共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Yuanwen Chen Nian Wu Lei Liu Huaying Dong Xinao Liu 《Journal of cellular and molecular medicine》2020,24(13):7353-7369
Emerging evidence has reported that dysregulation of microRNAs (miRNAs) participated in the development of diverse types of cancers. Our initial microarray‐based analysis identified differentially expressed NEK2 related to breast cancer and predicted the regulatory microRNA‐128‐3p (miR‐128‐3p). Herein, this study aimed to characterize the tumour‐suppressive role of miR‐128‐3p in regulating the biological characteristics of breast cancer stem cells (BCSCs). CD44+CD24?/low cells were selected for subsequent experiments. After verification of the target relationship between miR‐128‐3p and NEK2, the relationship among miR‐128‐3p, NEK2 and BCSCs was further investigated with the involvement of the Wnt signalling pathway. The regulatory effects of miR‐128‐3p on proliferation, migration, invasion and self‐renewal in vitro as well as tumorigenicity in vivo of BCSCs were examined via gain‐ and loss‐of‐function approaches. Highly expressed NEK2 was found in breast cancer based on GSE61304 expression profile. Breast cancer stem cells and breast cancer cells showed a down‐regulation of miR‐128‐3p. Overexpression of miR‐128‐3p was found to inhibit proliferation, migration, invasion, self‐renewal in vitro and tumorigenicity in vivo of BCSCs, which was further validated to be achieved through inhibition of Wnt signalling pathway by down‐regulating NEK2. In summary, this study indicates that miR‐128‐3p inhibits the stem‐like cell features of BCSCs via inhibition of the Wnt signalling pathway by down‐regulating NEK2, which provides a new target for breast cancer treatment. 相似文献
3.
4.
5.
Yu Zheng Jian‐xin Li Chao‐jiang Chen Zhuo‐yuan Lin Jia‐xuan Liu Fu‐jun Lin 《Cell biology international》2020,44(4):1037-1045
The occurrence and development of prostate cancer (PCa) is complex, and the related mechanism is not fully understood. Current studies have found that extracellular vesicles (EVs) and circular RNAs (circRNAs) have important functions in various tumours and other diseases. In this study, the detection of circRNAs in PCa showed that circ_SLC19A1 was increased in PCa cells and their secreted EVs. EVs with high expression of circ_SLC19A1 could be taken up by PCa cells, which promoted cell proliferation and invasion. The sequence of circ_SLC19A1 contained multiple binding sites for miR‐497, and circ_SLC19A1 could bind directly to miR‐497 in cells. The expression of miR‐497 was downregulated in PCa cells, while the expression of its target gene septin 2 (SEPT2) was upregulated significantly. Transfection of circ_SLC19A1 small interfering RNA (siRNA) or miR‐497 mimics could significantly inhibit the expression of SEPT2 and the phosphorylation of extracellular signal‐regulated kinase 1 and 2 (ERK1/2). After co‐transfection of circ_SLC19A1 siRNA and miR‐497 inhibitors or SEPT2 overexpression vector, the expression of SEPT2 and ERK1/2 phosphorylation levels showed no significant changes. Similar results were obtained with co‐transfection of miR‐497 mimics and the SEPT2 overexpression vector. Therefore, cancer cells can regulate the expression of SEPT2 through miR‐497 by secreting EVs with high expression of circ_SLC19A1, thus affecting the activation of the downstream ERK1/2 pathway and ultimately regulating PCa cell growth and invasion. Therefore, EV‐derived circ_SLC19A1 plays an important regulatory role in PCa and may be an important target for PCa prevention and treatment. 相似文献
6.
Ke Zeng Wenxian Xie Jun Huang Jian Yang Kefei Deng Xiaohui Luo 《Cell biology international》2020,44(10):2131-2139
Multiple studies have confirmed the pro‐oncogenic effects of PAX3 in an array of cancers, but its role in prostate cancer (PCa) remains largely undefined. The aim of this study is to investigate the role of PAX3 in PCa. PAX3 expression was compared between PCa tumor tissue and nontumor tissues and PCa cell lines and normal prostate epithelial cells (PNT2) by western blot analysis and immunohistochemistry staining. MTT and immunofluorescence assays were used to detect PCa cell proliferation. Flow cytometry was used to evaluate cell apoptosis in PCa. Transwell assays were used for the determination of cell migration and PCa cell invasion. PAX3 expression was higher in PCa tissues and human PCa cell lines. Moreover, PAX3 silencing inhibited the proliferation, metastasis, and epithelial–mesenchymal transition (EMT) of PCa cells, and increased the rates of apoptosis. PAX3 silencing inhibited transforming growth factor‐β (TGF‐β)/Smad signaling in PCa cells. The effects of si‐PAX3 on the proliferation, apoptosis, metastasis, and EMT of PCa cells were alleviated by TGF‐β1 treatment. PAX3 silencing inhibits PCa progression through the inhibition of TGF‐β/Smad signaling. This reveals PAX3 as a novel biomarker and therapeutic target for future PCa treatments. 相似文献
7.
microRNA‐145‐3p inhibits non‐small cell lung cancer cell migration and invasion by targeting PDK1 via the mTOR signaling pathway 下载免费PDF全文
Gui‐Min Chen A‐Juan Zheng Jing Cai Ping Han Hong‐Bo Ji Le‐Le Wang 《Journal of cellular biochemistry》2018,119(1):885-895
The mammalian target of rapamycin (mTOR) pathway is dysregulated in more than 50% of all human malignancies and is a major target in cancer treatment. In this study, we explored the underlying mechanism involving microRNA‐145‐3p (miR‐145‐3p) in the development and progression of non‐small cell lung cancer (NSCLC) by targeting PDK1 via the mTOR signaling pathway. NSCLC tissues and adjacent normal tissues were obtained from 83 NSCLC patients. miR‐145‐3p, PDK1, and mTOR levels were determined by quantitative real‐time polymerase chain reaction (qRT‐PCR) and immunohistochemistry. Human NSCLC cell lines A549 and H1299 were transfected with miR‐145‐3p and siPDK1 to confirm the effect of miR‐145‐3p and PDK1 on NSCLC cells in vitro. Cell growth was evaluated by a CCK8 assay. Cell motility and chemotaxis analysis were determined by the scratch test and chemotaxis assay, respectively. The protein levels of PDK1 and mTOR were measured using the western blotting. Results showed lower level of miR‐145‐3p and higher levels of PDK1 and mTOR in NSCLC tissues compared to the adjacent normal tissues. In vitro results showed that cell growth, cell motility, and chemotaxis were all inhibited in cells transfected with miR‐145‐3p and those transfected with siPDK. Additionally, dual luciferase reporter gene assay helped confirmed that PDK1 is a target of miR‐145. Finally, levels of PDK1, mTOR, and phosphorylated‐mTOR were lower in cells transfected with miR‐145‐3p as well as those with siPDK1. These findings indicate that miR‐145‐3p may inhibit cell growth, motility, and chemotaxis in NSCLC by targeting PDK1 through suppressing the mTOR pathway. 相似文献
8.
Qiang Wei Stefano Costanzi Ramachandran Balasubramanian Zhan-Guo Gao Kenneth A. Jacobson 《Purinergic signalling》2013,9(2):271-280
The role of the A2B adenosine receptor (AR) in prostate cell death and growth was studied. The A2B AR gene expression quantified by real-time quantitative RT-PCR and Western blot analysis was the highest among four AR subtypes (A1, A2A, A2B, and A3) in all three commonly used prostate cancer cell lines, PC-3, DU145, and LNCaP. We explored the function of the A2B AR using PC-3 cells as a model. The A2B AR was visualized in PC-3 cells by laser confocal microscopy. The nonselective A2B AR agonist NECA and the selective A2B AR agonist BAY60-6583, but not the A2A AR agonist CGS21680, concentration-dependently induced adenosine 3′,5′-cyclic monophosphate (cyclic AMP) accumulation. NECA diminished lactate dehydrogenase (LDH) release, TNF-α-induced increase of caspase-3 activity, and cycloheximide (CHX)-induced morphological changes typical of apoptosis in PC-3 cells, which were blocked by a selective A2B AR antagonist PSB603. NECA-induced proliferation of PC-3 cells was diminished by siRNA specific for the A2B AR. The selective A2B AR antagonist PSB603 was shown to inhibit cell growth in all three cell lines. Thus, A2B AR blockade inhibits growth of prostate cancer cells, suggesting selective A2B AR antagonists as potential novel therapeutics. 相似文献
9.
Joly-Pharaboz MO Kalach JJ Pharaboz J Chantepie J Nicolas B Baille ML Ruffion A Benahmed M André J 《The Journal of steroid biochemistry and molecular biology》2008,111(1-2):50-59
Most prostate cancers escape endocrine therapy by diverse mechanisms. One of them might be growth repression by androgen. We reported that androgen represses the growth in culture of MOP cells (a sub-line of LNCaP cells) and that of MOP cell xenografts, although tumor growth becomes androgen-independent (AI). Here we explore whether AI tumors contain androgen-responsive cells. ME carcinoma cells were established from AI tumors. The responses to androgen were examined by cell counting, DAPI labeling, flow cytometry, PSA immunoassay and tumor size follow-up. Androgen receptors (AR) were analyzed by western blotting and DNA sequencing. The pattern of responses of these cells to androgen was compared to that of MOP cells and that of JAC cells established from LNCaP-like MOP cells. R1881, a synthetic androgen: (1) repressed the growth of all the six ME cell lines obtained, MOP and JAC cells, (2) augmented the secretion of PSA, (3) induced spectacular cell bubbling/fragmentation and (4) blocked the cell cycle and induced a modest increase of apoptosis. All the androgen-repressed cells expressed the same level of mutated AR as LNCaP cells. In nude mice, the growth of ME-2 cell xenografts displayed transient androgen repression similar to that of MOP cells. In culture neither fibroblasts nor extra-cellular matrix altered the effects of R1881 on cell proliferation. These results demonstrate that androgen-independent tumors contain androgen-responsive cells. The apparent discrepancy between the responses to androgen of tumors and those of carcinoma cells in culture suggests that microenvironmental factors contribute to the androgen responsiveness of tumor cells in vivo. These modifications, albeit unspecified, could be suitable targets for restoring the androgen responsiveness of AI tumors. 相似文献
10.
Troglitazone inhibits endothelial cell proliferation through suppression of casein kinase 2 activity
Lee KS Park JH Lee S Lim HJ Jang Y Park HY 《Biochemical and biophysical research communications》2006,346(1):83-88
Troglitazone, an agonist of peroxisome proliferator activated receptor gamma (PPARgamma), has been reported to inhibit endothelial cell proliferation by suppressing Akt activation. Recently, it has been also proposed that phosphatase and tensin homolog deleted from chromosome 10 (PTEN) plays an important role in such effect of troglitazone. However, the mechanism of how troglitazone regulates PTEN remains to be elucidated. We therefore investigated the effects of troglitazone on casein kinase 2 (CK2), which is known to negatively regulate PTEN activity. Troglitazone significantly inhibited serum-induced proliferation of HUVEC in a concentration dependent manner. Serum-induced Akt and its downstream signaling pathway activation was attenuated by troglitazone (10 microM) pretreatment. The phosphorylation of PTEN, which was directly related to Akt activation, was decreased with troglitazone pretreatment and was inversely proportional to CK2 activity. DRB, a CK2 inhibitor, also showed effects similar to that of troglitazone on Akt and its downstream signaling molecules. In conclusion, our results suggest that troglitazone inhibits proliferation of HUVECs through suppression of CK2 activity rendering PTEN to remain activated, and this effect of troglitazone in HUVECs seems to be PPARgamma independent. 相似文献
11.
12.
13.
14.
15.
Wenjie Lai Weian Zhu Chutian Xiao Xiaojuan Li Yu Wang Yuefu Han Jiayu Zheng Yingqiu Li Mingqiang Li Xingqiao Wen 《Cell death & disease》2021,12(6)
Genes with cross-cancer aberrations are most likely to be functional genes or potential therapeutic targets. Here, we found a total of 137 genes were ectopically expressed in eight cancer types, of which Holliday junction recognition protein (HJURP) was significantly upregulated in prostate cancer (PCa). Moreover, patients with higher HJURP mRNA and protein levels had poorer outcomes, and the protein levels served as an independent prognosis factor for the overall survival of PCa patients. Functionally, ectopic HJURP expression promoted PCa cells proliferation in vitro and in vivo. Mechanistically, HJURP increased the ubiquitination of cyclin-dependent kinase inhibitor 1 (CDKN1A) via the GSK3β/JNK signaling pathway and decreased its stability. This study investigated the role of HJURP in PCa proliferation and may provide a novel prognostic and therapeutic target for PCa.Subject terms: Tumour biomarkers, Prostate cancer, Cell growth, Diseases, Molecular biology 相似文献
16.
17.
18.
Ujiki MB Milam B Ding XZ Roginsky AB Salabat MR Talamonti MS Bell RH Gu W Silverman RB Adrian TE 《Biochemical and biophysical research communications》2006,340(4):1224-1228
Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer. 相似文献
19.
miR‐134 inhibits non‐small cell lung cancer growth by targeting the epidermal growth factor receptor 下载免费PDF全文
Qin Qin Furong Wei Jianbo Zhang Xingwu Wang Baosheng Li 《Journal of cellular and molecular medicine》2016,20(10):1974-1983
The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti‐EGFR therapies. However, more EGFR‐targeting miRNAs need to be explored. In this study, we identified a novel EGFR‐targeting miRNA, miRNA‐134 (miR‐134), in non‐small‐cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR‐134. In addition, the overexpression of miR‐134 inhibited EGFR‐related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR‐134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down‐regulation of EGFR by miR‐134 partially contributes to the antiproliferative role of miR‐134. Last, in vivo experiments demonstrated that miR‐134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR‐134 inhibits non‐small cell lung cancer growth by targeting the EGFR. 相似文献
20.
Paeoniflorin (PF) exhibits tumor suppressive functions in a variety of human cancers. However, the function of PF and molecular mechanism in colorectal cancer are elusive. In the present study, we investigated whether PF could exert its antiproliferative activity, anti-migration, and anti-invasive function in colorectal cancer cells. We found that PF inhibited cell growth and induced apoptosis and blocked cell cycle progression in the G0/G1 phase in colorectal cancer cells. Moreover, we found that PF suppressed cell migration and invasion in colorectal cancer cells. FoxM1 has been reported to play an important oncogenic role in human cancers. We also determine whether PF inhibited the expression of FoxM1, leading to its anti-cancer activity. We found that PF treatment in colorectal cancer cells resulted in down-regulation of FoxM1. The rescue experiments showed that overexpression of FoxM1 abrogated the tumor suppressive function induced by PF treatment. Notably, depletion of FoxM1 promoted the anti-tumor activity of PF in colorectal cancer cells. Therefore, inhibition of FoxM1 could participate in the anti-tumor activity of PF in colorectal cancer cells. 相似文献