首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

Methamphetamine (MA) abuse evokes pulmonary toxicity. The aim of our study is to investigate if autophagy is induced by MA and if autophagy‐initiated apoptosis in alveolar epithelial cells is involved in MA‐induced chronic pulmonary toxicity.

Materials and Methods

The rats in Control group and MA group were tested by Doppler and HE staining. The alveolar epithelial cells were treated with MA, following by western blot, RT‐PCR and immunofluorescence assay.

Results

Chronic exposure to MA resulted in lower growth ratio of weight and in higher heart rate and peak blood flow velocity of the main pulmonary artery of rats. MA induced infiltration of inflammatory cells in lungs, more compact lung parenchyma, thickened alveolar septum and reduction in the number of alveolar sacs. In alveolar epithelial cells, the autophagy marker LC3 and per cent of cells containing LC3‐positive autophagosome were significantly increased. MA dose dependently suppressed the phosphorylation of mTOR to inactivate mTOR, elicited autophagy regulatory proteins LC3 and Beclin‐1, accelerated the transformation from LC3 I to LC3 II and initiated apoptosis by decreasing Bcl‐2 and increasing Bax, Bax/Bcl‐2 and cleaved Caspase 3. The above results suggest that sustained autophagy was induced by long‐term exposure to MA and that the increased Beclin‐1 autophagy initiated apoptosis in alveolar epithelial cells.

Conclusions

Concurrence of autophagy with apoptosis in alveolar epithelial cells contributes to chronic pulmonary toxicity induced by MA.
  相似文献   

2.

Objectives

Triple negative breast cancer (TNBC) is a complex and intrinsically aggressive tumour with poor prognosis, and the discovery of targeted small‐molecule drugs for TNBC treatment still remains in its infancy. In this study, we aimed to discover a small‐molecule agent for TNBC treatment and illuminate its potential mechanisms.

Materials and methods

Cell viability was detected by using methylthiazoltetrazolium (MTT) assay. Electron microscopy, GFP‐LC3 transfection, monodansylcadaverine staining and apoptosis assay were performed to determine Fluoxetine‐induced autophagy and apoptosis. Western blotting and siRNA transfection were carried out to investigate the mechanisms of Fluoxetine‐induced autophagy. iTRAQ‐based proteomics analysis was used to explore the underlying mechanisms.

Results

We have demonstrated that Fluoxetine had remarkable anti‐proliferative activities and induced autophagic cell death in MDA‐MB‐231 and MDA‐MB‐436 cells. The mechanism for Fluoxetine‐induced autophagic cell death was associated with inhibition of eEF2K and activation of AMPK‐mTOR‐ULK complex axis. Further iTRAQ‐based proteomics and network analyses revealed that Fluoxetine‐induced mechanism was involved in BIRC6, BNIP1, SNAP29 and Bif‐1.

Conclusions

These results demonstrate that Fluoxetine induces apoptosis and autophagic cell death in TNBC, which will hold a promise for the future TNBC therapy.
  相似文献   

3.

Objectives

Alzheimer's disease (AD) is one of the most prevalent brain diseases among the elderly, majority of which is caused by abnormal deposition of amyloid beta‐peptide (Aβ). Galantamine, currently the first‐line drug in treatment of AD, has been shown to diminish Aβ‐induced neurotoxicity and exert favourable neuroprotective effects, but the detail mechanisms remain unclear.

Materials and methods

Effects of galantamine on Aβ‐induced cytotoxicity were checked by MTT, clone formation and apoptosis assays. The protein variations and reactive oxygen species (ROS) production were measured by western blotting analysis and dichloro‐dihydro‐fluorescein diacetate assay, respectively.

Results

Galantamine reversed Aβ‐induced cell growth inhibition and apoptosis in neuron cells PC12. Aβ activated the entire autophagy flux and accumulation of autophagosomes, and the inhibition of autophagy decreased the protein level of cleaved‐caspase‐3 and Aβ‐induced cytotoxicity. Meanwhile, galantamine suppressed Aβ‐mediated autophagy flux and accumulation of autophagosomes. Moreover, Aβ upregulated ROS accumulation, while ROS scavengers N‐acetyl‐l ‐cysteine impaired Aβ‐mediated autophagy. Further investigation showed that galantamine downregulated NOX4 expression to inhibit Aβ‐mediated ROS accumulation and autophagy.

Conclusions

Galantamine inhibits Aβ‐induced cytostatic autophagy through decreasing ROS accumulation, providing new insights into deep understanding of AD progression and molecular basis of galantamine in neuroprotection.
  相似文献   

4.

Objectives

Gymnema montanum Hook, an Indian Ayurvedic medicinal plant, is used traditionally to treat a variety of ailments. Here, we report anti‐cancer effects and molecular mechanisms of ethanolic extract of G. montanum (GLEt) on human leukaemia HL‐60 cells, compared to peripheral blood mononuclear cells.

Materials and methods

HL‐60 cells were treated with different concentrations of GLEt (10–50 μg/ml) and cytotoxicity was assessed by MTT assay. Levels of lipid peroxidation, antioxidants, mitochondrial membrane potential and caspase‐3 were measured. Further, apoptosis was studied using annexin‐V staining and the cell cycle was analyzed by flow cytometry.

Results

GLEt had a potent cytotoxic effect on HL‐60 cells (IC50‐20 μg/ml), yet was not toxic to normal peripheral blood mononuclear cells. Exposure of HL‐60 cells to GLEt led to elevated levels of malonaldehyde formation, but to reduced glutathione, superoxide dismutase, catalase and glutathione peroxidase activities (P < 0.05). Induction of apoptosis was confirmed by observing annexin‐V positive cells, associated with loss of mitochondrial membrane potential. Cell cycle arrest at G0/G1 was observed in GLEt‐treated HL‐60 cells, indicating its potential at inducing their apoptosis.

Conclusions

Findings of the present study suggest that G. montanum induced apoptosis in the human leukaemic cancer cells, mediated by collapse of mitochondrial membrane potential, generation of reactive oxygen species and depletion of intracellular antioxidant potential.
  相似文献   

5.

Objectives

Coroglaucigenin (CGN), a natural product isolated from Calotropis gigantean by our research group, has been identified as a potential anti‐cancer agent. However, the molecular mechanisms involved remain poorly understood.

Materials and methods

Cell viability and cell proliferation were detected by MTT and BrdU assays. Flow cytometry, SA‐β‐gal assay, western blotting and immunofluorescence were performed to determine CGN‐induced apoptosis, senescence and autophagy. Western blotting, siRNA transfection and coimmunoprecipitation were carried out to investigate the mechanisms of CGN‐induced senescence and autophagy. The anti‐tumour activities of combination therapy with CGN and chloroquine were observed in mice tumour models.

Results

We demonstrated that CGN inhibits the proliferation of colorectal cancer cells both in vitro and in vivo. We showed that the inhibition of cell proliferation by CGN is independent of apoptosis, but is associated with cell‐cycle arrest and senescence in colorectal cancer cells. Notably, CGN induces protective autophagy that attenuates CGN‐mediated cell proliferation. Functional studies revealed that CGN disrupts the association of Hsp90 with both CDK4 and Akt, leading to CDK4 degradation and Akt dephosphorylation, eventually resulting in senescence and autophagy, respectively. Combination therapy with CGN and chloroquine resulted in enhanced anti‐tumour effects in vivo.

Conclusions

Our results demonstrate that CGN induces senescence and autophagy in colorectal cancer cells and indicate that combining it with an autophagy inhibitor may be a novel strategy suitable for CGN‐mediated anti‐cancer therapy.
  相似文献   

6.

Objectives

Caspases, a family of cysteine proteases with unique substrate specificities, contribute to apoptosis, whereas autophagy‐related genes (ATGs) regulate cytoprotective autophagy or autophagic cell death in cancer. Accumulating evidence has recently revealed underlying mechanisms of apoptosis and autophagy; however, their intricate relationships still remain to be clarified. Identification of caspase/ATG switches between apoptosis and autophagy may address this problem.

Materials and methods

Identification of caspase/ATG switches was carried out using a series of elegant systems biology & bioinformatics approaches, such as network construction, hub protein identification, microarray analyses, targeted microRNA prediction and molecular docking.

Results

We computationally constructed the global human network from several online databases and further modified it into the basic caspase/ATG network. On the basis of apoptotic or autophagic gene differential expressions, we identified three molecular switches [including androgen receptor, serine/threonine‐protein kinase PAK‐1 (PAK‐1) and mitogen‐activated protein kinase‐3 (MAPK‐3)] between certain caspases and ATGs in human breast carcinoma MCF‐7 cells. Subsequently, we identified microRNAs (miRNAs) able to target androgen receptor, PAK‐1 and MAPK‐3, respectively. Ultimately, we screened a range of small molecule compounds from DrugBank, able to target the three above‐mentioned molecular switches in breast cancer cells.

Conclusions

We have systematically identified novel caspase/ATG switches involved in miRNA regulation, and predicted targeted anti‐cancer drugs. These findings may uncover intricate relationships between apoptosis and autophagy and thus provide further new clues towards possible cancer drug discovery.
  相似文献   

7.

Objectives

Lycoris is aurea agglutinin (LAA) has attracted rising attention due to its remarkable bioactivities. Here, we aimed at investigating its anti‐tumor activities.

Material and Methods

In vitro methods including MTT, cellular morphology observation, FCM and immunoblotting were performed. In vivo methods like detection of tumor volume, body weight and survival ratio, as well as TUNEL staining were performed.

Results and Conclusion

LAA triggers G2/M phase cell cycle arrest via up‐regulating p21expression as well as down‐regulating cdk‐1cyclinA singling pathway, and induces apoptotic cell death through inhibiting PI3K‐Akt survival pathway in human lung adenocarcinoma A549 cells. While LAA has no significant cytotoxic effect toward normal human embryonic lung fibroblast HELF cells, and moreover, LAA could amplify the antineoplastic effects of cisplatin toward A549 cells. Lastly LAA also bears anti‐cancer and apoptosis‐inducing effects in vivo, and it could decrease the volume and weight of subcutaneous tumor mass obviously as well as expand lifespan of mice. These findings may provide a new perspective for elucidating the complicated molecular mechanisms of LAA‐induced cancer cell growth‐inhibition and death, providing a new opportunity of LAA as a potential candidate anti‐neoplastic drug for future cancer therapeutics.
  相似文献   

8.

Background

Fibrosis involves the activation of inflammatory cells, leading to a decrease in physiological function of the affected organ or tissue.

Aims

To update and synthesize relevant information concerning fibrosis into a new hypothesis to explain the pathogenesis of fibrosis and propose potential novel therapeutic approaches.

Materials and Methods

Literature was reviewed and relevant information is discussed in the context of the pathogenesis of fibrosis.

Results

A number of cytokines and their mRNA are involved in the circulatory system and in organs of patients with fibrotic tissues. The profibrotic cytokines are generated by several activated immune cells, including fibroblasts and mast cells (MCs), which are important for tissue inflammatory responses to different types of injury. MC‐derived TNF, IL‐1, and IL‐33 contribute crucially to the initiation of a cascade of the host defence mechanism(s), leading to the fibrosis process. Inhibition of TNF and inflammatory cytokines may slow the progression of fibrosis and improve the pathological status of the affected subject. IL‐37 is generated by various types of immune cells and is an IL‐1 family member protein. IL‐37 is not a receptor antagonist; it binds IL‐18 receptor alpha (IL‐18Rα) and delivers the inhibitory signal by using TIR8. It has been shown that IL‐37 can be protective in inflammation and injury, and inhibits both innate and adaptive immunity.

Discussion

IL‐37 may be useful for suppression of inflammatory diseases induced by inhibiting MyD88‐dependent TLR signalling. In addition, IL‐37 downregulates NF‐κB induced by TLR2 or TLR4 through a mechanism dependent on IL‐18Rα.

Conclusion

This review summarizes current knowledge on the role of MC in inflammation and tissue/organ fibrosis, with a focus on the therapeutic potential of IL‐37‐targeting cytokines.
  相似文献   

9.

Objectives

Sprouty (SPRY) 1 is one of the SPRY proteins that inhibits signalling from various growth factors pathways and has also been known as a tumour suppressor in various malignancies. However, no study elucidates the role of SPRY1 in the skin. Our study was conducted to determine the function of SPRY1 in human keratinocytes and the epidermis.

Materials and methods

In vitro primary cultured epidermal keratinocytes were used to investigate the proliferation, differentiation and apoptosis of these cells. We also established overexpression of SPRY1 in vitro and K14‐SPRY1 transgenic mice.

Results

SPRY1 was mainly located in the cytoplasm of the epidermal keratinocytes from the granular epidermal layer of the skin and cultured cells. Overexpressed SPRY1 in keratinocytes resulted in up‐regulation of P21, P27 and down‐regulation of cyclin B1; decrease in MMP3 and integrin α6. SPRY1‐overexpressed primary keratinocytes exhibited a lower proliferation and migration capability and higher rates of apoptosis. Epidermis of SPRY1‐TG mice represented delayed wound healing. Proteomics analysis and GO enrichment showed DEPs of SPRY1 TG mice epidermis is significantly enriched in immune‐ and inflammatory‐associated biological process.

Conclusions

In summary, SPRY1 expression was inversely correlated with cell proliferation, migration and promote cell apoptosis of keratinocytes. SPRY1 maybe a negative feedback regulator in normal human epidermal keratinocytes and cutaneous inflammatory responses. Our study raised the possibility that enhancing expression of SPRY1 may have the potential to promote anti‐inflammatory effects.
  相似文献   

10.

Objective

We previously demonstrated the roflumilast inhibited cell proliferation and increased cell apoptosis in ovarian cancer. In this study, we aimed to investigate the roles of roflumilast in development of cisplatin (DDP)‐sensitive and ‐resistant ovarian cancer.

Methods

OVCAR3 and SKOV3 were selected and the corresponding DDP‐resistant cells were constructed. Cell viability, proliferation, apoptosis, cycle were performed. Expression cAMP, PKA, CREB, phosphorylation of CREB and FtMt were detected. The roles of roflumilast in development of DDP‐sensitive and ‐resistant ovarian cancer were confirmed by xenograft model.

Results

Roflumilast + DDP inhibited cell proliferation, and induced cell apoptosis and G0/G1 arrest in OVCAR3 and SKOV3 cells, roflumilast induced expression of FtMt, the activity of cAMP and PKA and phosphorylation of CREB in ovarian cancer cells and the above‐effect were inhibited by H89. Downregulation of CREB inhibited the roflumilast‐increased DDP sensitivity of ovarian cancer cells, and the roflumilast‐induced FtMt expression and phosphorylation of CREB. Also, roflumilast reversed cisplatin‐resistance, and induced expression of FtMt and activation of cAMP/PKA/CREB in DDP‐resistant ovarian cancer cells. Similarly, treated with H89 or downregulation of CREB inhibited the changes induced by roflumilast. In vivo, roflumilast inhibited the development of SKOV3 or SKOV3‐DDP‐R xenograft models.

Conclusions

Roflumilast enhanced DDP sensitivity and reversed the DDP resistance of ovarian cancer cells via activation of cAMP/PKA/CREB pathway and upregulation of the downstream FtMt expression, which has great promise in clinical treatment.
  相似文献   

11.

Objectives

To analyse proliferation, differentiation and apoptosis in THP‐1 cells after stimulation with phorbol 12‐myristate 13‐acetate (PMA) and retinoic acid (RA).

Materials and methods

PMA and RA were used in a three‐step‐procedure: (i) treatment with 6, 30, 60 nm PMA, that induced initial, intermediate and advanced levels of monocyte‐macrophage transition, respectively; (ii) recovery in PMA‐free medium; (iii) incubation with 4 μm RA. Cultures were characterized cytokinetically (flow cytometry/bromodeoxyuridine uptake) and immunocytochemically (static cytometry) for expression of CD14, CD11b (monocyte‐macrophage) and DC‐SIGN (dendritic cell: DCs) markers.

Results

Some treatments determined appearance of monocyte/macrophage, dendritic and apoptotic phenotypes, percentages of which were related to PMA dose used in step 1, and dependent on presence/absence of PMA and RA. PMA withdrawal induced dedifferentiation and partial restoration of proliferative activity, specially in 6 and 30 nm PMA‐derived cells. Recovery in the presence of serum (fundamental to DC appearance) indicated that depending on differentiation level, cell proliferation and apoptosis were inversely correlated. Treatment with 30 nm PMA induced intermediate levels of monocytic‐macrophagic differentiation, with expression of alternative means of differentiation and acquisition of DCs without using cytokines, after PMA withdrawal and RA stimulation.

Conclusions

Our experimental conditions favoured differentiation, dedifferentiation and transdifferentiational pathways, in monocytic THP‐1 cells, the balance of which could be related to both cell proliferation and cell death.
  相似文献   

12.
Z. Li  J. Xu  P. Xu  S. Liu  Z. Yang 《Cell proliferation》2013,46(1):76-85

Objectives

Diabetic nephropathy is a major complication of diabetes and a frequent cause of end‐stage renal disease and recent studies suggest that podocyte damage may play a role in the pathogenesis of this. At early onset of diabetic nephropathy there is podocyte drop‐out, which is thought to provoke glomerular albuminuria and subsequent glomerular injury; however, the underlying molecular mechanisms of this remain poorly understood. Here we report that we tested the hypothesis that early diabetic podocyte injury is caused, at least in part, by up‐regulation of transient receptor potential cation channel 6 (TRPC6), which is regulated by the canonical Wnt signalling pathway, in mouse podocytes.

Materials and methods

Mechanism of injury initiation in mouse podocytes, by high concentration of D‐glucose (HG, 30 mM), was investigated by MTT, flow cytometry, real‐time quantitative PCR, and western blot analysis.

Results

HG induced apoptosis and reduced viability of differentiated podocytes. It caused time‐dependent up‐regulation of TRPC6 and activation of the canonical Wnt signalling pathway, in mouse podocytes. In these cells, blockade of the Wnt signalling pathway by dickkopf related protein 1 (Dkk1) resulted in effective reduction of TRPC6 up‐regulation and amelioration of podocyte apoptosis. Furthermore, reduction of cell viability induced by HG was attenuated by treatment with Dkk1.

Conclusion

These findings indicate that the Wnt/β‐catenin signalling pathway may potentially be active in pathogenesis of TRPC6‐mediated diabetic podocyte injury.
  相似文献   

13.

Objectives

Oroxylin A, a natural flavonoid isolated from Scutellaria baicalensis, has been reported to have anti‐hepatic injury effects. However, the effects of oroxylin A on alcoholic liver disease (ALD) remains unclear. The aim of this study was to elucidate the effects of oroxylin A on ALD and the potential mechanisms.

Materials and methods

Male ICR mice and human hepatocyte cell line LO2 were used. Yes‐associated protein (YAP) overexpression and knockdown were achieved using plasmid and siRNA technique. Cellular senescence was assessed by analyses of the senescence‐associated β‐galactosidase (SA‐β‐gal), senescence marker p16, p21, Hmga1, cell cycle and telomerase activity.

Results

Oroxylin A alleviated ethanol‐induced hepatocyte damage by suppressing activities of supernatant marker enzymes. We found that oroxylin A inhibited ethanol‐induced hepatocyte senescence by decreasing the number of SA‐β‐gal‐positive LO2 cells and reducing the expression of senescence markers p16, p21 and Hmga1 in vitro. Moreover, oroxylin A affected the cell cycle and telomerase activity. Of importance, we revealed that YAP pharmacological inhibitor verteporfin or YAP siRNA eliminated the effect of oroxylin A on ethanol‐induced hepatocyte senescence in vitro, and this was further supported by the evidence in vivo experiments.

Conclusion

Therefore, these aggregated data suggested that oroxylin A relieved alcoholic liver injury possibly by inhibiting the senescence of hepatocyte, which was dependent on its activation of YAP in hepatocytes.
  相似文献   

14.

Objectives

Proliferation of tetraploid cells (TCs) emerging from diploid cells is considered to be a critical event toward tumourigenesis, or cancer progression. Recently, several studies have reported that binuclear TCs emerging from normal cells are capable of mitosis, however, it has not been confirmed directly whether mononuclear TCs emerging from normal cells could proliferate, even cancer cells. The aim of this study is to detect mononuclear TCs in vitro, spontaneously emerging from diploid cells and to elucidate their proliferative capability directly. For this purpose, we have developed a novel method.

Materials and methods

In this study, two completely disomic cell lines were used, TIG‐7, a fibroblast cell line and CAL‐51, a breast cancer cell line. Cells were cultured on microscope slides and their DNA content was determined using an image cytometer. On the same slides, chromosome numbers were scored using centromere fluorescence in situ hybridization (FISH). For evaluating proliferative capability of TCs, bromodeoxyuridine (BrdUrd) incorporation and colony‐forming ability were examined.

Results

Using our method, spontaneous emergence of mononuclear TCs was detected in both TIG‐7 and CAL‐51. Colonies of TIG‐7 TCs were not observed, but were observed of CAL‐51 TCs.

Conclusions

Our method enables detection of mononuclear TCs and elucidation of their proliferative capability, directly; this evidence reveals that mononuclear TIG‐7 TCs do not proliferate but that mononuclear CAL‐51 TCs are able to.
  相似文献   

15.

Objectives

Head and neck squamous cell carcinoma (HNSCC) is characterized by high mortality and low survival rates. As an epidermal growth factor receptor (EGFR) inhibitor, Erlotinib has been approved for treatment of various tumours. PF‐03084014 is a selective inhibitor of Notch1 signalling. This study aimed to explore new approaches for simultaneously targeting EGFR and Notch1 signalling to attenuate tumour growth and improve survival.

Materials and methods

Cell proliferation was determined by CCK‐8 assay and Flow cytometry. Cell invasive ability was determined by Transwell assay. Western blot was used to test the expression of Notch1 and EGFR pathway. Cleaved Caspase‐3 staining and TUNEL assay were used to verify the apoptosis through combined treatment.

Results

We first confirmed proliferative inhibition and cell death in HNSCC with combined Erlotinib and PF‐03084014 treatment. Moreover, we found PF‐03084014 reversed the increased invasion induced by Erlotinib. In a preclinical therapeutic drug trial in vivo, combined treatment effectively abrogated tumour growth. Most importantly, one mechanism was found that PF‐03084014 alone could activate the PI3K/AKT signalling, the downstream of EGFR signalling, and Erlotinib alone could activate the intracellular domain of Notch1 (NICD), while combined treatment of PF‐03084014 and Erlotinib suppressed the HNSCC growth.

Conclusions

These results suggested that concomitant inhibition of the Notch1 and EGFR pathways represented a rational strategy for promoting apoptosis in HNSCC and overcoming treatment resistance.
  相似文献   

16.
17.

Objectives

The PLCG2 (PLCγ2) gene is a member of PLC gene family encoding transmembrane signalling enzymes involved in various biological processes including cell proliferation and apoptosis. Our earlier study indicated that PLCγ2 may be involved in the termination of regeneration of the liver which is mainly composed of hepatocytes, but its exact biological function and molecular mechanism in liver regeneration termination remains unclear. This study aims to examine the role of PLCγ2 in the growth of hepatocytes.

Materials and methods

A recombinant adenovirus expressing PLCγ2 was used to infect primary rat hepatocytes. PLCγ2 mRNA and protein levels were detected by qRT‐PCR and Western blot. The subcellular location of PLCγ2 protein was tested by an immunofluorescence assay. The proliferation of hepatocytes was measured by MTT assay. The cell cycle and apoptosis were analysed by flow cytometry. Caspase‐3, ‐8 and ‐9 activities were measured by a spectrophotometry method. Phosphorylation levels of PKCD, JNK and p38 in the infected cells were detected by Western blot. The possible mechanism underlying the role of PLCγ2 in hepatocyte growth was also explored by adding a signalling pathway inhibitor.

Results

Hepatocyte proliferation was dramatically reduced, while cell apoptosis was remarkably increased. The results demonstrated that PLCγ2 increased the phosphorylation of PKCD, p38 and JNK in rat hepatocytes. After PKCD activity was inhibited by the inhibitor Go 6983, the levels of both p‐p38 and p‐JNK MAPKs significantly decreased, and PLCγ2‐induced cell proliferation inhibition and cell apoptosis were obviously reversed.

Conclusions

This study showed that PLCγ2 regulates hepatocyte growth through PKCD‐dependently activating p38 MAPK and JNK MAPK pathways; this result was experimentally based on the further exploration of the effect of PLCγ2 on hepatocyte growth in vivo.
  相似文献   

18.

Objectives

Colorectal cancer is one of the most common malignancies both in men and women. Owing to metastasis and resistance, the prognosis of colorectal cancerCRC patients remains extremely poor with chemotherapy. A disintegrin and metalloproteinase 17 (ADAM17) induces the activation of Notch pathway and contributes to the chemoresistance. This study aimed to discover a novel ADAM17 inhibitor and investigate the chemosensitization effect.

Materials and methods

Pharmacophore model, western blot and enzymatic assay were used to discover ZLDI‐8. Cell proliferation was determined by MTT and colony formation assay. Cell migratory and invasive ability were determined by wound healing scratch and transwell assay. Immunofluorescence images and western blot analysed the expression of Notch or epithelial‐mesenchymal transition (EMT) pathway markers. Xenografts were employed to evaluate the chemosensitization effect of ZLDI‐8 in vivo.

Results

We found that ZLDI‐8 cell‐specifically inhibited the proliferation of CRC, and this effect was due to abrogation of ADAM17 and Notch pathway. Meanwhile, we reported for the first time that ZLDI‐8 synergistically improved the anti‐tumour and anti‐metastasis activity of 5‐fluorouracil or irinotecan by reversing Notch and EMT pathways. Interestingly, in vivo studies further demonstrated that ZLDI‐8 promoted the anti‐tumour effect of 5‐fluorouracil through Notch and EMT reversal.

Conclusions

A novel ADAM17 inhibitor ZLDI‐8 may be a potential chemosensitizer which sensitized CRC cells to 5‐fluorouracil or irinotecan by reversing Notch and EMT pathways.
  相似文献   

19.

Objectives

Cytotoxic chemotherapy is an effective and traditional treatment of ovarian cancer. However, chemotherapy‐induced apoptosis may also trigger and ultimately accelerate the repopulation of the small number of adjacent surviving cells. This study mainly focused on the tumour cell repopulation caused by chemotherapy in ovarian cancer and the adjunctive/synergistic effect of Berberine on the prevention of tumour repopulation.

Materials and methods

The transwell system was used to mimic the co‐culture of surviving ovarian cancer cells in the microenvironment of cytotoxic chemotherapy‐treated dying cells. Tumour cell proliferation was observed by crystal violet staining. AA and PGE2 levels were measured by ELISA, and changes of protein expression were analysed by Western blot.

Results

Chemotherapy drug VP16 treatment triggered AA pathway, leading to the elevated PGE2 level, and ultimately enhanced the repopulation of ovarian cancer cells. Berberine can block the caspase 3‐iPLA2‐AA‐COX‐2‐PGE2 pathway by inhibiting the expression of iPLA2 and COX‐2. Berberine can also reverse the increased phosphorylation of FAK caused by abnormal PGE2 level and thus reverse the repopulation of ovarian cancer cells after VP16 treatment.

Conclusions

Our observation suggested that Berberine could inhibit the chemotherapy‐induced repopulation of ovarian cancer cells by suppressing the AA pathway and phosphorylation of FAK. And these findings implicated a novel combined use of Berberine and chemotherapeutics, which might prevent ovarian cancer recurrence by abrogating early tumour repopulation.
  相似文献   

20.

Objectives

Low level laser therapy (LLLT), which stimulates natural biological processes in the application region, is frequently used in dental treatments. The aim of our study was to evaluate the effects of LLLT which could activate precancerous cells or increase existing cancerous tissue in case of clinically undetectable situations.

Materials and methods

Saos‐2 osteoblast‐like osteosarcoma cells and A549 human lung carcinoma cells were used. Twenty‐four hours after preparation of cell culture plates, laser irradiation was performed 1, 2 and 3 times according to the test groups using Nd:YAG laser with the power output 0.5, 1, 2 and 3 W. Cell proliferation analysis was performed by MTT assay at the 24th hour following the last laser applications.

Results

Generally, it was observed that the proliferation rates increased as the number of applications increased, when compared to the controls, especially in those cases in which the irradiation was performed 2 or 3 times more.

Conclusion

The findings of this study have led to the conclusion that LLLT increases cancer cell proliferation, depending on the power output level of the laser and the number of applications. In addition to the proliferation and mitotic activity of the cancer tissue cells, we concluded that LLLT, which is frequently used in dental practice, could activate precancerous cells or increase existing cancerous tissue.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号