首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long non‐coding RNAs (lncRNAs), a group of non‐protein‐coding RNAs with more than 200 nucleotides in length, are involved in multiple biological processes, such as the proliferation, apoptosis, migration and invasion. Moreover, numerous studies have shown that lncRNAs play important roles as oncogenes or tumour suppressor genes in human cancers. In this paper, we concentrate on actin filament‐associated protein 1‐antisense RNA 1 (AFAP1‐AS1), a well‐known long non‐coding RNA that is overexpressed in various tumour tissues and cell lines, including oesophageal cancer, pancreatic ductal adenocarcinoma, nasopharyngeal carcinoma, lung cancer, hepatocellular carcinoma, ovarian cancer, colorectal cancer, biliary tract cancer and gastric cancer. Moreover, high expression of AFAP1‐AS1 was associated with the clinicopathological features and cancer progression. In this review, we sum up the current studies on the characteristics of AFAP1‐AS1 in the biological function and mechanism of human cancers.  相似文献   

2.
Multiple studies have unveiled that long non‐coding RNAs (lncRNAs) play a pivotal role in tumour progression and metastasis. However, the biological role of lncRNA ZEB1‐AS1 in oesophageal squamous cell carcinoma (ESCC) remains under investigation, and thus, the current study was to investigate the functions of ZEB1‐AS1 in proliferation and invasion of ESCC. Here, we discovered that ZEB1‐AS1 and ZEB1 were markedly up‐regulated in ESCC tissues and cells relative to their corresponding normal control. ZEB1‐AS1 and ZEB1 overexpressions were both related to TNM staging and lymph node metastasis as well as poor prognosis in ESCC. The hypomethylation of ZEB1‐AS1 promoter triggered ZEB1‐AS1 overexpression in ESCC tissues and cells. In addition, ZEB1‐AS1 knockdown mediated by siRNA markedly suppressed the proliferation and invasion in vitro in EC9706 and TE1 cells, which was similar with ZEB1 siRNA treatment, coupled with EMT alterations including the up‐regulation of E‐cadherin level as well as the down‐regulation of N‐cadherin and vimentin levels. Notably, ZEB1‐AS1 depletion dramatically down‐regulated ZEB1 expression in EC9706 and TE1 cells, and ZEB1 overexpression obviously reversed the inhibitory effects of proliferation and invasion triggered by ZEB1‐AS1 siRNA. ZEB1‐AS1 shRNA evidently inhibited tumour growth and weight, whereas ZEB1 elevation partly recovered the tumour growth in ESCC EC9706 and TE1 xenografted nude mice. In conclusion, ZEB1‐AS1 overexpression is tightly involved in the development and progression of ESCC, and it exerts the antitumour efficacy by regulating ZEB1 level in ESCC.  相似文献   

3.
Lung cancer‐associated mortality is the most common cause of cancer death worldwide. Non‐coding RNAs (ncRNAs), with no protein‐coding ability, have multiple biological roles. Long non‐coding RNAs (lncRNAs) are a recently characterized class of ncRNAs that are over 200 nucleotides in length. Many lncRNAs have the ability of facilitating or inhibiting the development and progression of tumours, including non‐small cell lung cancer (NSCLC). Because of their fundamental roles in regulating gene expression, along with their involvement in the biological mechanisms underlying tumourigenesis, they are a promising class of tissue‐ and/or blood‐based cancer biomarkers. In this review, we highlight the emerging roles of lncRNAs in NSCLC, and discuss their potential clinical applications as diagnostic and prognostic markers and as therapeutic targets.  相似文献   

4.
5.
Long non‐coding RNAs (lncRNAs) have been illustrated to function as important regulators in carcinogenesis and cancer progression. However, the roles of lncRNA NNT‐AS1 in gastric cancer remain unclear. In the present study, we investigate the biological role of NNT‐AS1 in gastric cancer tumorigenesis. Results revealed that NNT‐AS1 expression level was significantly up‐regulated in GC tissue and cell lines compared with adjacent normal tissue and normal cell lines. The ectopic overexpression of NNT‐AS1 indicated the poor prognosis of GC patients. In vitro experiments validated that NNT‐AS1 knockdown suppressed the proliferation and invasion ability and induced the GC cell cycle progression arrest at G0/G1 phase. In vivo xenograft assay, NNT‐AS1 silencing decreased the tumour growth of GC cells. Bioinformatics online program predicted that miR‐424 targeted the 3′‐UTR of NNT‐AS1. Luciferase reporter assay, RNA‐immunoprecipitation (RIP) and RNA pull‐down assay validated the molecular binding within NNT‐AS1 and miR‐424, therefore jointly forming the RNA‐induced silencing complex (RISC). Moreover, E2F1 was verified to act as the target gene of NNT‐AS1/miR‐424, indicating the NNT‐AS1/miR‐424/E2F1 axis. In conclusion, our study indicates that NNT‐AS1 sponges miR‐424/E2F1 to facilitate GC tumorigenesis and cycle progress, revealing the oncogenic role of NNT‐AS1 for GC.  相似文献   

6.
Melanoma is the most lethal cutaneous cancer with a highly aggressive and metastatic phenotype. While recent genetic and epigenetic studies have shed new insights into the mechanism of melanoma development, the involvement of regulatory non‐coding RNAs remain unclear. Long non‐coding RNAs (lncRNAs) are a group of endogenous non‐protein‐coding RNAs with the capacity to regulate gene expression at multiple levels. Recent evidences have shown that lncRNAs can regulate many cellular processes, such as cell proliferation, differentiation, migration and invasion. In the melanoma, deregulation of a number of lncRNAs, such as HOTAIR, MALAT1, BANCR, ANRIL, SPRY‐IT1 and SAMMSON, have been reported. Our review summarizes the functional role of lncRNAs in melanoma and their potential clinical application for diagnosis, prognostication and treatment.  相似文献   

7.
8.
Emerging evidence has indicated that deregulation of long non‐coding RNAs (lncRNAs) can contribute to the progression of human cancers, including hepatocellular carcinoma (HCC). However, the role and exact mechanism of most lncRNAs in tumours remains largely unknown. In the current study, we found a novel long non‐coding RNA termed SNAI3‐AS1 which was generally up‐regulated in HCC tissues compared with normal control. Higher expression of SNAI3‐AS1 was significantly correlated with shorter overall survival of HCC patients. Knockdown of SNAI3‐AS1 inhibited the proliferation and metastasis of HCC cells in vitro, whereas overexpression of SNAI3‐AS1 promoted the proliferation and metastasis of HCC cells. Further investigations showed that SNAI3‐AS1 could affect HCC tumorigenesis by binding up‐frameshift protein 1 (UPF1), regulating Smad7 expression and activating TGF‐β/Smad pathway. Functionally, SNAI3‐AS1 promoted HCC growth and metastasis by inducing tumour epithelial to mesenchymal transition (EMT). Taken together, these findings showed that SNAI3‐AS1 promotes the progression of HCC by regulating the UPF1 and activating TGF‐β/Smad pathway.  相似文献   

9.
The long noncoding RNAs (lncRNAs) have been increasingly appreciated as key players underlying tumourigenesis and hold great potentials as prognostic biomarkers and therapeutic targets. However, their roles in head neck squamous cell carcinoma (HNSCC) have remained incompletely known. Here, we sought to reveal the oncogenic roles and clinical significance of a tumour‐associated lncRNA, zinc finger E‐box binding homeobox 2 antisense RNA 1 (ZEB2‐AS1), in HNSCC. ZEB2‐AS1 was aberrantly overexpressed in a fraction of HNSCC samples. Its overexpression significantly associated with large tumour size, cervical node metastasis and reduced overall and disease‐free survival. Antisense oligonucleotides (ASO)‐mediated ZEB2‐AS1 depletion markedly inhibited cell proliferation, migration and invasion while triggered apoptosis in HNSCC cells in part via modulating ZEB2 mRNA stability. Enforced overexpression of ZEB2 largely attenuated the phenotypic changes resulted from ZEB2‐AS1 inhibition except the impaired cell proliferation. In addition, ZEB2‐AS1 was required for TGF‐β1‐induced epithelial‐mesenchymal transition (EMT) in vitro. Significantly reduced tumour growth and lung metastasis were observed in ZEB2‐AS1‐depleted cells in HNSCC xenograft animal models. Taken together, our findings reveal that overexpression of ZEB2‐AS1 associates with tumour aggressiveness and unfavourable prognosis by serving as a putative oncogenic lncRNA and a novel prognostic biomarker in HNSCC.  相似文献   

10.
The triple‐negative breast cancer is the most malignant type of breast cancer. Its pathogenesis and prognosis remain poor despite the significant advances in breast cancer diagnosis and therapy. Meanwhile, long noncoding RNAs (LncRNAs) play a pivotal role in the progression of malignant tumors. In this study, we found that LncRNA‐ZEB2‐AS1 was dramatically up‐regulated in our breast cancer specimens and cells (MDA231), especially in metastatic tumor specimens and highly invasive cells, and high lncRNA‐ZEB2‐AS1 expression is associated with clinicopathologic features and short survival of breast cancer patients. LncRNA‐ZEB2‐AS1 promotes the proliferation and metastasis of MDA231 cells in SCID mice. Thus, it is regarded as an oncogene in triple‐negative breast cancer. It is mainly endo‐nuclear and situated near ZEB2, positively regulating ZEB2 expression and activating the epithelial mesenchymal transition via the PI3K/Akt/GSK3β/Zeb2 signaling pathway. Meanwhile, EGF‐induced F‐actin polymerization in MDA231 cells can be suppressed by reducing lncRNA‐ZEB2‐AS1 expression. The migration and invasion of triple‐negative breast cancer can be altered through cytoskeleton rearrangement. In summary, we demonstrated that lncRNA‐ZEB2‐AS1 is an important factor affecting the development of triple‐negative breast cancer and thus a potential oncogene target.  相似文献   

11.
Colorectal cancer (CRC) is one of the leading causes of cancer‐associated death globally. Long non‐coding RNAs (lncRNAs) have been identified as micro RNA (miRNA) sponges in a competing endogenous RNA (ceRNA) network and are involved in the regulation of mRNA expression. This study aims to construct a lncRNA‐associated ceRNA network and investigate the prognostic biomarkers in CRC. A total of 38 differentially expressed (DE) lncRNAs, 23 DEmiRNAs and 27 DEmRNAs were identified by analysing the expression profiles of CRC obtained from The Cancer Genome Atlas (TCGA). These RNAs were chosen to develop a ceRNA regulatory network of CRC, which comprised 125 edges. Survival analysis showed that four lncRNAs, six miRNAs and five mRNAs were significantly associated with overall survival. A potential regulatory axis of ADAMTS9‐AS2/miR‐32/PHLPP2 was identified from the network. Experimental validation was performed using clinical samples by quantitative real‐time PCR (qRT‐PCR), which showed that expression of the genes in the axis was associated with clinicopathological features and the correlation among them perfectly conformed to the ‘ceRNA theory’. Overexpression of ADAMTS9‐AS2 in colon cancer cell lines significantly inhibited the miR‐32 expression and promoted PHLPP2 expression, while ADAMTS9‐AS2 knockdown had the opposite effects. The constructed novel ceRNA network may provide a comprehensive understanding of the mechanisms of CRC carcinogenesis. The ADAMTS9‐AS2/miR‐32/PHLPP2 regulatory axis may serve as a potential therapeutic target for CRC.  相似文献   

12.
Recently, long noncoding RNAs (lncRNAs) are attracting wide attention in the field of cancer research because of its important role in cancer diagnosis and prognosis. But studies on the biological effects and relevant mechanisms of lncRNAs in non‐small cell lung cancer (NSCLC) remain few and need to be enriched. Our study discussed the expression and biological effects of LncRNA NR2F2‐AS1, and further explored its possible molecular mechanisms. As a result, elevated expression of NR2F2‐AS1 was detected in NSCLC tissues and cells and was remarkably associated with the tumor, node, metastasis (TNM) stage and the status of lymphatic metastasis of patients. Down‐regulated NR2F2‐AS1 contributed to the promotion of cell apoptosis and the inhibition of cell proliferation and invasion in A549 and SPC‐A‐1 cells in vivo and vitro. Through bioinformatics analysis, NR2F2‐AS1 functions as a ceRNA directly binding to miR‐320b, BMI1 was a direct target of miR‐320b. Combined with the following cellular experiments, the data showed that NR2F2‐AS1 may influence the NSCLC cell proliferation, invasion and apoptosis through regulating miR‐320b targeting BMI1.  相似文献   

13.
Long non‐coding RNAs (lncRNAs) take various effects in cancer mostly through sponging with microRNAs (miRNAs). lncRNA NR2F1‐AS1 is found to promote tumour progression in hepatocellular carcinoma, endometrial cancer and thyroid cancer. However, the role of lncRNA NR2F1‐AS1 in breast cancer angiogenesis remains unknown. In this study, we found lncRNA NR2F1‐AS1 was positively related with CD31 and CD34 in breast cancer through Pearson's correlation analysis, while lncRNA NR2F1‐AS1 transfection promoted human umbilical vascular endothelial cell (HUVEC) tube formation. In breast cancer cells, lncRNA NR2F1‐AS1 enhanced the HUVEC proliferation, tube formation and migration ability through tumour‐conditioned medium (TCM). In zebrafish model, lncRNA NR2F1‐AS1 increased the breast cancer cell‐related neo‐vasculature and subsequently promoted the breast cancer cell metastasis. In mouse model, lncRNA NR2F1‐AS1 promoted the tumour vessel formation, increased the micro vessel density (MVD) and then induced the growth of primary tumour. Mechanically, lncRNA NR2F1‐AS1 increased insulin‐like growth factor‐1 (IGF‐1) expression through sponging miRNA‐338‐3p in breast cancer cells and then activated the receptor of IGF‐1 (IGF‐1R) and extracellular signal‐regulated kinase (ERK) pathway in HUVECs. These results indicated that lncRNA NR2F1‐AS1 could promote breast cancer angiogenesis through IGF‐1/IGF‐1R/ERK pathway.  相似文献   

14.
Long non‐coding RNAs (lncRNAs) are a group greater than 200 nucleotides in length. An increasing number of studies has shown that lncRNAs play important roles in diverse cellular processes, including proliferation, differentiation, apoptosis, invasion and chromatin remodelling. In this regard, deregulation of lncRNAs has been documented in human cancers. TUG1 is a recently identified oncogenic lncRNA whose aberrant upregulation has been detected in different types of cancer, including B‐cell malignancies, oesophageal squamous cell carcinoma, bladder cancer, hepatocellular carcinoma and osteosarcoma. In these malignancies, knock‐down of TUG1 has been shown to suppress cell proliferation, invasion and/or colony formation. Interestingly, TUG1 has been found to be downregulated in non‐small cell lung carcinoma, indicative of its tissue‐specific function in tumourigenesis. Pertinent to clinical practice, TUG1 may act as a prognostic biomarker for tumours. In this review, we summarize current knowledge concerning the role of TUG1 in tumour progression and discuss mechanisms associated with it.  相似文献   

15.
16.
17.
18.
Mounting evidence has illustrated the vital roles of long non‐coding RNAs (lncRNAs in gastric cancer (GC). Nevertheless, the majority of their roles and mechanisms in GC are still largely unknown. In this study, we investigate the roles of lncRNA SLC25A5‐AS1 on tumourigenesis and explore its potential mechanisms in GC. The results showed that the expressions of SLC25A5‐AS1 in GC were significantly lower than that of adjacent normal tissues, which were significantly associated with tumour size, TNM stage and lymph node metastasis. Moreover, SLC25A5‐AS1 could inhibit GC cell proliferation, induce G1/G1 cell cycle arrest and cell apoptosis in vitro, as well as GC growth in vivo. Dual‐luciferase reporter assay confirmed the direct interaction between SLC25A5‐AS1 and miR‐19a‐3p, rescue experiment showed that co‐transfection miR‐19a‐3p mimics and pcDNA‐SLC25A5‐AS1 could partially restore the ability of GC cell proliferation and the inhibition of cell apoptosis. The mechanism analyses further found that SLC25A5‐AS1 might act as a competing endogenous RNAs (ceRNA), which was involved in the derepression of PTEN expression, a target gene of miR‐19a‐3p, and regulate malignant phenotype via PI3K/AKT signalling pathway in GC. Taken together, this study indicated that SLC25A5‐AS1 was down‐regulated in GC and functioned as a suppressor in the progression of GC. Moreover, it could act as a ceRNA to regulate cellular behaviours via miR‐19a‐3p/PTEN/PI3K/AKT signalling pathway. Thus, SLC25A5‐AS1 might be served as a potential target for cancer therapeutics in GC.  相似文献   

19.
Long non‐coding RNAs (lncRNAs) widely participate in ESCC development and progression; however, the prognostic factors and therapeutic strategies implicated in ESCC development and progression remain to be under investigation. The purpose of the current study was to explore whether WDFY3‐AS2 may be a potential prognostic factor and investigate its biological functions in ESCC. Here, WDFY3‐AS2 was frequently down‐regulated in ESCC tissues and cells, and its expression was correlated with TNM stage, lymph node metastasis and poor prognosis of ESCC patients. Moreover, WDFY3‐AS2 down‐regulation significantly promoted cell proliferation and invasion, whereas WDFY3‐AS2 up‐regulation markedly suppressed cell proliferation and invasion in ESCC EC9706 and TE1 cells, coupled with EMT phenotype alterations. WDFY3‐AS2 functioned as a competing endogenous RNA (ceRNA) for sponging miR‐2355‐5p, further resulted in the up‐regulation of its target gene SOCS2, followed by suppression of JAK2/Stat5 signalling pathway, to suppress ESCC cell proliferation and invasion in EC9706 and TE1 cells. These findings suggest that WDFY3‐AS2 may participate in ESCC development and progression, and may be a novel prognostic factor for ESCC patients, and thus targeting WDFY3‐AS2/miR‐2355‐5p/SOCS2 signalling axis may be a novel therapeutic strategy for ESCC patients.  相似文献   

20.
Long non‐coding RNAs (lncRNAs) have been verified to modulate the tumorigenesis of breast cancer at multiple levels. In present study, we aim to investigate the role of lncRNA FEZF1‐AS1 on breast cancer‐stem like cells (BCSC) and the potential regulatory mechanism. In breast cancer tissue, lncRNA FEZF1‐AS1 was up‐regulated compared with controls and indicated poor prognosis of breast cancer patients. In vitro experiments, FEZF1‐AS1 was significantly over‐expressed in breast cancer cells, especially in sphere subpopulation compared with parental subpopulation. Loss‐of‐functional indicated that, in BCSC cells (MDA‐MB‐231 CSC, MCF‐7 CSC), FEZF1‐AS1 knockdown reduced the CD44+/CD24? rate, the mammosphere‐forming ability, stem factors (Nanog, Oct4, SOX2), and inhibited the proliferation, migration and invasion. In vivo, FEZF1‐AS1 knockdown inhibited the breast cancer cells growth. Bioinformatics analysis tools and series of validation experiments confirmed that FEZF1‐AS1 modulated BCSC and Nanog expression through sponging miR‐30a, suggesting the regulation of FEZF1‐AS1/miR‐30a/Nanog. In summary, our study validate the important role of FEZF1‐AS1/miR‐30a/Nanog in breast cancer stemness and tumorigenesis, providing a novel insight and treatment strategy for breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号