 1–3) and filters that at turns reflect or transmit the excitation and emission signals. This combination of optics allows simultaneous collection of fluorescence images (2560 × 2160 pixels at 30 fps) with excitation at 400 and 490 nm and spatially resolved Raman spectra with excitation at 633 nm.Open in a separate windowFigure 1Fluorescence imaging of zebrafish larvae. (a) Cartoon of the experimental setup showing how the different modules are assembled onto the microscope for the simultaneous use of confocal Raman spectroscopy and fluorescence imaging. (b) Schematic representation of the optical path. (c) Fluorescence image of calcium-containing tissues, and fluids stained with calcein blue and excited at 400 nm (top). Endothelial cells of transgenic tg(fli1:EGFP)y1 zebrafish excited at 490 nm (bottom).As a proof of principle, we have studied the different mineral phases involved in bone formation of the zebrafish larvae. The bone development process involves the transport of ions to specific cells (osteoblasts) that are responsible for the subsequent mineral formation and deposition. The mineral phase in these cells is a poorly characterized disordered calcium phosphate (10–12). The mineral-bearing intracellular vesicles release their content into the extracellular collagen fibrils, where the mineral subsequently crystallizes as carbonated hydroxyapatite (13). Very little is known about the phase transformations the mineral undergoes after the deposition into the collagen matrix in vivo. Raman spectroscopy studies of bone tissue in organ cultures evidenced that the inorganic mineral deposition proceeds through transient intermediates including octacalcium phosphate-like (OCP) minerals (14).To assess the feasibility of imaging a vertebrate organism, fluorescence images of an entire zebrafish larva (Fig. 1 c) were acquired with the correlative fluorescence-Raman setup. The two images in Fig. 1 c were composed by merging several low-magnification (10×) fluorescence images. Larvae of transgenic zebrafish Tg(fli:EGFP); nac mutants (albino fish) expressing EGFP in the cytoplasm of endothelial cells was used. The newly formed bones were stained by soaking the live embryo noninvasively in the calcium markers calcein blue 0.2% wt or calcein green 0.2% wt.The calcein blue marker is excited at 400 nm. It is labeling bones and can be also detected as a fluorescent marker not associated with formed bones (e.g., stomach) (Fig. 1 c, top). At 490 nm, calcein green and endothelial cells within blood vessels expressing EGFP are excited (Fig. 1 c, bottom). Because EGFP and calcein blue have significantly different excitation and emissions spectra, dual staining with calcein blue (as a mineral marker) and EGFP allows fast-switching dual-wavelength fluorescence imaging. Furthermore, because the spectra of the calcium markers and EGFP do not extend beyond the Raman laser, these fluorophores are appropriate candidates for experiments requiring Raman and fluorescence imaging. The dual-excitation offers the capability of mapping several tissues in a single experiment at the video rate. This, in principle, could be used to probe different parameters of the microenvironment (e.g., pH (15), temperature (16), viscosity (17), and calcium concentration (18)) using wavelength-ratiometric fluorescence imaging which, in correlation with confocal Raman spectroscopy, could open new strategies in studies of the microenvironmental properties in living tissues.The fin rays of zebrafish are a simple, growing bone-model system, in which the fins are gradually mineralized within spatially resolved regions (19). Raman spectroscopy revealed details of the calcein green-stained fin where new bone is deposited (Fig. 2). In Fig. 2 a, a fluorescence image of a zebrafish larva analogous to the top image in Fig. 1 c is shown. The right inset in Fig. 3 b shows higher-magnification (60× water-immersion objective) details of the calcein green-stained fin typical of newly deposited bone. Raman spectra of progressively mineralized bone tissue were acquired within representative regions (Fig. 2 b; numbered 1–4). The spectra exhibit characteristic bands that can be assigned to the organic protein extracellular matrix (amide I, amide III, Phe, C-H, etc.) and the inorganic mineral content (v1, v2, v4 of PO43−).Open in a separate windowFigure 2Correlative fluorescence-Raman imaging of zebrafish fin bone maturation. (a) Low-resolution (10×) fluorescence image of zebrafish stained with calcein green, with high-resolution (60×) details (right inset in panel b) of a representative fin ray region where Raman spectra (b) of progressively mineralized bone tissue were acquired (numbered 1–4). (Left inset in panel b) Integral of the orientation independent mineral band (v2) where a clear drop of the mineral content can be observed.The analyses of the orientation-independent v2 phosphate band revealed a clear drop in the mineral content based on the intensity integral (left inset in Fig. 2 b). Assuming that the spectrum collected in region 4 contains only organic matrix (very small phosphate-related peaks) and by subtracting it from the spectrum of mineral-rich bone region (spectrum 1, proximal part of the tail bone), spectral features of only the mineral phase can be plotted (black line). In addition to the phosphate (PO43−) and carbonate (CO32−) bands assignable to the carbonated apatite phase characteristic of the more mature bone mineral, several peaks related to the hydrogen phosphate (HPO42−) species can be clearly distinguished.The HPO42− peaks are characteristic of the OCP mineral phase that has been postulated, together with amorphous calcium phosphate, as an intermediate mineral phase in the process of bone maturation (10,13,14,20), but never observed directly in living animals. Our findings show in vivo potential of the correlative setup envisioned by Crane et al. (14) and confirm that the mineral maturation indeed proceeds through an OCP-like mineral phase. Further analysis of the mineral spectrum in Fig. 2 b reveals an extremely broad band in the region 800–1100 cm−1. This envelope can be related to hydrogenated phosphate species typical of amorphous calcium phosphate precipitated in an acidic environment (see Fig. S1 in the Supporting Material), suggesting that this phase is also contributing to the maturation process.In conclusion, the methodology developed here allows for unprecedented chemical characterization of fluorescently-labeled biological tissues in vivo. The approach is suitable for long-term in vivo characterization of zebrafish bone mineralization under (patho-)physiological conditions. Furthermore, the setup can be upgraded to host other advance fluorescence imaging techniques such as super-resolution microscopy (e.g., photoactivated localization microscopy), two-photon excitation, and Forster resonance energy transfer or fluorescence lifetime imaging microscopy, and be applied on both in vivo and in vitro specimens. This opens significant opportunities in molecular imaging of metabolic activities, intracellular sensing, and trafficking as well as in vivo exploration of cell-tissue interfaces.  相似文献   

19.
20.
Aspergillus fumigatus is the most common filamentous fungal pathogen of immunocompromised hosts, resulting in invasive aspergillosis (IA) and high mortality rates. Innate immunity is known to be the predominant host defense against A. fumigatus; however, innate phagocyte responses to A. fumigatus in an intact host and their contributions to host survival remain unclear. Here, we describe a larval zebrafish A. fumigatus infection model amenable to real-time imaging of host-fungal interactions in live animals. Following infection with A. fumigatus, innate phagocyte populations exhibit clear preferences for different fungal morphologies: macrophages rapidly phagocytose conidia and form aggregates around hyphae, while the neutrophil response is dependent upon the presence of hyphae. Depletion of macrophages rendered host larvae susceptible to invasive disease. Moreover, a zebrafish model of human leukocyte adhesion deficiency with impaired neutrophil function also resulted in invasive disease and impaired host survival. In contrast, macrophage-deficient but not neutrophil-deficient larvae exhibited attenuated disease following challenge with a less virulent (ΔlaeA) strain of A. fumigatus, which has defects in secondary metabolite production. Taking these results together, we have established a new vertebrate model for studying innate immune responses to A. fumigatus that reveals distinct roles for neutrophils and macrophages in mediating host defense against IA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号