首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gap-junctional coupling among neurons is subject to regulation by a number of neurotransmitters including nitric oxide. We studied the mechanisms by which NO regulates coupling in cells expressing Cx35, a connexin expressed in neurons throughout the central nervous system. NO donors caused potent uncoupling of HeLa cells stably transfected with Cx35. This effect was mimicked by Bay 21-4272, an activator of guanylyl cyclase. A pharmacological analysis indicated that NO-induced uncoupling involved both PKG-dependent and PKG-independent pathways. PKA was involved in both pathways, suggesting that PKG-dependent uncoupling may be indirect. In vitro, PKG phosphorylated Cx35 at three sites: Ser110, Ser276, and Ser289. A mutational analysis indicated that phosphorylation on Ser110 and Ser276, sites previously shown also to be phosphorylated by PKA, had a significant influence on regulation. Ser289 phosphorylation had very limited effects. We conclude that NO can regulate coupling through Cx35 and that regulation is indirect in HeLa cells.  相似文献   

2.
NO对植物生长发育的调控机制   总被引:25,自引:0,他引:25  
一氧化氮(NO)是具有生物活性和信号转导作用的易扩散分子,它不仅对植物的许多生命活动如种子萌发、叶片扩展、根系生长、逆境生理以及细胞的程序性死亡等具有直接的生理调节功能,而且作为防御反应中的关键信使.参与了植物对外界环境胁迫的应答。近期研究表明,NO与激素在调节植物的生理活动与信号转导方面有明显的协同作用,通过激素起作用可能是植物内源NO作用的机理之一。本文主要通过对NO的产生及其对生理活动的调节机制和在代谢中的信号转导作用等方面来阐述NO在植物生长发育中的作用。  相似文献   

3.
Nitric oxide reductase (NOR) is a key enzyme in denitrification, reforming the N–N bond (making N2O from two NO molecules) in the nitrogen cycle. It is a cytochrome bc complex which has apparently only two subunits, NorB and NorC. It contains two low-spin cytochromes (c and b), and a high-spin cytochrome b which forms a binuclear center with a non-heme iron. NorC contains the c-type heme and NorB can be predicted to bind the other metal centers. NorB is homologous to the major subunit of the heme/copper cytochrome oxidases, and NOR thus belongs to the superfamily, although it has an Fe/Fe active site rather than an Fe/Cu binuclear center and a different catalytic activity. Current evidence suggests that NOR is not a proton pump, and that the protons consumed in NO reduction are not taken from the cytoplasmic side of the membrane. Therefore, the comparison between structural and functional properties of NOR and cytochrome c- and quinol-oxidizing enzymes which function as proton pumps may help us to understand the mechanism of the latter. This review is a brief summary of the current knowledge on molecular biology, structure, and bioenergetics of NOR as a member of the oxidase superfamily.  相似文献   

4.
The amygdala is a key brain area regulating responses to stress and emotional stimuli, so improving our understanding of how it is regulated could offer novel strategies for treating disturbances in emotion regulation. As we review here, a growing body of evidence indicates that the gut microbiota may contribute to a range of amygdala‐dependent brain functions from pain sensitivity to social behavior, emotion regulation, and therefore, psychiatric health. In addition, it appears that the microbiota is necessary for normal development of the amygdala at both the structural and functional levels. While further investigations are needed to elucidate the exact mechanisms of microbiota‐to‐amygdala communication, ultimately, this work raises the intriguing possibility that the gut microbiota may become a viable treatment target in disorders associated with amygdala dysregulation, including visceral pain, post‐traumatic stress disorder, and beyond. Also see the video abstract here: https://youtu.be/O5gvxVJjX18  相似文献   

5.
The present study was undertaken to observe in vivo changes of expression and phosphorylation of ERK1/2 proteins during brain ischemic preconditioning and effects of inhibiting generation of nitric oxide (NO) on the changes to determine the role of ERKs in the involvement of NO participating in the acquired tolerance. Fifty-five Wistar rats were used. Brain ischemic preconditioning was performed with four-vessel occlusion for 3 min. Total ERK1/2 proteins and phospho-ERK1/2 in the CA1 hippocampus were assayed with Western immunoblot. Total ERK1/2 proteins did not change in period from 5 min to 5 days of reperfusion after preconditioning stimulus. While the level of phospho-ERK1/2 increased obviously to 223, 237, 300, 385 and 254% of sham level at times of 5 min, 2 h, 1, 3 and 5 days after preconditioning stimulus, respectively (P < 0.01). Administration of L-NAME, an inhibitor of NO synthase, 30 min prior to preconditioning stimulus failed to induce change in total ERK1/2 proteins (P > 0.05). However, phospho-ERK1/2 increased only to 138 and 176% of sham level at 2 h and 3 days after preconditioning stimulus, respectively, when animals were pretreated with L-NAME. The magnitudes of the increase were obviously low compared with those (237 and 385%) in animals untreated with L-NAME at corresponding time points (P < 0.01), which indicated that phosphorylation of ERK1/2 normally induced by preconditioning stimulus was blocked apparently by administration of L-NAME. The results suggested that phosphorylation of ERK1/2, rather than synthesis of ERK1/2 proteins, was promoted in brain ischemic preconditioning, and that the promotion was partly mediated by NO signal pathway.  相似文献   

6.
Journal of Plant Growth Regulation - It is a well-established fact that nitric oxide (NO) is a multifaceted signaling molecule, which plays diverse role in organisms. In the past two decades,...  相似文献   

7.
8.
9.
Abstract: Nitric oxide may regulate cellular respiration by competition with oxygen at mitochondrial cytochrome oxidase. Using an astrocyte-derived cell line, we have compared the mechanism of action of the nitric oxide-generating compound Roussin's black salt with that of sodium nitroprusside on cellular oxygen consumption. Intense light exposure induced the release of large quantities of nitric oxide from both of the donor compounds. However, in room light only Roussin's black salt generated low levels of the radical. Simultaneous measurement of oxygen consumption and of nitric oxide production demonstrated that sodium nitroprusside only had inhibitory actions when exposed to intense light (nitric oxide release), whereas Roussin's black salt had inhibitory actions in room light. Extracellular haemoglobin did not prevent the inhibition of respiration rate induced by Roussin's black salt even though stimulation of nitric oxide release on light exposure was markedly reduced. Preincubation of cells with Roussin's black salt and subsequent measurement of levels of light-liberated nitric oxide demonstrated that the compound was rapidly internalised. The uptake of sodium nitroprusside was minimal. These data suggest that, in contrast to sodium nitroprusside, the cellular internalisation of Roussin's black salt allows site-directed nitric oxide release and very effective inhibition of cellular respiration.  相似文献   

10.
早期经验对大鼠脑区一氧化氮合酶活性的影响   总被引:1,自引:0,他引:1  
目的 探讨NO与早期饲养环境所引起脑效应的关系。方法 将断乳大鼠在丰富环境 (EC)和单调环境 (IC)中饲养 30d。环境暴露后通过NADPH -黄递酶组化方法对海马齿状回 (DEN)和大脑皮层NOS活性进行定量测定以及对大鼠进行Morris水迷宫作业训练。结果 EC大鼠与IC大鼠相比 ,海马齿状回 (DEN)和大脑皮层NOS活性明显下降 ,迷宫测试表明EC大鼠的空间认知显著优于IC大鼠。在环境暴露期间隔日注射一氧化氮合酶 (NOS)抑制物L -NAME(50mg/kg) ,未引起EC或IC大鼠认知行为的明显改变 ,但导致DEN和大脑皮层NOS活性的不同改变。结论 NO可能与早期经验脑效应有关。  相似文献   

11.
12.
Abstract: Nitric oxide plays an important role as an intercellular messenger in the CNS. In the present work we measured NADPH-diaphorase activity, which is considered to be a marker of cells producing nitric oxide, in homogenates of the developing chick retina. The enzyme activity can be detected beginning in 8-day-old embryonic retinas with no further quantitative variations throughout development. Arginine analogues inhibit ∼65% of the activity in embryonic retinas and 50% in posthatched retinas. The enzyme is stimulated 50% by 2 m M calcium chloride in retinas from 8 to 14 embryonic days, but this effect decreases to 20% in 17-day embryonic retinas and practically disappears in posthatched animals. The stimulation by calcium is completely blocked by arginine analogues. The decrease in enzyme activity at posthatched retinas is not due to stimulation by endogenous calcium or the presence of insufficient amounts of calmodulin, because addition of EGTA or calmodulin, respectively, did not restore the stimulation to levels observed at embryonic stages. Inhibition of NADPH-diaphorase activity by N G-nitro- l -arginine or l - N G-(iminoethyl)ornithine is concentration dependent with IC50 values of ∼1 m M at all stages studied. However, in the presence of calcium, the inhibition by both analogues is shifted to the left and is apparently biphasic at all developmental stages, including in posthatched animals, with IC50 values in the low micromolar range. NADPH-diaphorase was also detected by histochemistry in specific groups of cells in the early embryonic retina and in subsets of amacrine and ganglion cells, as well as in photoreceptors, in more developed retinas. The results indicate that different isoforms of nitric oxide synthase are present in the chick retina and that a calcium-dependent isoform is predominant in early periods of development.  相似文献   

13.
Understanding how plants sense and respond to changes in nitrogen availability is the first step toward developing strategies for biotechnological applications, such as improvement of nitrogen use efficiency. However, components involved in nitrogen signaling pathways remain poorly characterized. Calcium is a second messenger in signal transduction pathways in plants, and it has been indirectly implicated in nitrate responses. Using aequorin reporter plants, we show that nitrate treatments transiently increase cytoplasmic Ca2+ concentration. We found that nitrate also induces cytoplasmic concentration of inositol 1,4,5-trisphosphate. Increases in inositol 1,4,5-trisphosphate and cytoplasmic Ca2+ levels in response to nitrate treatments were blocked by U73122, a pharmacological inhibitor of phospholipase C, but not by the nonfunctional phospholipase C inhibitor analog U73343. In addition, increase in cytoplasmic Ca2+ levels in response to nitrate treatments was abolished in mutants of the nitrate transceptor NITRATE TRANSPORTER1.1/Arabidopsis (Arabidopsis thaliana) NITRATE TRANSPORTER1 PEPTIDE TRANSPORTER FAMILY6.3. Gene expression of nitrate-responsive genes was severely affected by pretreatments with Ca2+ channel blockers or phospholipase C inhibitors. These results indicate that Ca2+ acts as a second messenger in the nitrate signaling pathway of Arabidopsis. Our results suggest a model where NRT1.1/AtNPF6.3 and a phospholipase C activity mediate the increase of Ca2+ in response to nitrate required for changes in expression of prototypical nitrate-responsive genes.Plants are sessile organisms that evolved sophisticated sensing and response mechanisms to adapt to changing environmental conditions. Calcium, a ubiquitous second messenger in all eukaryotes, has been implicated in plant signaling pathways (Harper et al., 2004; Hetherington and Brownlee, 2004; Reddy and Reddy, 2004; Hepler, 2005). Multiple abiotic and biotic cues elicit specific and distinct spatiotemporal patterns of change in the concentration of cytosolic Ca2+ ([Ca2+]cyt) in plants (Sanders et al., 2002; Hetherington and Brownlee, 2004; Reddy and Reddy, 2004; Hepler, 2005). Abscisic acid and heat shock treatments cause a rapid intracellular Ca2+ increase that is preceded by a transient increase in the level of inositol 1,4,5-trisphosphate (IP3; Sanchez and Chua, 2001; Zheng et al., 2012). Ca2+ signatures are detected, decoded, and transmitted to downstream responses by a set of Ca2+ binding proteins that functions as Ca2+ sensors (White and Broadley, 2003; Dodd et al., 2010).Nitrate is the main source of N in agriculture and a potent signal that regulates the expression of hundreds of genes (Wang et al., 2004; Vidal and Gutiérrez, 2008; Ho and Tsay, 2010). Despite progress in identifying genome-wide responses, only a handful of molecular components involved in nitrate signaling has been identified. Several pieces of evidence indicate that NITRATE TRANSPORTER1.1 (NRT1.1)/Arabidopsis (Arabidopsis thaliana) NITRATE TRANSPORTER1 PEPTIDE TRANSPORTER FAMILY6.3 (AtNPF6.3) is a nitrate sensor in Arabidopsis (Ho et al., 2009; Gojon et al., 2011; Bouguyon et al., 2015). NRT1.1/AtNPF6.3 is required for normal expression of more than 100 genes in response to nitrate in Arabidopsis roots (Wang et al., 2009). Downstream of NRT1.1/AtNPF6.3, CALCINEURIN B-LIKE INTERACTING SER/THR-PROTEINE KINASE8 (CIPK8) is required for normal nitrate-induced expression of primary nitrate response genes, and the CIPK23 kinase is able to control the switch from low to high affinity of NRT1.1/AtNPF6.3 (Ho et al., 2009; Hu et al., 2009; Ho and Tsay, 2010; Castaings et al., 2011). CIPKs act in concert with CALCINEURIN B-LIKE proteins, plant-specific calcium binding proteins that activate CIPKs to phosphorylate downstream targets (Albrecht et al., 2001). Early experiments using maize (Zea mays) and barley (Hordeum vulgare) detached leaves showed that nitrate induction of two nitrate primary response genes was altered by pretreating leaves with the calcium chelator EGTA or the calcium channel blocker LaCl3 (Sakakibara et al., 1997; Sueyoshi et al., 1999), suggesting an interplay between nitrate response and calcium-related signaling pathways. However, the role of calcium as a second messenger in the nitrate signaling pathway has not been directly addressed.We show that nitrate treatments cause a rapid increase of IP3 and [Ca2+]cyt levels and that blocking phospholipase C (PLC) activity inhibits both IP3 and [Ca2+]cyt increases after nitrate treatments. We provide evidence that NRT1.1/AtNPF6.3 is required for increasing both IP3 and [Ca2+]cyt in response to nitrate treatments. Altering [Ca2+]cyt or blocking PLC activity hinders regulation of gene expression of nitrate-responsive genes. Our results indicate that Ca2+ is a second messenger in the nitrate signaling pathway of Arabidopsis.  相似文献   

14.
15.
The distribution of nitric oxide synthase(NOS)in brain tissues of rats exposed to deltamethrininsecticide has been examined by histochemical NADPH-diaphorase staining techniques on frozen sec-tions.After injection of deltamethrin(12.5mg/kg,i.p.),a reproducible sequence of toxic signs ofhyperexcitability were elicited.The observation and image analysis showed that,within brain sec-tions of rats exposed to deltamethrin,the numbers and the total staining areas of the NOS positiveneurons were greatly increased,especially in cerebral cortex,hippocampal formation and paraventric-ular nucleus.In addition,the density of single neuron and the processes were also increased.The re-sults suggested that deltamethrin may induce the NOS expression or activate the NOS activity.TheNOS activation may involve in the chains responsible for the excitatory neurotoxicities induced bydeltamethrin.  相似文献   

16.
Murad F 《Bioscience reports》2004,24(4-5):452-474
The role of nitric oxide in cellular signaling in the past 22 years has become one of the most rapidly growing areas in biology with more than 20,000 publications to date. Nitric oxide is a gas and free radical with an unshared electron that can regulate an ever-growing list of biological processes. In many instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis from GTP. However, the list of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. For example, nitric oxide can interact with transition metals such as iron, thiol groups, other free radicals, oxygen, superoxide anion, unsaturated fatty acids and other molecules. Some of these reactions result in the oxidation of nitric oxide to nitrite and nitrate to terminate its effect, while other reactions can lead to altered protein structure, function, and/or catalytic capacity. These diverse effects of nitric oxide that are either cyclic GMP dependent or independent can alter and regulate important physiological and biochemical events in cell regulation and function. Nitric oxide can function as an intracellular messenger, an autacoid, a paracrine substance, a neurotransmitter, or as a hormone that can be carried to distant sites for effects. Thus, it is a unique simple molecule with an array of signaling functions. However, as with any messenger molecule, there can be too little or too much of the substance and pathological events result. Some of the methods to regulate either nitric oxide formation, metabolism, or function have been in clinical use for more than a century as with the use of organic nitrates and nitroglycerin in angina pectoris that was initiated in the 1870’s. Current and future research with nitric oxide and cyclic GMP will undoubtedly expand the clinicians’ therapeutic armamentarium to manage a number of important diseases by perturbing nitric oxide and cyclic GMP formation and metabolism. Such promise and expectations have obviously fueled the interests in these signaling molecules for a growing list of potential therapeutic applications.  相似文献   

17.
The role of nitric oxide in cellular signaling in the past 22 years has become one of the most rapidly growing areas in biology with more than 20,000 publications to date. Nitric oxide is a gas and free radical with an unshared electron that can regulate an ever-growing list of biological processes. In many instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis from GTP. However, the list of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. For example, nitric oxide can interact with transition metals such as iron, thiol groups, other free radicals, oxygen, superoxide anion, unsaturated fatty acids and other molecules. Some of these reactions result in the oxidation of nitric oxide to nitrite and nitrate to terminate its effect, while other reactions can lead to altered protein structure, function, and/or catalytic capacity. These diverse effects of nitric oxide that are either cyclic GMP dependent or independent can alter and regulate important physiological and biochemical events in cell regulation and function. Nitric oxide can function as an intracellular messenger, an autacoid, a paracrine substance, a neurotransmitter, or as a hormone that can be carried to distant sites for effects. Thus, it is a unique simple molecule with an array of signaling functions. However, as with any messenger molecule, there can be too little or too much of the substance and pathological events result. Some of the methods to regulate either nitric oxide formation, metabolism, or function have been in clinical use for more than a century as with the use of organic nitrates and nitroglycerin in angina pectoris that was initiated in the 1870's. Current and future research with nitric oxide and cyclic GMP will undoubtedly expand the clinicians' therapeutic armamentarium to manage a number of important diseases by perturbing nitric oxide and cyclic GMP formation and metabolism. Such promise and expectations have obviously fueled the interests in these signaling molecules for a growing list of potential therapeutic applications.John S. Dunn Distinguished Chair in Medicine and Physiology, Regental Professor and Chair of Department of Integrative Biology, Pharmacology, and Physiology and Director of the Institute of Molecular Medicine  相似文献   

18.
通过草酸及其与不同抑制剂亚甲基蓝、EGTA、氯丙嗪和Li+组合处理黄瓜叶片,研究了草酸与抑制剂不同处理组合方式对黄瓜叶片POD活性和叶片病情指数的影响,探讨NO、钙信使系统在草酸诱导叶片抗霜霉病中的作用.结果显示,10~70mmol/L草酸均能不同程度诱导黄瓜叶片POD活性的升高,提高叶片对黄瓜霜霉病的抗病性,降低叶片病情指数,并以30mmol/L效果最好.4种抑制剂分别与30mmol/L草酸同时或先于草酸处理,或草酸处理后一定时间再用抑制剂处理,均明显抑制黄瓜叶片POD活性的升高及病情指数的降低.研究表明,NO、Ca2+、钙调素(CaM)和磷酸肌醇均可能参与了草酸诱导黄瓜霜霉病抗性的信号转导过程.  相似文献   

19.
The presence of nitric oxide synthase (NOS) activity is demonstratedin the tropical marine cnidarian Aiptasia pallida and in itssymbiotic dinoflagellate algae, Symbiodinium bermudense. Enzymeactivity was assayed by measuring the conversion of arginineto citrulline. Biochemical characterization of NOS from Aiptasiawas characterized with respect to cellular localization, substrateand cofactor requirements, inhibitors, and kinetics. In responseto acute temperature shock, anemones retracted their tentacles.Animals subjected to such stress had lower NOS activities thandid controls. Treatment with NOS inhibitors caused tentacularretraction, while treatment with the NOS substrate L-arginineinhibited this response to stress, as did treatment with NOdonors. These results provide a preliminary biochemical characterizationof, and suggest a functional significance for, NOS activityin anthozoan-algal symbiotic assemblages.  相似文献   

20.
Age related changes in brain cortex NO metabolism were investigated in mitochondria and cytosolic extracts from youth to adulthood. Decreases of 19%, 40% and 71% in NO production were observed in mitochondrial fractions from 3, 7, and 14 months old rats, respectively, as compared with 1-month-old rats. Decreased nNOS protein expression in 14 months old rats was also observed in mitochondria as compared with the nNOS protein expression in 1-month-old rats. Low levels of eNOS protein expression close to the detection limits and no iNOS protein expression were significantly detected in mitochondrial fraction for both groups of age. NO production in the cytosolic extracts also showed a marked decreasing tendency, showing higher levels than those observed in mitochondrial fractions for all groups of age. In the cytosolic extracts, however, the levels were stabilized in adult animals from 7 to 14 months. nNOS protein expression showed a similar age-pattern in cytosolic extracts for both groups of age, while the protein expression pattern for eNOS was higher expressed in adult rats (14 months) than in young animals. As well as in mitochondrial extracts iNOS protein expression was not significantly detected in cytosolic extracts at any age. RT-PCR assays indicated increased levels of nNOS mRNA in 1-month-old rats as compared with 14 months old rats, showing a similar pattern to that one observed for protein nNOS expression. A different aged pattern was observed for eNOS mRNA expression, being lower in 1-month-old rats as compared with 14 months old animals. iNOS mRNA was very low expressed in both groups of age, showing a residual iNOS mRNA that was not significantly detected. State 3 respiration rates were 78% and 85% higher when succinate and malate-glutamate were used as substrates, respectively, in 14 months rats as compared with 1-month-old rats. No changes were observed in state 4 respiration rates. These results could indicate 1 that nNOS and eNOS mRNA and protein expression can be age-dependent, and confirmed the nNOS origin for the mitochondrial NOS. During rat growth, the respiratory function seems to be modulated by NO produced by the different NOS enzymes: nNOS, eNOS and mtNOS present in the cytosol and in the mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号