首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IR spectroscopic studies are reported for N-stearyl-d-erythro-phytosphingosine (Cer NP) and N-stearyl-2-hydroxy-d-erythro-phytosphingosine (Cer AP) in a hydrated model of the skin lipid barrier comprised of equimolar mixtures of each ceramide with cholesterol and d35-stearic acid. Examination of the methylene stretching, rocking and bending modes reveal some rotational freedom and hexagonal packing in both the ceramide and stearic acid chains. Analysis of the acid carbonyl stretch and the ceramide Amide I modes show both shift to higher frequencies, indicating weaker hydrogen bonding, in the mixed systems compared to the pure materials. For both systems, the fatty acid chain disordering temperatures are significantly increased from those of the pure acids. The observed behaviors of these phytosphingosine ceramide systems are fundamentally different from the previously reported analogous sphingosine ceramide systems. The implications of these observations for lipid organization in the stratum corneum are briefly discussed.  相似文献   

2.
Lipid lamellae present in the outermost layer of the skin, the stratum corneum, form the main barrier for the diffusion of molecules through the skin. The presence of a unique 13 nm lamellar phase and its high crystallinity are characteristic for the stratum corneum lipid phase behavior. In the present study, small-angle and wide-angle X-ray diffraction were used to examine the organization in lipid mixtures prepared with a unique set of well-defined synthetic ceramides, varying from each other in head group architecture and acyl chain length. The results show that equimolar mixtures of cholesterol, free fatty acids, and synthetic ceramides (resembling the composition of pig ceramides) closely resemble the lamellar and lateral stratum corneum lipid organization, both at room and higher temperatures. Exclusion of several ceramide classes from the mixture does not affect the lipid organization. However, complete substitution of ceramide 1 (acylceramide with a sphingosine base) with ceramide 9 (acylceramide with a phytosphingosine base) reduces the formation of the long periodicity lamellar phase. This indicates that the head group architecture of acylceramides affects the lipid organization. In conclusion, lipid mixtures prepared with well-defined synthetic ceramides offer an attractive tool with which to unravel the importance of the molecular structure of individual ceramides for proper lipid organization.  相似文献   

3.
To elucidate the interaction among the molecules which constitute intercellular lipids of stratum corneum, the phase diagrams in the binary mixtures of N-octadecanoyl-phytosphingosine (CER)/stearic acid (SA) and CER/cholesterol (CHOL) were studied by differential scanning calorimetry and by small- and wide-angle X-ray diffraction. These phase diagrams are mostly expressed by a eutectic type one. However, from their detailed analyses, it was revealed that in the phase diagram of CER/SA a new solid structure is formed just above the eutectic temperature. The lamellar spacing of the new structure is nearly equal to the length given by the sum of the two molecules of CER and/or SA, that is, in the lipid bilayer the hydrocarbon chains of CER and SA lie almost perpendicular to the lipid bilayer surface and the two kinds of molecules distribute homogeneously. On the other hand, in the binary mixture of CER/CHOL, CHOL molecules are apt to be isolated from the mixture. In a ternary mixture composed of equimolar lipids of CER, CHOL and SA, it was found that a pseudo-hexagonal structure takes place even in the solid state. This fact indicates that the three components are miscible and the hydrocarbon chains lie perpendicular to the lipid bilayer surface. We can draw the conclusion that the multi-component mixtures containing ceramide are apt to form the lamellar structure where even in the solid state the hydrocarbon chains lie perpendicular to the lipid bilayer surface and the components with hydrocarbon chains distribute homogeneously.  相似文献   

4.
The influence of cholesterol sulfate (CS) and calcium on the phase behavior of lipid mixtures mimicking the stratum corneum (SC) lipids was examined using vibrational spectroscopy. Raman microspectrocopy showed that equimolar mixtures of ceramide, palmitic acid, and cholesterol underwent a phase transition in which, at low temperatures, lipids formed mainly a mosaic of microcrystalline phase-separated domains, and above 45 degrees C, a more fluid and disordered phase in which the three lipid species were more miscible. In the presence of Ca(2+), there was the formation of fatty acid-Ca(2+) complexes that led to domains stable on heating. Consequently, these lipid mixtures remained heterogeneous, and the fatty acid molecules were not extensively involved in the formation of the fluid lipid phase, which included mainly ceramide and cholesterol. However, the presence of CS displaced the association site of Ca(2+) ions and inhibited the formation of domains formed by the fatty acid molecules complexed with Ca(2+) ions. This work reveals that CS and Ca(2+) modulate the lipid mixing properties and the lipid order in SC lipid models. The balance in the equilibria involving Ca(2+), CS, and fatty acids is proposed to have an impact on the organization and the function of the epidermis.  相似文献   

5.
The outermost layer of the skin, the stratum corneum, consists of corneocytes surrounded by lipid domains. The main lipid classes in stratum corneum are cholesterol, ceramides (CER), and free fatty acids forming two crystalline lamellar phases. However, only limited information is available on whether the various lipid classes participate in the same crystalline lattices or if separate domains are formed within the lipid lamellae. In this article infrared spectroscopic studies are reported of hydrated mixtures prepared from cholesterol, human CER, and free fatty acids. Evaluation of the methylene stretching vibrations revealed a conformational disordering starting at approximately 60 degrees C for all mixtures. Examination of the rotational ordering (scissoring and rocking vibrations) of mixtures prepared from equimolar cholesterol and CER with a variation in the level of free fatty acids showed that at lower free fatty acid content orthorhombic and hexagonal domains coexist in the lipid lamellae. Increasing the fatty acid level to an equimolar cholesterol/CER/fatty acid mixture reveals the dominant presence of an orthorhombic lattice, confirming x-ray diffraction studies. Replacing the protonated free fatty acid chains by their perdeuterated counterparts demonstrates that free fatty acids and CER participate in the same orthorhombic lattice up to a level of slightly less than 1:1:0.75 cholesterol/CER/free fatty acids molar ratio but that free fatty acids also form separate domains within the lipid lamellae at equimolar ratios at room temperature. However, no evidence for this has been observed at 32 degrees C. Extrapolating these findings to the situation in stratum corneum led us conclude that in stratum corneum, fatty acids and CER participate in the orthorhombic lattice at 32 degrees C, the skin temperature.  相似文献   

6.
The conformational disordering and lateral packing of lipids in porcine and human isolated stratum corneum (SC) was compared using Fourier transform infrared spectroscopy (FTIR). It was shown that SC of both species differ markedly, porcine SC lipids being arranged predominantly in a hexagonal lattice while lipids in human SC are predominantly packed in the denser orthorhombic lattice. However, the lipid organization of equimolar ceramide:cholesterol:free fatty acid (CER:CHOL:FFA) mixtures prepared with isolated porcine CER or human CER is very similar, only the transition temperatures differed being slightly lower in mixtures with porcine CER. Therefore, the difference in lateral packing between human and porcine stratum corneum is not due to the difference in CER composition. Furthermore, it is possible to use more readily available porcine CER in model lipid mixtures to mimic lipid organization in human SC. As the equimolar porcine CER:CHOL:FFA mixtures closely mimic the lipid organization in human SC, both human SC and this mixture were selected to examine the effect of glycerol on the lipid phase behaviour. It was found that high concentrations of glycerol change the lamellar organization slightly, while domains with an orthorhombic lateral packing are still observed.  相似文献   

7.
The conformational disordering and lateral packing of lipids in porcine and human isolated stratum corneum (SC) was compared using Fourier transform infrared spectroscopy (FTIR). It was shown that SC of both species differ markedly, porcine SC lipids being arranged predominantly in a hexagonal lattice while lipids in human SC are predominantly packed in the denser orthorhombic lattice. However, the lipid organization of equimolar ceramide:cholesterol:free fatty acid (CER:CHOL:FFA) mixtures prepared with isolated porcine CER or human CER is very similar, only the transition temperatures differed being slightly lower in mixtures with porcine CER. Therefore, the difference in lateral packing between human and porcine stratum corneum is not due to the difference in CER composition. Furthermore, it is possible to use more readily available porcine CER in model lipid mixtures to mimic lipid organization in human SC. As the equimolar porcine CER:CHOL:FFA mixtures closely mimic the lipid organization in human SC, both human SC and this mixture were selected to examine the effect of glycerol on the lipid phase behaviour. It was found that high concentrations of glycerol change the lamellar organization slightly, while domains with an orthorhombic lateral packing are still observed.  相似文献   

8.
The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail.  相似文献   

9.
Cholesteryl esters (CE) are not generally abundant but are ubiquitous in living organisms and have markedly different properties from cholesterol because of their acyl chain. The miscibility/immiscibility of CE with biological lipid structures is a key property for their functions. In this work we study the solubility of cholesteryl oleate (ChO) in a model of the stratum corneum lipid matrix composed of ceramide C16, cholesterol and palmitic acid in excess water. Experiments were done in conditions of fully ionized (pH = 9.0) and fully neutralized fatty acid (pH = 4.0), and differential scanning calorimetry of the ternary mixtures with added ChO at pH = 9.0 clearly displayed a main transition with the same maximum temperature, peak shape, and enthalpy, suggesting that ChO was excluded from the remaining lipids. This technique is not conclusive at pH = 4.0 because the transitions of the lipid matrix and ChO overlap. The insolubility of ChO at both pH values is supported by X-ray diffraction. Adding the ceramide:cholesterol:fatty acid lipid mixture to ChO did not change the X-ray pattern of the mixture nor that of the ChO. To supplement the above physical techniques, we applied 13C MAS NMR spectroscopy with C-13 carbonyl-labeled ChO. A single 13C carbonyl peak from the ChO at 171.5 ppm was observed, indicating exposure to only one environment. The chemical shift was identical to pure ChO below and above the temperature of isotropic liquid formation. Taken together, our results lead to the conclusion that the solubility of ChO is negligible in the ceramide:cholesterol:fatty acid lipid mixture.  相似文献   

10.
The barrier function of skin ultimately depends on the physical state and structural organisation of the stratum corneum extracellular lipid matrix. Ceramides, cholesterol and a broad distribution of saturated long-chain free fatty acids dominate the stratum corneum lipid composition. Additionally, smaller amounts of cholesterol sulfate and cholesteryl oleate may be present. A key feature determining skin barrier capacity is thought to be whether or not different lipid domains coexist laterally in the stratum corneum extracellular lipid matrix. In this study, the overall tendency for lipid domain formation in different mixtures of extracted human stratum corneum ceramides, cholesterol, free fatty acids, cholesterol sulfate and cholesteryl oleate were studied using atomic force microscopy (AFM) on Langmuir-Blodgett (LB) films on mica. It is shown that the saturated long-chain free fatty acid distribution of human stratum corneum prevents hydrocarbon chain segregation. Further, LB-films of human stratum corneum ceramides express a pattern of connected elongated domains with a granular domain interface. The dominating effect of both cholesterol and cholesterol sulfate is that of increased ceramide domain dispersion. This effect is counteracted by the presence of free fatty acids, which preferentially mix with ceramides and not with cholesterol. Cholesteryl oleate does not mix with other skin lipid components, supporting the hypothesis of an extra-endogenous origin. In the system composed of endogenous human ceramides and cholesterol plus 15 wt% stratum corneum distributed free fatty acids, i.e., the system mimicking most closely the lipid composition of the stratum corneum extracellular space, LB-films on mica express lateral domain formation.  相似文献   

11.
Stratum corneum ceramides play an essential role in the barrier properties of skin. However, their structure-activity relationships are poorly understood. We investigated the effects of acyl chain length in the non-hydroxy acyl sphingosine type (NS) ceramides on the skin permeability and their thermotropic phase behavior. Neither the long- to medium-chain ceramides (8-24 C) nor free sphingosine produced any changes of the skin barrier function. In contrast, the short-chain ceramides decreased skin electrical impedance and increased skin permeability for two marker drugs, theophylline and indomethacin, with maxima in the 4-6C acyl ceramides. The thermotropic phase behavior of pure ceramides and model stratum corneum lipid membranes composed of ceramide/lignoceric acid/cholesterol/cholesterol sulfate was studied by differential scanning calorimetry and infrared spectroscopy. Differences in thermotropic phase behavior of these lipids were found: those ceramides that had the greatest impact on the skin barrier properties displayed the lowest phase transitions and formed the least dense model stratum corneum lipid membranes at 32°C. In conclusion, the long hydrophobic chains in the NS-type ceramides are essential for maintaining the skin barrier function. However, this ability is not shared by their short-chain counterparts despite their having the same polar head structure and hydrogen bonding ability.  相似文献   

12.
The superficial layer of the skin, the stratum corneum, is the main barrier for diffusion of substances across the skin. The stratum corneum is composed of corneocytes embedded in lipid lamellae. In previous studies two lamellar phases have been identified with periodicities of 6.4 and 13.4 nm of which the 13.4 nm phase (long periodicity phase = LPP) is considered to be very important for the skin banier function. The main lipid classes in stratumcorneum are ceramides, free fatty acids and cholesterol. Until now 8 subclassesof ceramides are identified in human stratum corneum referred to as ceramide 1 to 8. Studies with mixtures prepared with isolated human ceramides revealed that cholesterol and ceramides are very important for the formation of the lamellar phases. After addition of free fatty acids the lipids are organised in an orthorhombic packing with a small proportion of lipids in a liquid phase. Our most recent results show that the presence of ceramide 1 and the formation of a liquid phase are crucial elements for the formation of the LPP. These observations and the broad-narrowbroad sequence of lipid layers in the LPP led us to propose a molecular model for this phase. This consists of one narrow central lipid layer with fluid domains with on both sides a broad layer with a crystalline structure. This model is referred to as `the sandwich model'.  相似文献   

13.
Lipid suspensions containing 2:1:1 skin ceramides:palmitic acid:cholesterol, similar to the lipid composition found in the extracellular matrix of skin stratum corneum, were analyzed by X-ray diffraction methods. These suspensions gave a sharp wide-angle reflection at 4.1 A, indicating tight hydrocarbon chain packing that would function as a water barrier, and low-angle lamellar diffraction with a repeat period near 130 A, similar to that previously recorded from intact stratum corneum. The lamellar repeat increased from 121 A at pH 6 to 133 A at pH 8.5, allowing phase angles of the lamellar data to be obtained by a sampling theorem "swelling" analysis. Electron density profiles showed that each repeating unit contained two asymmetric bilayers, with a fluid space on one side of the bilayer that increased with increasing pH, due to electrostatic repulsion between bilayers because of ionization of the palmitic acid. Profiles obtained from lamellae with cholesterol sulfate partially substituted for cholesterol showed large density increases on that same side of the bilayer, indicating that cholesterol is asymmetrically distributed in each bilayer. A molecular model was developed postulating that this asymmetry is due to the exclusion of cholesterol from lipid monolayers containing the ester-linked unsaturated (linoleic) hydrocarbon chain of skin ceramide 1. This model can explain the altered organization of extracellular lamellae in epidermal cysts (P. W. Wertz, D. C. Swartzendruber, K. C. Madison, D. T. Downing. 1987. J. Invest. Dermatol. 89:419-425) where the ester-linked chains have a higher percentage of saturated fatty acids than found in normal epidermis.  相似文献   

14.
Desulfation of cholesterol sulfate (CholS) to cholesterol (Chol) is an important event in epidermal homeostasis and necessary for stratum corneum (SC) barrier function. The CholS/Chol ratio decreases during SC maturation but remains high in pathological conditions, such as X-linked ichthyosis, characterized by dry and scaly skin. The aim of this study was to characterize the influence of the CholS/Chol molar ratio on the structure, dynamics, and permeability of SC lipid model mixtures. We synthesized deuterated CholS and investigated lipid models with specifically deuterated components using 2H solid-state NMR spectroscopy at temperatures from 25°C to 80°C. Although the rigid acyl chains in ceramides and fatty acids remained essentially rigid upon variation of the CholS/Chol ratio, both sterols were increasingly fluidized in lipid models containing higher CholS concentrations. We also show the X-ray repeat distance of the lipid lamellar phase (105 Å) and the orthorhombic chain packing of the ceramide’s acyl chains and long free fatty acids did not change upon the variation of the CholS content. However, the Chol phase separation visible in models with high Chol concentration disappeared at the 50:50 CholS/Chol ratio. This increased fluidity resulted in higher permeabilities to model markers of these SC models. These results reveal that a high CholS/Chol ratio fluidizes the sterol fraction and increases the permeability of the SC lipid phase while maintaining the lamellar lipid arrangement with an asymmetric sterol distribution.  相似文献   

15.
We present atomistic molecular dynamics results for fully hydrated bilayers composed of ceramide NS-24:0, free fatty acid 24:0 and cholesterol, to address the effect of the different components in the stratum corneum (the outermost layer of skin) lipid matrix on its structural properties. Bilayers containing ceramide molecules show higher in-plane density and hence lower rate of passive transport compared to phospholipid bilayers. At physiological temperatures, for all composition ratios explored, the lipids are in a gel phase with ordered lipid tails. However, the large asymmetry in the lengths of the two tails of the ceramide molecule leads to a fluidlike environment at the bilayer midplane. The lateral pressure profiles show large local variations across the bilayer for pure ceramide or any of the two-component mixtures. Close to the skin composition ratio, the lateral pressure fluctuations are greatly suppressed, the ceramide tails from the two leaflets interdigitate significantly, the depression in local density at the interleaflet region is lowered, and the bilayers have lowered elastic moduli. This indicates that the observed composition ratio in the stratum corneum lipid layer is responsible for both the good barrier properties and the stability of the lipid structure against mechanical stresses.  相似文献   

16.
The natural function of the skin is to protect the body from unwanted influences from the environment. The main barrier of the skin is located in the outermost layer of the skin, the stratum corneum. Since the lipids regions in the stratum corneum form the only continuous structure, substances applied onto the skin always have to pass these regions. For this reason the organization in the lipid domains is considered to be very important for the skin barrier function. Due to the exceptional stratum corneum lipid composition, with long chain ceramides, free fatty acids and cholesterol as main lipid classes, the lipid phase behavior is different from that of other biological membranes. In stratum corneum crystalline phases are predominantly present, but most probably a subpopulation of lipids forms a liquid phase. Both the crystalline nature and the presence of a 13 nm lamellar phase are considered to be crucial for the skin barrier function. Since it is impossible to selectively extract individual lipid classes from the stratum corneum, the lipid organization has been studied in vitro using isolated lipid mixtures. These studies revealed that mixtures prepared with isolated stratum corneum lipids mimic to a high extent stratum corneum lipid phase behavior. This indicates that proteins do not play an important role in the stratum corneum lipid phase behavior. Furthermore, it was noticed that mixtures prepared only with ceramides and cholesterol already form the 13 nm lamellar phase. In the presence of free fatty acids the lattice density of the structure increases. In stratum corneum the ceramide fraction consists of various ceramide subclasses and the formation of the 13 nm lamellar phase is also affected by the ceramide composition. Particularly the presence of ceramide 1 is crucial. Based on these findings a molecular model has recently been proposed for the organization of the 13 nm lamellar phase, referred to as "the sandwich model", in which crystalline and liquid domains coexist. The major problem for topical drug delivery is the low diffusion rate of drugs across the stratum corneum. Therefore, several methods have been assessed to increase the permeation rate of drugs temporarily and locally. One of the approaches is the application of drugs in formulations containing vesicles. In order to unravel the mechanisms involved in increasing the drug transport across the skin, information on the effect of vesicles on drug permeation rate, the permeation pathway and perturbations of the skin ultrastructure is of importance. In the second part of this paper the possible interactions between vesicles and skin are described, focusing on differences between the effects of gel-state vesicles, liquid-state vesicles and elastic vesicles.  相似文献   

17.
We report the results of an investigation on stratum corneum lipids, which present the main barrier of the skin. Molecular dynamics simulations, thermal analysis and FTIR measurements were applied. The primary objective of this work was to study the effect of cholesterol on skin structure and dynamics. Two molecular models were constructed, a free fatty acid bilayer (stearic acid, palmitic acid) and a fatty acid/cholesterol mixture at a 1:1 molar ratio. Our simulations were performed at constant pressure and temperature on a nanosecond time scale. The resulting model structures were characterized by calculating surface areas per headgroup, conformational properties, atom densities and order parameters of the fatty acids. Analysis of the simulations indicates that the free fatty acid fraction of stratum corneum lipids stays in a highly ordered crystalline state at skin temperatures. The phase behavior is strongly influenced when cholesterol is added. Cholesterol smoothes the rigid phases of the fatty acids: the order of the hydrocarbon tails (mainly of the last eight bonds) is reduced, the area per molecule becomes larger, the fraction of trans dihedrals is lower and the hydrophobic thickness is reduced. The simulation results are in good agreement with our experimental data from FTIR analysis and NIR-FT Raman spectroscopy.  相似文献   

18.
The influence of fatty acids on model cholesterol/phospholipid membranes   总被引:1,自引:0,他引:1  
The aim of this work was to verify the influence of the saturated (SFA) (stearic acid) and the unsaturated (UFA) (oleic and alpha-linolenic) fatty acids on model cholesterol/phospholipid membranes. The experiments were based on the Langmuir monolayer technique. Cholesterol and phospholipid were mixed in the molar ratio that corresponds to the proportion of these lipids in the majority of natural human membranes. Into the binary cholesterol/phospholipid monolayers, various amounts of fatty acids were incorporated. Our investigations were based on the analysis of the interactions between molecules in ternary (cholesterol/phospholipids/fatty acid) mixtures, however, also binary (cholesterol/fatty acid and phospholipids/fatty acid) mixed system were examined. It was concluded that the influence of the fatty acids on model cholesterol/phospholipid membrane is closely connected with the shape of the fatty acid molecule, resulting from the saturation degree of the hydrocarbon chain. It was found that the saturated fatty acid makes the model membrane more rigid, while the presence of unsaturated fatty acid increases its fluidity. The increasing amount of stearic acid gradually destabilizes model membrane, however, this effect is the weakest at low content of SFA in the mixed monolayer. Unsaturated fatty acids in a small proportion make the membrane thermodynamically more stable, while higher content of UFA decreases membrane stability. This explains low proportion of the free fatty acids to other lipids in natural membrane.  相似文献   

19.
Three specific linoleate-rich lipids have been identified in pig epidermis and are referred to as O-acylglucosyl ceramide, O-acyl ceramide, and O-acyl acid. The acid moiety is up to 70% linoleic acid and linked via the hydroxyl group of a omega-OH long-chain fatty acid, which itself is linked to sphingosine or glucosyl sphingosine. The identification of O-acyl ceramide confirmed the findings of another group, whereas the structural configuration of the O-acylglucosyl ceramide is different to previous reports. The identification of an O-acyl acid in epidermis is novel. Our evidence allows us to speculate that a hydroxylated derivative of the O-acyl ceramide may be intimately involved in the permeability barrier of skin, perhaps providing sufficient polarity to maintain a lamellar phase in the intercellular space of the lower stratum corneum region, and that it is specifically in this form that linoleic acid is involved in skin barrier function. Alternatively, or concurrently, this species may act as a signal for late keratinisation events.  相似文献   

20.
The aim of this study is to investigate the influence of ceramide head group architecture and free fatty acid (another main class of stratum corneum lipids) or protein (keratin), on the lamellar organization of the ceramide auto-associated in model films mimicking lipid organization within the stratum corneum. FTIR spectroscopy is a powerful technique for investigating the structure of such systems. This technique has already been used to characterize phase transitions of the SC and of related model systems. As temperature is known to modify the conformational order of lipids, we used it as a variable parameter to monitor the differences in the conformational stability of ceramides. Our study included four ceramides: ceramide 2, 3, 5 and 6 which differ by their head group architecture. Two kinds of lipid-lipid interactions were studied: non-polar and polar. We noted some structural factors which participated to the organizational behavior: insaturation of alkyl chain, alpha-hydroxyl on fatty acid moiety and sphingosine or phytosphingosine head group. There is a direct interaction of palmitic acid on alkyl chains organization and a weak interaction with polar head group in presence of keratin, both provoking a destabilization of the ceramidic orthorhombic organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号