首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of astrocytes in trimethyltin neurotoxicity   总被引:1,自引:0,他引:1  
Although the neurotoxicity of trimethyltin (TMT) is well known, mechanisms are still not clear. Glia have been proposed to mediate the toxic action of TMT on nerve cells. Accordingly, the effects of TMT were tested in primary neuronal cultures from rat cerebellum and compared to effects in astrocytes and mixed cultures. Neuronal damage observed following TMT exposure was less in the presence of astrocytes and astrocytes alone were resistant to TMT. Thus, astrocytes have a protective effect against TMT-induced neurotoxicity. TMT caused an oxidative stress in granule cell cultures involving a variety of oxidative species (O2)*-, H2O2, NO), but astrocytes were less sensitive to TMT-induced oxidative species generation. Antioxidants, glutathione and 7-nitroindazole attenuated neuronal cell death induced by TMT. It appears that oxidative stress mediates a large part of the destructive action of TMT in neuronal cultures. The presence of astrocytes appears to modulate TMT-induced oxidative stress so that TMT causes only a small increase in lipid peroxidation in mouse brain after systemic administration. Thus, TMT induces a pronounced oxidative stress in cultured neurons, but when astrocytes are present, oxidative species play a lesser role in the neurotoxic action of TMT.  相似文献   

2.
3.
Humans are exposed to organotins, like trimethyltin (TMT) chloride via air, water and food, and intoxication might result in severe health complications. Toxic effects of organotin compounds are well documented, but possible mechanisms remain unclear and only little information is available how organometallic species interact with calcium controlling mechanisms. Therefore, the aim of this work was to investigate the effects of TMT on calcium homeostasis in HeLa S3 cells. Dynamic changes of cytosolic calcium (Ca2+(i)) were monitored using laser-scanning microscopy and fluo-4 loaded cells. Application of TMT resulted in sustained as well as in transient elevations of Ca2+(i). The number of reacting cells was directly correlated to the concentration of TMT used: with 500 microM TMT all cells reacted, with 50 microM TMT 80% and with 5 microM 74%. The fast Ca2+(i)-transients (spikes), measured in single cells, occurred even with 0.25 microM TMT and varied in size and duration. The sustained increase of Ca2+(i), measured as the average over all cells, was dose dependent with an approximately 8% increase for 5 microM TMT, approximately 12.3% for 50 microM and approximately 145% for 500 microM TMT. Moreover, this effect was partly reversible. A second application resulted in a similar sustained rise of Ca2+(i) compared to the first application of TMT, there was also no difference when no calcium was added to the external solution (151+/-10% compared to 145+/-15%; 500 microM TMT). This rise of Ca2+(i) was highly reduced (<10% increase) when the internal calcium stores were depleted before TMT (500 microM) was applied. Our data suggest that TMT influences Ca2+(i)-homeostasis of HeLa S3 cells, which might be related to its toxicity in this cell line.  相似文献   

4.
The tonoplast monosaccharide transporter (TMT) family comprises three isoforms in Arabidopsis thaliana, and TMT-green fluorescent protein fusion proteins are targeted to the vacuolar membrane. TMT promoter-beta-glucuronidase plants revealed that the TONOPLAST MONOSACCHARIDE TRANSPORTER1 (TMT1) and TMT2 genes exhibit a tissue- and cell type-specific expression pattern, whereas TMT3 is only weakly expressed. TMT1 and TMT2 expression is induced by drought, salt, and cold treatments and by sugar. During cold adaptation, tmt knockout lines accumulated less glucose and fructose compared with wild-type plants, whereas no differences were observed for sucrose. Cold adaptation of wild-type plants substantially promoted glucose uptake into isolated leaf mesophyll vacuoles. Glucose uptake into isolated vacuoles was inhibited by NH(4)(+), fructose, and phlorizin, indicating that transport is energy-dependent and that both glucose and fructose were taken up by the same carrier. Glucose import into vacuoles from two cold-induced tmt1 knockout lines or from triple knockout plants was substantially lower than into corresponding wild-type vacuoles. Monosaccharide feeding into leaf discs revealed the strongest response to sugar in tmt1 knockout lines compared with wild-type plants, suggesting that TMT1 is required for cytosolic glucose homeostasis. Our results indicate that TMT1 is involved in vacuolar monosaccharide transport and plays a major role during stress responses.  相似文献   

5.
6.
Opn3/TMT opsins belong to one of the opsin groups with vertebrate visual and non-visual opsins, and are widely distributed in eyes, brains and other internal organs in various vertebrates and invertebrates. Vertebrate Opn3/TMT opsins are further classified into four groups on the basis of their amino acid identities. However, there is limited information about molecular properties of these groups, due to the difficulty in preparing the recombinant proteins. Here, we successfully expressed recombinant proteins of TMT1 and TMT2 opsins of medaka fish (Oryzias latipes) in cultured cells and characterized their molecular properties. Spectroscopic and biochemical studies demonstrated that TMT1 and TMT2 opsins functioned as blue light-sensitive Gi/Go-coupled receptors, but exhibited spectral properties and photo-convertibility of the active state different from each other. TMT1 opsin forms a visible light-absorbing active state containing all-trans-retinal, which can be photo-converted to 7-cis- and 9-cis-retinal states in addition to the original 11-cis-retinal state. In contrast, the active state of TMT2 opsin is a UV light-absorbing state having all-trans-retinal and does not photo-convert to any other state, including the original 11-cis-retinal state. Thus, TMT opsins are diversified so as to form a different type of active state, which may be responsible for their different functions.  相似文献   

7.
Accumulation of nitroxide radicals, DCP· or TMT·, under illumination of a thylakoid suspension containing either hydrophilic, DCP-H, or lipophilic, TMT-H, cyclic hydroxylamines that have high rate constants of the reaction with superoxide radicals, was measured using ESR. A slower accumulation of TMT· in contrast with DCP· accumulation was explained by re-reduction of TMT· by the carriers of the photosynthetic electron transport chain within the membrane. Superoxide dismutase suppressed TMT· accumulation to a lesser extent than DCP· accumulation. The data are interpreted as evidencing the production of intramembrane superoxide in thylakoids.  相似文献   

8.
To assess the nature and extent of behavioural, biochemical and histological changes induced by trimethyltin (TMT), rats were treated with a single injection of TMT over a dose range of 6, 7 and 8 mg/kg i.p. Behavioural observations were performed at a minimum of 21 days after the administration of TMT. The behavioural consequences of TMT were hyperactivity in the open-field test, increased locomotor activity and deficits in passive and active avoidance behaviour, T-maze alternation and Morris Water Maze behaviour. The behavioural changes were dose dependent and were accompanied by a degree of pathological damage to the hippocampal pyramidal cells which was particularly apparent at the highest dose. The main biochemical effects of TMT involved deficits in the serotonergic and GABA-ergic systems and a decrease in M1 and M2 binding sites in the hippocampus. These results suggest that the toxic interaction of TMT with the hippocampus and other limbic brain regions may be responsible for its effect on learning and memory.  相似文献   

9.
Isobaric stable isotope labeling techniques such as tandem mass tags (TMTs) have become popular in proteomics because they enable the relative quantification of proteins with high precision from up to 18 samples in a single experiment. While missing values in peptide quantification are rare in a single TMT experiment, they rapidly increase when combining multiple TMT experiments. As the field moves toward analyzing ever higher numbers of samples, tools that reduce missing values also become more important for analyzing TMT datasets. To this end, we developed SIMSI-Transfer (Similarity-based Isobaric Mass Spectra 2 [MS2] Identification Transfer), a software tool that extends our previously developed software MaRaCluster (© Matthew The) by clustering similar tandem MS2 from multiple TMT experiments. SIMSI-Transfer is based on the assumption that similarity-clustered MS2 spectra represent the same peptide. Therefore, peptide identifications made by database searching in one TMT batch can be transferred to another TMT batch in which the same peptide was fragmented but not identified. To assess the validity of this approach, we tested SIMSI-Transfer on masked search engine identification results and recovered >80% of the masked identifications while controlling errors in the transfer procedure to below 1% false discovery rate. Applying SIMSI-Transfer to six published full proteome and phosphoproteome datasets from the Clinical Proteomic Tumor Analysis Consortium led to an increase of 26 to 45% of identified MS2 spectra with TMT quantifications. This significantly decreased the number of missing values across batches and, in turn, increased the number of peptides and proteins identified in all TMT batches by 43 to 56% and 13 to 16%, respectively.  相似文献   

10.
Dimethyltin dichloride (DMTC) is widely used as a heat stabilizer in manufacturing the polyvinyl chloride. We previously reported a case of acute DMTC poisoning with neurological manifestations very similar to trimethylated tin (TMT) encephalopathy, based on results of speciation analysis of methylated tins in the patient's urine with use of a combination of high performance liquid chromatography and inductively coupled plasma-mass spectrometry (HPLC-ICP-MS), which yielded peaks corresponding to DMT and TMT. In this study, we developed an analytical method to confirm TMT in urine using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), and found TMT molecular ion in the patient's urine.  相似文献   

11.
Summary Adult rats exposed acutely to trimethyltin (TMT) manifest a number of behavioral alterations, in conjunction with neuronal degeneration in the limbic system. In the present study, changes in3H-TCP binding to N-methyl-D-aspartate (NMDA) receptors and3H-kainic acid (KA) binding to kainate receptors were studied by autoradiographic methods following TMT exposure (8 mg/kg, i.p.) in adult Sprague Dawley rats. No significant alterations were found at 4 hours after exposure. An extensive loss of3H-TCP and3H-KA binding was seen in the hilar region of the CA3 field at 2 and 12 weeks after TMT exposure. Also, the3H-TCP binding was decreased in piriform cortex and in striatum. Thus, TMT exposure leads to a major and regional selective loss of NMDA and kainate receptors in the limbic system, alterations that may be involved in the neuropathology and behavioral sequelae of TMT toxicity.Abbreviations TMT trimethyltin - NMDA N-methyl-D-aspartate - KA Kainic acid - TCP N-(1-2-thienylcyclohexyl)-3,4-piperidine  相似文献   

12.
Trimethyltin (TMT) intoxication is considered a suitable experimental model to study the molecular basis of selective hippocampal neurodegeneration as that occurring in several neurodegenerative diseases. We have previously shown that rat hippocampal neurons expressing the Ca(2+)-binding protein calretinin (CR) are spared by the neurotoxic action of TMT hypothetically owing to their ability to buffer intracellular Ca(2+) overload. The present study was aimed at determining whether intracellular Ca(2+) homeostasis dysregulation is involved in the TMT-induced neurodegeneration and if intracellular Ca(2+)-buffering mechanisms may exert a protective action in this experimental model of neurodegeneration. In cultured rat hippocampal neurons, TMT produced time- and concentration-dependent [Ca(2+)](i) increases that were primarily due to Ca(2+) release from intracellular stores although Ca(2+) entry through Ca(v)1 channels also contributed to [Ca(2+)](i) increases in the early phase of TMT action. Cell pre-treatment with the Ca(2+) chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (2 muM) significantly reduced the TMT-induced neuronal death. Moreover, CR(+) neurons responded to TMT with smaller [Ca(2+)](i) increases. Collectively, these data suggest that the neurotoxic action of TMT is mediated by Ca(2+) homeostasis dysregulation, and the resistance of hippocampal neurons to TMT (including CR(+) neurons) is not homogeneous among different neuron populations and is related to their ability to buffer intracellular Ca(2+) overload.  相似文献   

13.
The γ‐tocopherol methyltransferase (γ‐TMT) is an important enzyme regulating synthesis of four tocopherols (α, γ, β and δ). In this report, we investigated the role of γ‐TMT in regulating abiotic stress within chloroplasts. The At γ‐tmt overexpressed via the tobacco chloroplast genome accumulated up to 7.7% of the total leaf protein, resulting in massive proliferation of the inner envelope membrane (IEM, up to eight layers). Such high‐level expression of γ‐TMT converted most of γ‐tocopherol to α‐tocopherol in transplastomic seeds (~10‐fold higher) in the absence of abiotic stress. When grown in 400 mm NaCl, α‐tocopherol content in transplastomic TMT leaves increased up to 8.2‐fold and 2.4‐fold higher than wild‐type leaves. Likewise, under heavy metal stress, α‐tocopherol content in the TMT leaves increased up to 7.5‐fold, twice higher than in the wild type. Under extreme salt stress, the wild type accumulated higher starch and total soluble sugars, but TMT plants were able to regulate sugar transport. Hydrogen peroxide and superoxide content in wild type increased up to 3‐fold within 48 h of NaCl stress when compared to TMT plants. The ion leakage from TMT leaves was significantly less than wild‐type plants under abiotic stress and with less malondialdehyde, indicating lower lipid peroxidation. Taken together, these studies show that α‐tocopherol plays a crucial role in the alleviation of salt and heavy metal stresses by decreasing ROS, lipid peroxidation and ion leakage, in addition to enhancing vitamin E conversion. Increased proliferation of the IEM should facilitate studies on retrograde signalling from chloroplast to the nucleus.  相似文献   

14.
The influence of trimethyl tin (TMT) intoxication on muscarinic cholinergic receptors and histochemistry of acetylcholinesterase (AChE) in the rat brain 21 days after treatment was studied. The topographical distribution and reduction in muscarinic receptor sites were analysed by means of quantitative receptor autoradiography using [3H]quinuclidinyl benzilate (QNB). TMT treatment produced a decrease in cholinergic receptors in a large number of brain regions.

The quantitative distribution of AChE was examined in over 60 regions following TMT intoxication. The activity of AChE was significantly affected. Reduced AChE content was found in several brain regions following TMT intoxication. The effect on AChE content was confined to cholinergic terminal areas, e.g. the hippocampus, while in the area dentata a significant increase in AChE content was detected.

The results are interpreted in terms of TMT producing disruption of the cholinergic system with implications for a neuroanatomical basis of impaired memory mechanisms.  相似文献   


15.
Multiplexed quantitative proteomics using tandem mass tag (TMT) is increasingly used in –omic study of complex samples. While TMT-based proteomics has the advantages of the higher quantitative accuracy, fewer missing values, and reduced instrument analysis time, it is limited by the additional reagent cost. In addition, current TMT labeling workflows involve repeated small volume pipetting of reagents in volatile solvents, which may increase the sample-to-sample variations and is not readily suitable for high throughput applications. In this study, we demonstrated that the TMT labeling procedures could be streamlined by using pre-aliquoted dry TMT reagents in a 96 well plate or 12-tube strip. As little as 50 μg dry TMT per channel was used to label 6–12 μg peptides, yielding high TMT labeling efficiency (∼99%) in both microbiome and mammalian cell line samples. We applied this workflow to analyze 97 samples in a study to evaluate whether ice recrystallization inhibitors improve the cultivability and activity of frozen microbiota. The results demonstrated tight sample clustering corresponding to groups and consistent microbiome responses to prebiotic treatments. This study supports the use of TMT reagents that are pre-aliquoted, dried, and stored for robust quantitative proteomics and metaproteomics in high throughput applications.  相似文献   

16.
Trimethyltin (TMT) induced a dose-dependent antinociceptive and hypothermic effect in mice. Antinociception was not attenuated by naloxone but was reversed by atropine. TMT, however, was ineffective in displacing (3H)-QNB binding in vitro and did not affect (3H)-QNB binding or acetylcholinesterase activity after in vivo administration. The ethyl ester of nipecotic acid, a specific inhibitor of synaptosomal GABA uptake, exerted a similar antinociceptive effect that could be blocked by atropine. The GABA receptor antagonist bicuculline attenuated antinociception induced by TMT and nipecotic acid ethyl ester but not by morphine or oxotremorine. γ-Vinyl GABA, an irreversible inhibitor of GABA metabolism, prolonged TMT but not morphine-induced antinociception. In contrast, neither the dose-response nor the time course of TMT-induced hypothermia were affected by any of the drugs tested. The findings suggest that the GABAergic system may be involved in TMT induced antinociception; however, the mechanism responsible for the hypothermic effect of TMT is not apparent.  相似文献   

17.
Activation of Protein Kinase C by Trimethyltin: Relevance to Neurotoxicity   总被引:3,自引:2,他引:1  
Abstract: The differentiated PC12 cell neuronal model was used to determine the effect of trimethyltin (TMT) on protein kinase C (PKC). Cells treated with 5–20 µ M TMT showed a partial and sustained PKC translocation within 30 min and persisted over a 24-h period. TMT treatment was accompanied by a low level of PKC down-regulation over 24 h, which was small compared with that produced by phorbol esters. Confocal imaging of differentiated PC12 cells showed that PKC translocates to the plasma membrane and the translocation is blocked by the PKC inhibitor chelerythrine (1 µ M ). Phorbol myristate-induced PKC down-regulation or inhibition with chelerythrine provided protection against TMT-induced cytotoxicity. It was concluded that TMT-induced PKC translocation and activation contribute to the cytotoxicity of TMT in differentiated PC12 cells.  相似文献   

18.
γ-Tocopherol methyltransferase (γ-TMT) (EC 2.1.1.95) is a very important enzyme in tocopherol biosynthesis in all photosynthetic organisms. In this paper, we present the functional characterization and expression analysis of γ-TMT from the unicellular green alga Chlamydomonas reinhardtii. Recombinant TMT1 enzyme was purified and characterized. The size of TMT1 subunit was estimated as 37 kDa by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), in accordance with the predicted molecular size after TMT1 cDNA sequence. Recombinant TMT1 also showed an apparent molecular mass of 37 kDa in its native conformation, suggesting that native TMT1 has a monomeric structure similar to the plant TMTs already characterized. pH and temperature dependence of TMT1 activity were also similar to plant TMTs. Substrate specificity studies showed that Chlamydomonas TMT1 is responsible for the conversion of γ- and δ-tocopherol to α- and β-tocopherol, respectively. The kinetic properties of Chlamydomonas recombinant γ-TMT activity were studied and γ-TMT1 has a similar affinity for γ- and δ-tocopherol. Promoter sequence analysis and expression analysis by northern blot revealed that tmt1 expression is strongly upregulated by high light and downregulated by low temperature. This regulatory pattern of tmt1 expression supports the idea that γ- and α-tocopherol play specific roles in the adaptation to growth under low temperature and high light stress conditions.  相似文献   

19.
Interoceptive stimuli modulate stress responses and emotional state, in part, via ascending viscerosensory inputs to the hypothalamus and limbic forebrain. It is unclear whether similar viscerosensory pathways are recruited by emotionally salient exteroceptive stimuli, such as odors. To address this question, we investigated conditioned avoidance and central c-Fos activation patterns in rats exposed to synthetic trimethylthiazoline (TMT), an odiferous natural component of fox feces. Experiment 1 demonstrated that rats avoid consuming novel flavors that previously were paired with TMT exposure, evidence that TMT supports conditioned flavor avoidance. Experiment 2 examined central neural systems activated by TMT. Odor-naive rats were acutely exposed to low or high levels of TMT or a novel nonaversive control odor and were perfused with fixative 60-90 min later. A subset of rats received retrograde neural tracer injections into the central nucleus of the amygdala (CeA) 7-10 days before odor exposure and perfusion. Brain sections were processed for dual-immunocytochemical detection of c-Fos and other markers to identify noradrenergic (NA) neurons, corticotropin-releasing hormone (CRH) neurons, and retrogradely labeled neurons projecting to the CeA. Significantly greater proportions of medullary and pontine NA neurons, hypothalamic CRH neurons, and CeA-projecting neurons were activated in rats exposed to TMT compared with activation in rats exposed to the nonaversive control odor. Thus the ability of TMT to support conditioned avoidance behavior is correlated with significant odor-induced recruitment of hypothalamic CRH neurons and brain stem viscerosensory inputs to the CeA.  相似文献   

20.
ObjectiveWhite adipose tissue (WAT) is now considered a defined tissue capable of interactions with other organ systems. WAT role in elevating the level of systemic chronic inflammation suggests that alterations in this tissue as the result of disease or environmental factors may influence the development and progression of various obesity-related pathologies. This study investigated WAT cell-specific responses to an organometal compound, trimethyltin (TMT), to determine possible contribution to induced inflammation.MethodsHuman primary mature adipocytes and macrophage differentiated THP-1 cells were cultured in TMT presence and relative toxicities and different adipokine levels were determined. The inflammatory response was examined in TMT presence for primary cells from obese ob/ob mice WAT, and after TMT injection in ob/ob mice.ResultsBoth adipocytes and macrophages were resistant to cell death induced by TMT. However, adipocytes cultured in TMT presence showed increased expression of TNFα and IL-6, and modified leptin levels. In macrophage cultures, TMT also increased TNFα and IL-6, while MCP-1 and MIP-1α were decreased. In vivo, a single injection of TMT in ob/ob mice, elevated TNFα, MIP-1α and adiponectin in WAT.ConclusionsElevation of the inflammatory related products can be induced by chemical exposure in adipocytes and macrophages, as well as murine WAT. These data suggest that numerous factors, including a systemic chemical exposure, can induce an inflammatory response from the WAT. Furthermore, when characterizing both chemical-induced toxicity and the progression of the chronic inflammation associated with elevated WAT content, such responses in this target tissue should be taken into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号