首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vitamin A and its analogs (retinoids) regulate adipocyte differentiation. Recent investigations have demonstrated a relationship among retinoids, retinoid-binding-protein 4 (RBP4) synthesized in adipose tissues, and insulin-resistance status. In this study, we measured retinoid levels and analyzed the expression of retinoid homeostatic genes associated with retinol uptake, esterification, oxidation, and catabolism in subcutaneous (Sc) and visceral (Vis) mouse fat tissues. Both Sc and Vis depots were found to contain similar levels of all-trans retinol. A metabolite of retinol with characteristic ultraviolet absorption maxima for 9-cis retinol was observed in these 2 adipose depots, and its level was 2-fold higher in Sc than in Vis tissues. Vis adipose tissue expressed significantly higher levels of RBP4, CRBP1 (intracellular retinol-binding protein 1), RDH10 (retinol dehydrogenase), as well as CYP26A1 and B1 (retinoic acid (RA) hydroxylases). No differences in STRA6 (RBP4 receptor), LRAT (retinol esterification), CRABP1 and 2 (intracellular RA-binding proteins), and RALDH1 (retinal dehydrogenase) mRNA expressions were discerned in both fat depots. RALDH1 was identified as the only RALDH expressed in both Sc and Vis adipose tissues. These results indicate that Vis is more actively involved in retinoid metabolism than Sc adipose tissue.  相似文献   

2.
3.
Retinoids have many functions in the eye, including, perhaps, the visual guidance of ocular growth. Therefore, we identified where retinoid receptors, binding proteins, and biosynthetic enzymes are located in the ocular tissues of the chick as a step toward discovering where retinoids are generated and where they act. Using antibodies to interphotoreceptor retinoid binding protein (IRBP), cellular retinol binding protein (CRBP), cellular retinoic acid binding protein (CRABP), cellular retinaldehyde binding protein (CRALBP), retinaldehyde dehydrogenase (RALDH), and retinoic acid receptors (RAR and RXR), we localized these proteins to cells in the retina, retinal pigmented epithelium, choroid and sclera of the chick eye. IRBP was detected in the photoreceptor layer and pigmented epithelium; CRBP was in the pigmented epithelium; CRABP was in amacrine and bipolar cells in the retina; CRALBP was in Müller cells, pigmented epithelium, choroid, and fibrous sclera; RALDH was in retinal amacrine cells, pigmented epithelium, and choroid; RAR was in amacrine cells, choroid, and chondrocytes and fibroblasts in the sclera; and RXR was in amacrine and ganglion cells, bipolar cell nuclei, choroid, and chondrocytes. We also found that the growth-modulating toxins colchicine and quisqualate destroyed selectively different subsets of CRABP-containing amacrine cells. We conclude that the distribution of proteins involved in retinoid metabolism is consistent with a role of retinoids not only in phototransduction, but also in maintenance of cellular phenotype and visual guidance of ocular growth.  相似文献   

4.
In this study we examined the effects of retinol and retinoic acid on steroid production in MA-10 mouse Leydig tumor cells. Results showed that both retinol and retinoic acid greatly increased progesterone production in this cloned cell line. The stimulatory effect of retinoids is not inhibited by cycloheximide suggesting that de novo protein synthesis is not required. The presence of the retinoid binding proteins CRBP and CRABP could not be detected in MA-10 Leydig cell cytosol indicating that the stimulatory action of retinoids on progesterone production is not mediated through these cellular binding proteins. Both previous and present findings suggest that retinoids play an important role in the regulation of Leydig cell steroidogenesis and that MA-10 Leydig tumor cells may represent an ideal in vitro cell system to study the mechanism of action of retinoids in Leydig cell steroidogenesis.  相似文献   

5.
A study was conducted to explore the effects of retinoic acid, fed to retinol-deficient rats, on the tissue distribution and levels of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP). Sensitive and specific radioimmunoassays were employed to measure the levels of both CRBP and CRABP. Two groups of six male rats each were fed a purified retinoid-deficient diet supplemented with either: i) retinyl acetate (control group); or ii) retinoic acid (30 mg/kg diet) (retinol deficient-retinoic acid group). The retinoic acid supplementation was begun after 38 days on the retinoid-deficient diet alone, and was continued for 52-54 days. Analysis of the data indicated that only the CRBP level of the proximal epididymis in the retinol-deficient/retinoic acid group differed significantly from (was lower than) the corresponding control level, at the 1% confidence level. CRABP tissue levels did not differ significantly between the two groups. Thus, a moderately large intake of retinoic acid, as the only source of retinoids, had very little effect on the tissue distribution or levels of either its own cellular binding protein (CRABP) or of CRBP. This study provides further information showing that the tissue levels of the cellular retinoid-binding proteins are highly regulated and maintained in rats, even in the presence of marked changes in retinoid nutritional status.  相似文献   

6.
A study was conducted to determine the levels and distributions of retinoids, retinol-binding protein (RBP), retinyl palmitate hydrolase (RPH), cellular retinol-binding protein (CRBP), and cellular retinoic acid-binding protein (CRABP) in different types of isolated liver cells. Highly purified fractions of parenchymal, fat-storing (stellate), endothelial, and Kupffer cells were isolated in high yield from rat livers. The retinoid content of each fraction was measured by HPLC analysis. RBP, CRBP, and CRABP were measured by sensitive and specific radioimmunoassays, and RPH activity was measured by a sensitive microassay. The concentrations of each parameter expressed per 10(6) parenchymal or fat-storing cells were, respectively: retinoids, 1.5 and 83.9 micrograms of retinol equivalents; RBP, 138 and 7.4 ng; RPH, 826 and 1152 pmol FFA formed hr-1; CRBP, 470 and 236 ng; and CRABP, 5.6 and 8.7 ng. When these data were expressed on the basis of per unit mass of cellular protein, the concentrations of RPH, CRBP, and CRABP in the fat-storing cells, which contain 10-fold less protein than the large parenchymal cells, were seen to be greatly enriched over parenchymal cells. The parenchymal cells contained approximately 9% of the total retinoids, 98% of the total RBP, 90% of the total RPH activity, 91% of the total CRBP, and 71% of the total CRABP found in the liver. The fat-storing cells accounted for approximately 88% of the total retinoids, 0.7% of the total RBP, 10% of the RPH activity, 8% of the total CRBP, and 21% of the CRABP in the liver. The endothelial and Kupffer cell fractions contained very low levels of all of these parameters. Thus, the large and abundant parenchymal cells account for greater than 70% of the liver's RBP, RPH, CRBP, and CRABP; but the much smaller and less abundant fat-storing cells contain the majority of hepatic retinoids and greatly enriched concentrations of RPH, CRBP, and CRABP.  相似文献   

7.
8.
We have investigated the role of Vitamin A (retinoid) proteins in hepatic retinoid processing under normal conditions and during chemical stress induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a chemical known to interfere with retinoid turnover and metabolism. Three separate studies were performed in wildtype control mice and transgenic mice that lack one or more isoforms of retinoic acid receptors (RAR), retinoid X receptors (RXR), or intracellular retinoid-binding proteins (CRABP I, CRABP II, CRBP I). Body and organ weight development was monitored from 2 weeks of age to adult, and hepatic levels of retinyl esters, retinol, and retinoic acid were investigated. In addition, hepatic concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid, a recently discovered retinoid metabolite that has proven sensitive to both TCDD exposure and Vitamin A status, were also determined. Mice absent in the three proteins CRBP I, CRABP I, and CRABP II (CI/CAI/CAII-/-) displayed significantly lower hepatic retinyl ester, retinol, and all-trans-retinoic acid levels compared to wildtype mice, whereas the liver concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid was considerably higher. After treatment with TCDD, hepatic total retinoids were almost entirely depleted in the CI/CAI/CAII-/- mice, whereas wildtype mice and mice lacking CRABP I, and CRABP II (CAI/CAII-/-) retained approximately 60-70% of their Vitamin A content compared to controls at 28 days. RAR and RXR knockout mice responded similarly to wildtype mice with respect to TCDD-induced retinoid disruption, with the exception of RXRbeta-/- mice which showed no decrease in hepatic Vitamin A concentration, suggesting that the role of RXRbeta in TCDD-induced retinoid disruption should be further investigated. Overall, the abnormal retinoid profile in the triple knockout mice (CI/CAI/CAII-/-), but not double knockout (CAI/CAII-/-) mice, suggests that a loss of CRBP I may account for the difference in retinoid profile in CI/CAI/CAII-/- mice, and is likely to result in an increased susceptibility to hepatic retinoid depletion following dioxin exposure.  相似文献   

9.
We report the first application of high pressure liquid chromatography (HPLC) in the rapid detection of cellular retinoic acid binding protein (CRABP) and cellular retinol binding protein (CRBP). Cytosols from cultured cells (3T6 and MCF-7) or from tumors (melanoma and ovarian) were labeled with [3H]retinoic acid (30 Ci/mmol) and [3H]retinol (43 Ci/mmol) and analyzed via HPLC employing a 60 cm TSK 3000 sw column. In each case CRABP and CRBP were readily detectable at an elution volume of 22.5 ml, consistent with their molecular weights of 14,600. Identity of the binding protein peaks was established by saturability, specificity, and selective inhibition of binding by an organomercurial. Thus, this method, which resolves CRABP and CRBP in crude mixtures from the majority of cytosolic proteins, should be a valuable tool in the evaluation of vitamin A-binding protein interactions and their biological significance.  相似文献   

10.
11.
A method for saturation analysis of cellular retinoic acid and retinol binding proteins, CRABP and CRBP, respectively, in cultured cells and human tumor samples, and its application to a retinoic acid resistant subline of the human neuroblastoma LA-N-5 cell line is described. Assessment of retinoid binding was accomplished by incubation of cytosols with increasing concentrations of [3H]retinoid (28-43 Ci/mmol; 1 Ci = 37 GBq) for 24 h. Bound retinoid was separated from free retinoid by adsorption with dextran-coated charcoal. Nonspecific binding was quantitated in parallel incubations which had been treated with p-chloromercuribenzene sulfonate (PCMBS), resulting in selective elimination of sulfhydryl-dependent ligand binding to both CRABP and CRBP. Quantitation was accomplished by Scatchard analysis of specific (PCMBS sensitive) binding. Employing this technique, specific retinoid binding was attributed to the presence of 2S macromolecules which displayed the known properties of CRABP and CRBP, namely ligand specificity, saturability, high ligand affinity, and PCMBS sensitivity. The apparent dissociation constants (Kd) for retinoic acid binding in cytosols prepared from murine 3T6 fibroblasts, rat testes, and a human ovarian tumor were 7, 11, and 35 nM, respectively. These preparations also bound retinol with high affinity, exhibiting Kds of 12, 26, and 48 nM, respectively. A retinoic acid resistant subline of LA-N-5 cells designated LA-N-5-R9 was established by long-term culture in the presence of 10(-6) M retinoic acid. This subline is resistant to the effects of retinoic acid in that it requires a 10-fold higher concentration of retinoic acid for 50% inhibition of growth than the parent line and displays no retinoic acid induced morphologic differentiation. Saturation analysis of CRABP in the parent and resistant subline reveal no significant alteration in either CRABP content or affinity. These results indicate that resistance to retinoic acid induced differentiation in LA-N-5-R9 occurs distal to CRABP binding or that CRABP does not mediate this response to retinoic acid.  相似文献   

12.
Cellular retinoic acid-binding protein (CRABP), a potential mediator of retinoic acid action, enables retinoic acid to bind in a specific manner to nuclei and chromatin isolated from testes of control and vitamin A-deficient rats. The binding of retinoic acid was followed after complexing [3H]retinoic acid with CRABP purified from rat testes. The binding was specific, saturable, and temperature dependent. If CRABP charged with nonlabeled retinoic acid was included in the incubation, binding of radioactivity was diminished, whereas inclusion of free retinoic acid, or the complex of retinol with cellular retinol binding protein (CRBP) or serum retinol binding protein had no effect. Approximately 4.0 X 10(4) specific binding sites for retinoic acid were detected per nucleus from deficient animals. The number of binding sites observed was influenced by vitamin A status. Refeeding vitamin A-deficient rats (4 h) with retinoic acid lowered the amount of detectable binding sites in the nucleus. CRABP itself did not remain bound to these sites, indicating a transfer of retinoic acid from its complex with CRABP to the nuclear sites. Further, CRBP, the putative mediator of retinol action, was found to enable retinol to be bound to testicular nuclei, in an interaction similar to the binding of retinol to liver nuclei described previously.  相似文献   

13.
14.
A one-step procedure to detect cellular [3H]retinol and [3H]retinoic acid binding proteins (CRBP and CRABP) from rat testis cytosolic extract was devised. The procedure is based on anion-exchange high-performance liquid chromatography of the cytosolic fraction on columns of Mono Q, which permits elution of CRABP and CRBP at 12 and 22 min, respectively.  相似文献   

15.
Penzes P  Napoli JL 《Biochemistry》1999,38(7):2088-2093
Microsomal enzymes that catalyze the first step in the biosynthesis of retinoic acid from retinal, retinol dehydrogenases (RDHs), access retinol bound to cellular retinol-binding protein (CRBP). This study tested the hypothesis that the RDHs interact with the region in CRBP designated as the "helical cap" by evaluating single site-directed mutations, namely, L29A, I32E, L35A, L35E, L35R, L36A, F57A, R58A, and R58E. UV analysis showed mutants had similar conformations of retinol in their binding pockets. Nevertheless, the mutants bound retinol with affinities 2-5-fold lower than wild type, except for L35 mutants, which had affinities similar to wild type. All mutants' holoforms had more relaxed conformations about their helical caps, judged by sensitivity to partial protease digestion. Mutants showed no significant differences in Km values, but two (L36A, R58A) had increased Vm values and L35 mutants had decreased Vm values. Overall, the data indicate that the residues tested contribute in varying degrees to CRBP rigidity, retinol binding, and RDH recognition/access to bound retinol. The extent of contributions can be distinguished for several residues. For example, L35 mutants had lower kcat values than wild-type CRBP; thus, L35 seems important for RDH access to retinol. F57, on the other hand, a suspected key residue in controlling retinol entrance/exit, does not make a singular contribution to retinol binding. These results suggest a role for the helical cap region as a locus for RDH interaction and as a portal for ligand access to CRBP, and show that the affinity (Kd) of CRBP for retinol alone does not determine the efficiency of holo-CRBP as substrate. These are the first experimental data of enzyme recognition by a specific exterior residue of CRBP (L35).  相似文献   

16.
17.
Cellular retinoic acid binding protein (CRABP) has been expressed efficiently in Escherichia coli from the cDNA of bovine adrenal CRABP and characterized, especially with respect to affinity for endogenous retinoids and a role for it in retinoic acid metabolism. The purified E. coli-expressed CRABP was similar to authentic mammalian CRABP in molecular weight (approximately 14,700), isoelectric point (4.76), absorbance maxima (apo-CRABP, 280 nm; holo-CRABP, 350 and 280 nm with the ratio A350/A280 = 1.8), and in fluorescence excitation (350 nm) and emission spectra (475 nm). The equilibrium dissociation constant, Kd, of E. coli-derived CRABP and all-trans-retinoic acid was 10 +/- 1 nM (mean +/- S.D., n = 4) by retinoid fluorescence and 7 +/- 1 nM (mean +/- S.D., n = 3) by quenching of protein fluorescence, but neither retinol nor retinal bound in concentrations as high as 7 microM. All-trans-cyclohexyl ring derivatives of retinoic acid (3,4-didehydro-, 4-hydroxy-, 4-oxo-, 16-hydroxy-4-oxo-, 18-hydroxy-) had affinities similar to that of all-trans-retinoic acid, whereas 13-cis-retinoic acid and 4-oxo-13-cis-retinoic acid had approximately 25-fold lower affinity. Holo-CRABP was a substrate for retinoic acid catabolism in rat testes microsomes by three criteria: 1) the rate of retinoic acid metabolism with CRABP in excess of retinoic acid exceeded the rate supported by the free retinoic acid; 2) increasing the apo-CRABP did not decrease the rate as predicted if free retinoic acid were the only substrate; and 3) holo-CRABP had a lower Michaelis constant (1.8 nM) for retinoic acid elimination than did free retinoic acid (49 nM). These data indicate a direct role for CRABP in retinoic acid metabolism and suggest a mechanism for discriminating metabolically between all-trans- and 13-cis-retinoids.  相似文献   

18.
Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low K(m) values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low K(m) values for retinoids (0.12-1.1 microM), whilst they strongly differ in their kcat values, which range from 0.35 min(-1) for AKR1B1 to 302 min(-1) for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo.  相似文献   

19.
Retinol and retinoic acid that are potent modulators of gene expression are vital for development and growth of the conceptus. Apart from being transported across the placenta, retinol and retinoic acid may also be active in the placenta per se. Three proteins involved in 1) serum transport of retinol (retinol binding protein [RBP]), 2) cellular transport and metabolism of retinol (cellular RBP [CRBP] I), and 3) retinoic acid (cellular retinoic acid binding protein [CRABP] I), respectively, have been located by immunohistochemistry during gestation in the porcine placenta. This is a diffuse epitheliochorial placenta composed of areolar-gland subunits, where transport of larger molecules takes place, and interareolar regions, where gas-exchange and trophoblast absorption of hemotroph occur. Immunoreactive-RBP (ir-RBP) as well as CRBP I (ir-CRBP) was detected in uterine glands and in areolar trophoblasts, suggesting that RBP-retinol is secreted by the glands and absorbed by the trophoblasts. Both proteins were present also at the interareolar regions, with ir-CRBP in both the uterine epithelium and the apposing trophoblasts, but ir-RBP only in the former. The localization of ir-CRABP was, in contrast, strictly limited to interareolar trophoblasts. Together these findings suggest that 1) the areolar gland subunits are important for transport of retinol and retinol-RBP, and 2) retinoid binding proteins are involved in the development and growth of the porcine placenta.  相似文献   

20.
Studies were conducted to explore the effects of differences in retinoid nutritional status and of sex on the tissue distribution and levels of cellular retinol-binding protein (CRBP) and of cellular retinoic acid-binding protein (CRABP) in the rat. Sensitive and specific radioimmunoassays were developed and employed to measure the levels of both CRBP and CRABP. Four groups of six male rats each were fed experimental diets that differed greatly in the amount and kind of retinoids provided, but were otherwise identical. These groups were comprised of rats that were normal controls, retinoid-deficient, retinoic acid-fed, and excess retinol-fed. A fifth group of six female rats was fed the control diet. Immunogens identical with rat testis CRBP and CRABP, as assessed by radioimmunoassay displacement curves, were found in every rat tissue examined (21 tissues in males, 18 in females). The highest levels of CRBP were found in the proximal portion of the epididymis, the liver, and kidney. The highest levels of CRABP were found in the seminal vesicles, vas deferens, and skin. A significant (p less than 0.01) inverse relationship was found between CRBP and CRABP levels in the different tissues of the male reproductive tract. In both males and females, CRBP levels were highest in the gonads and proximal portion of the reproductive tract and decreased distally, whereas the opposite was true for CRABP. Retinoid-deficient rats showed reduced tissue levels of CRBP; thus, tissue CRBP levels are influenced by diet and retinoid availability. No differences in tissue CRBP levels were found in the rats fed the control, the retinoic acid, or the excess retinol diets. Female control rats had higher CRBP levels than male controls in 4 of 15 tissues compared (liver, lung, thymus, and fat). In contrast, tissue CRABP levels showed no diet- or sex-dependent differences. Only in one tissue, the skin, were differences observed (lower CRABP in retinoid-deficient and in female rats). Thus, CRABP metabolism and levels appear to be minimally influenced by the amount or kind of retinoid ligand available or by sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号