首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly purified preparation of lipomodulin, a phospholipase-inhibitory protein from rabbit neutrophils treated with glucocorticoids, inhibited NK and antibody-dependent cellular cytotoxicity (ADCC) activities of human peripheral blood lymphocytes in a dose-dependent manner. The presence of lipomodulin during the early period of the cytotoxicity assay was necessary to obtain maximal inhibition. The inhibition of NK or ADCC activity by lipomodulin was greater when effector cells were treated with lipomodulin than when target cells were incubated with lipomodulin. As lipomodulin did not block binding of effector cells to target cells, our results suggest that lipomodulin inhibits the cytolytic phase of NK and ADCC activities after binding to target cells, and imply that phospholipase(s) may be involved in NK and ADCC activities.  相似文献   

2.
The present study strongly suggests that, in humans, natural killer (NK) activity and antibody-dependent cell-mediated cytotoxicity (ADCC) are mediated by the same effector cell population. This is supported by two different experimental approaches. First, competition for NK effector cells was accompanied by simultaneous inhibition of ADCC activity. Target cells sensitive to NK activity were capable of inhibiting specifically an ADCC assay in cold target competition experiments. Second, specific removal of NK cells on monolayers formed by target cells sensitive to NK activity caused simultaneous depletion of ADCC effector cells. In association with the removal on the monolayers of effector cells for ADCC as well as NK activity, we also found a significant depletion of cells bearing Fc gamma receptors.  相似文献   

3.
Xenogeneic antiserum (RH1) was prepared in Lewis rats by hyperimmunization with concanavalin A- (Con A) activated alloimmune human lymphocytes. The antiserum RH1 effectively inhibited human antibody-dependent cellular cytotoxicity (ADCC), cell-mediated cytotoxicity (CMC), and natural killing (NK) in the absence of complement (C). Inhibition by RH1 was dependent on the dilution of antiserum employed and the number of cytotoxic lymphocytes present during cytolysis. Pretreatment of lymphocytes with RH1 or the presence of RH1 in culture did not inhibit lymphocyte proliferation stimulated by Con A, phytohemagglutinin, or allogeneic cells; lymphokine production as measured by leukocyte-inhibiting factor production; antibody-dependent C lysis; or CMC mediated by murine cytotoxic T lymphocytes. Analysis of the mechanism of inhibition of cytotoxicity by RH1 revealed that 1) RH1 was not cytotoxic for human lymphocytes at 37 degrees C in the absence of C; 2) purified F(ab')2 fragments were equally inhibitory as whole serum; 3) pretreatment of lymphocytes with RH1 effectively inhibited their capacity to mediate ADCC, CMC, or NK, and this effect was reversible by culturing the cells overnight at 37 degrees C; 4) RH1 did not inhibit target cell binding by K cells, effector cells of ADCC, or alloimmune T cells, but did inhibit binding by NK cells; and finally, 5) the addition of RH1 to preformed lymphocyte-target conjugates in a single cell cytotoxicity assay inhibited killing of the bound target cells in all three systems without disrupting the conjugates. Collectively, these findings suggest that RH1 antiserum interacts with structures present on the surfaces of cytotoxic lymphocytes that are involved in the activation of the lytic mechanism(s) or with the actual lytic molecule or molecules themselves. Furthermore, the ability of RH1 to inhibit ADCC, CMC, and NK during the post-binding cytolytic phase of these reactions indicates that binding and cytolysis are distinct and separate events in all types of cell-mediated cytolysis.  相似文献   

4.
Our studies and other investigations have shown that NK effector cells can also mediate antibody-dependent cellular cytotoxicity (ADCC) through the use of the Fc gamma receptor on the NK cell membrane. Peripheral blood lymphocytes (PBL) derived from patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex exhibit a poor NK activity due to a defective "trigger" required for activation in the lethal hit stage of the NK lytic pathway. Consequently, it was important to delineate whether the defect in AIDS NK cells affected the ADCC function. By using the 51Cr-release assay, the ADCC cytotoxic activity of AIDS PBL was found to be within the normal range, despite the absence of significant NK activity. Several experiments corroborated that the same effector cells mediate both NK CMC and ADCC. Depletion of Fc gamma R-bearing cells resulted in elimination of both the ADCC and NK cytotoxic functions. Single cell analyses, using one- and two-target cell conjugates, revealed that the frequency of ADCC effector:target conjugates and the frequency of killer cells from AIDS PBL were comparable to the frequencies seen in the normal controls. However, when mixtures of NK and ADCC targets were used to form mixed two-target conjugates, the AIDS effector cells lysed only the bound ADCC target, whereas the normal effector cells lysed both the bound NK and ADCC targets. These results demonstrate clearly that the same NK/K effector cells from AIDS PBL, defective in NK activity, are not impaired in mediating ADCC activity. These findings were supported by the demonstration that AIDS PBL stimulated with ADCC targets, but not with NK targets, released NK cytotoxic factors, postulated mediators of the NK CMC reaction. These findings indicate that the NK/K cells in AIDS are triggered normally for ADCC activity but are not triggered for NK activity. Furthermore, the results indicate that the lytic machinery is not impaired in the AIDS NK/K cells.  相似文献   

5.
Surface immunoglobulin (sIg)-positive and sIg-negative subpopulations of macrophage-depleted murine splenic lymphocytes were obtained by Sephadex anti-Fab immunoabsorbent fractionation. These lymphocyte subpopulations were analyzed for the presence of Thy 1 and Ia alloantigens and also for Fc receptors by fluorescence microscopy. Concurrently, these lymphocyte subpopulations were studied for effector cell activity in antibody-dependent cellular cytotoxicity (ADCC). Effector cells mediating ADCC were contained in the sIg-negative lymphocyte subpopulation and sIg-positive lymphocytes did not mediate cytotoxicity. The majority of sIg-positive lymphocytes were found to bear Ia antigens and Fc receptors, and these cell surface structures were associated in that treatment of these cells with anti-Ia sera inhibited binding of complexed immunoglobulin to Fc receptors. In contrast, most sIg-negative, Thy 1-negative lymphocytes lacked Ia Antigens, and the Fc receptors detected on such cells were not blocked by anti-Ia sera. In addition, a small subpopulation of sIg-negative, Ia antigen-positive, Fc receptor-positive lymphocytes was found. Elimination of this subpopulation of Ia antigen-positive cells from sIg-negative lymphocytes, by treatment with anti-Ia serum and complement, did not diminish ADCC effector cell activity in the resultant cell population when compared with untreated sIg-negative lymphocytes. Thus, in murine spleen, nonphagocytic mononuclear cells that lack both sIg and Ia antigens were shown to mediate ADCC.  相似文献   

6.
Spontaneous lymphocyte-mediated cytotoxicity (SLMC) and antibody-dependent cellular cytotoxicity (ADCC) was assessed in 13 patients with immunodeficiency diseases—immunodeficiency-thymoma syndrome (1), Bruton type agammaglobulinemia (3), and common variable hypogammaglobulinemia (9). SLMC and ADCC function were intact (and possibly enhanced) in the patient with immunodeficiency thymoma. Both ADCC and SLMC were detectable in the three patients with X-linked agammaglobulinemia, one of whom had lower than expected SLMC. In all of the immunodeficient patients, the relative inability of B lymphocytes to produce immunoglobulin in vivo or in vitro did not consistently affect the ability of (presumably) other lymphocytes to mediate SLMC and ADCC, although in three of the CVH patients this was lower than normal. In every case, removal of Fc receptor-bearing cells from the patients' lymphocyte preparations severely depleted SLMC (and ADCC when tested), but cytotoxicity was either unchanged or enhanced by depletion of E rosette forming T cells. The effects of Fc receptor-positive cell depletion, T-cell depletion, culture serum variation, or the addition of antibody-coated erythrocytes to the assay were similar on both SLMC and ADCC effector cells (“NK” and “K” cells), and whether patients' or normal lymphocytes were tested. The possible significance of the results with respect to surveillance against cancer is discussed.  相似文献   

7.
Unstimulated human peripheral blood lymphocytes were depleted of K cells, which mediate antibody-dependent cellular cytotoxicity (ADCC) without removing NK cells, which mediate natural killing (NK). K cell depletion was achieved by buoyant centrifugation removal of lymphocytes that bound to glutaraldehyde-treated P815-AB cells at high lymphocyte-to-target ratios. Likewise, NK cells were removed with glutaraldehyde-treated K562 cells without removing K cells. Furthermore, both cytotoxic cell populations were observed directly in one agarose single-cell cytotoxic assay (ASCA) using P815-AB and K562 cells simultaneously as target cells. Moreover, the percentage of total cytotoxic cells was equal to the sum of the percentage of K and NK cells observed in separate ASCA. Collectively, these results indicate that K cells and NK cells are distinct subsets of FcR-bearing lymphocytes. One subset, K cells, has more avid Fc receptors (fcR) than NK cells and are 'activated' via thier FcR to kill antibody-coated target cells. The second subset, NK cells, have less avid FcR and are not 'activated' through their FcR to kill antibody-coated target cells.  相似文献   

8.
Normal human T cells grown in continued cultures in medium containing conditioned medium (CM) from PHA-stimulated lymphocytes were studied for their ability to manifest three known forms of cell-mediated cytotoxicity: lectin-induced cellular cytotoxicity (LICC), natural killer cell (NK) activity, and antibody-dependent cellular cytotoxicity (ADCC). The cultured T cells (CTC) were very effective mediators of LICC, being cytotoxic even at very low attacker-target cell ratios in the presence of different lectins, and against different types of targets. When tested without the addition of lectin, the CTC demonstrated a low degree of spontaneous cytotoxicity. This spontaneous cytotoxicity might not be due to conventional NK cells however, since the CTC failed to show significant numbers of cells with Fc receptors (FcR) for IgG, and had no detectable ADCC activity. CTC could represent a population enriched in polyclonal activated T cells with low spontaneous cytotoxicity against a variety of allogeneic target cells, which is greatly enhanced by the addition of lectins dur ing the 51Cr release assay.  相似文献   

9.
The effect of Parotis virus on antibody-dependent cellular cytotoxicity in vitro (ADCC) of human lymphocytes was investigated in a 51Cr-release assay and, at the effector cell level, in an ADCC plaque assay. Target cells were bovine or chicken erythrocytes, which are not susceptible to natural cytotoxicity (NK) of human lymphocytes. They were not killed when incubated with virus-treated lymphocytes in the absence of antibodies. Treatment of the lymphocytes or the target cells with small amounts of virus, however, resulted in a very significant enhancement of ADCC. The same results were obtained with live or UV-inactivated virus, suggesting that enhancement was a passive phenomenon not requiring infection. Enhancement was already significant after 3 hr of incubation, indicating that it was independent of endogenously released interferon. Enhancement of ADCC by virus was due to effector cell recruitment rather than due to the increase of the cytotoxic potential of the individual K cell. The highest frequency of effector cells was present in Percoll fractions enriched in large granular lymphocytes (LGL). Virus treatment resulted in recruitment of effector cells carrying T cell markers such as the T3 antigen (OKT3+), receptors for sheep erythrocytes, or Fc receptors for IgM. In contrast, the absolute number of K cells carrying the HNK-1 marker (Leu-7) or receptors for C3 fragments was not changed by the virus. It is concluded that Parotis virus enhances ADCC by improving effector cell-target cell contacts, resulting in recruitment of effector cells with T cell characteristics. Recruitment is accompanied by a significant reduction of the antibody concentration needed for ADCC induction. This virus-mediated enhancement of ADCC may be of importance for protection of the host in the early phases of a virus infection in which the amounts of anti-viral IgG antibodies capable of inducing cellular cytotoxicity may yet be very small.  相似文献   

10.
K cells, the effectors of antibody-dependent cell-mediated cytotoxicity, were found to express human T but not B lymphocyte antigens detected by rabbit anti-HTLA and anti-HBLA. Pretreatment of effector cells with anti-HTLA+C inhibited ADCC by specifically lysing K cells: no inhibition of ADCC by anti-HTLA occurred when deltaC was substituted for C. By contrast, pretreatment of effector cells with anti-HBLA nonspecifically inhibited ADCC, probably for forming antigen-antibody complexes with HBLA+ cells in effector suspensions: a) treatment with anti-HBLA deltaC was more inhibitory of ADCC than treatment with anti-HBLA+C, and b) the inhibitory effect of anti-HBLA on ADCC was either eliminated or markedly reduced if effector suspensions were first passed through a nylon fiber column, a procedure that removed most HBLA+ cells without affecting K cell activity. HTLA antigens expressed by K cells and NK cells are the same as HTLA antigens expressed by thymocytes since thymocytes completely absorb the anti-K cell and NK cell reactivity of anti-HTLA.  相似文献   

11.
Natural cell-mediated cytotoxicity of human peripheral blood lymphocytes natural killer (NK) against K-562 and antibody-dependent cellular cytotoxicity (ADCC) against Chang cells, as measured in a 4-hr 51Cr release assay, were both completely removed by depletion of Fc receptor-positive (FcR+) cells. After in vitro culture for 7 days, however, NK- and ADCC-like activities spontaneously regenerated. The nature of precursor cells was studied by examination of lymphocyte subpopulations required for generation of this cytotoxicity. After depletion of FcR+ cells from PBL, the following subpopulations were prepared: sheep erythrocyte rosette-forming cells (E+), surface membrane immunoglobulin-positive cells (SmIg+), and null cells (lacking E+, SmIg+, or FcR+ markers). Separate cell types or mixtures were cultured in vitro in medium containing 10% fetal calf serum for 7 days and then tested for NK and ADCC. Whereas unseparated FcR-depleted cells developed substantial cytotoxic activity, each of the subpopulations cultured alone was negative or had low activity. Addition of SmIg+ cells to other cell types had no effect; however, mixture of 80% E+ and 20% null cells resulted in optimal NK and ADCC. It is not presently clear which population the precursors were in. However, the requirement for proliferation by the null cell population but not by the E+ cells (as indicated by sensitivity to radiation and mitomycin C) suggested that the precursors for NK cells may be null cells.  相似文献   

12.
Normal human peripheral blood lymphocytes (PBL) express several in vitro cytotoxic functions, among which are natural killer (NK), antibody-dependent cellular cytotoxicity (ADCC), and lectin-dependent cellular cytotoxicity (LDCC). The relationship of these various cytotoxic functions and the identity of cells involved has been a subject of controversy. Recently it was reported that NK and K for ADCC can be mediated by the same cell, suggesting that they constitute in large part a single subpopulation with multiple cytotoxic functions. The ability of this NK/K effector cell to mediate LDCC was examined here using the two target conjugate assay. The effector cells were Ficoll-Hypaque PBL or LGL-enriched fractions. The targets used were K562 or MOLT for NK, RAJI coated with antibody for ADCC, and RAJI coated with PHA or Con A or modified by NaIO4 for LDCC. In the two-target conjugate assay, one of the targets is fluorescein labeled for identification. The results show that (a) LDCC copurifies with NK/K and is enriched in the LGL fraction, as measured in both the 51Cr-release assay and the single-cell assay for cytotoxicity; (b) single effector cells simultaneously bind to NK or ADCC and LDCC targets, revealing that single cells bear binding receptors for all targets; and (c) single lymphocytes were not able to kill both bound NK/K and LDCC targets. However, significant two-target killing was obtained when both targets were NK targets, ADCC targets, LDCC targets, or one NK and one ADCC target. These results demonstrate that the NK and LDCC effector cells are distinct subpopulations copurified in the LGL fraction. In addition, the results show that lectin is unable to trigger globally an NK effector cell to mediate cytotoxicity against a bound NK insensitive target. Thus, although both NK and LDCC effector cells are present in the LGL fraction and can bind to both types of targets, the trigger of the lethal hit event is the function of specialized effector cells.  相似文献   

13.
The in vitro effect of prednisolone (PRD) on NK and ADCC activities of human lymphocytes was investigated. PRD at concentrations ranging from 7.5 X 10(-3) to 1 X 10(-5) M significantly inhibited NK activity, while concentrations of 7.5 X 10(-3) to 1 X 10(-4) M inhibited ADCC activities of PBL when added directly to the mixture of effector and target cells. Lymphocytes pre-cultured for 24 hr with PRD at concentrations ranging from 1 X 10(-4) M to 1 X 10(-6) M showed significant suppression of their NK activity. Inhibition was proportional to the concentration of the drug, and was observed at as early as 1 hr of incubation at various effector to target cell ratios with several targets. PRD also inhibited NK and ADCC activities of purified T cells, non-T cells, and NK-enriched effector cells. In target-binding assays, PRD decreased the target-binding capacity of effector lymphocytes in a dose-dependent manner. PRD-induced inhibition could be reversed by incubating lymphocytes for 1 hr with interferon or IL 2. Pretreatment of targets with PRD for 4 hr did not affect cytotoxic activity. Inhibition of cytotoxicity was not due to direct toxicity to effector cells because lymphocytes treated with PRD showed normal spontaneous 51Cr release, and their viability after 24 hr of pre-culture with PRD was comparable to that of untreated control cells. These results demonstrate that PRD has significant immunomodulatory effects on human NK and ADCC activities that may be of clinical relevance.  相似文献   

14.
The monoclonal antibody 13.3 specifically blocks the trigger process of the NK-K562 cytolytic sequence at a post-binding effector cell level. This antibody was used to define differences in the lytic trigger processes of NK and other mechanisms of K562 lysis. Monoclonal antibody 13.3 inhibited lysis of K562 target cells by freshly isolated peripheral blood lymphocytes (PBL) and purified large granular lymphocytes (LGL), but had no inhibitory effect on antibody-dependent cell-mediated cytotoxicity to K562 by these effectors. Lectin-dependent cellular cytotoxicity (LDCC) to this target cell was also unresponsive to 13.3. The 13.3-induced inhibition of NK-K562 lytic activity persisted when PBL were activated in culture with interleukin 2 (IL 2) for periods up to 48 hr. After 48 hr of culture, the degree of inhibition diminished progressively in medium containing fetal calf serum but not in medium containing autologous serum. This 13.3-unresponsive lytic activity in cultured PBL could be attributed to more than one cell type and was present in both the LGL and Fc gamma receptor-depleted T cell fraction. Thus, K562 lysis by freshly isolated human lymphocytes via NK, K, and LDCC mechanisms is characterized by heterogeneity of the post-binding effector cell trigger mechanism. K562 lysis by lymphocytes cultured with IL 2 is similarly heterogeneous.  相似文献   

15.
The mechanism of lymphocyte-mediated cytotoxicity to cells infected with measles virus was investigated. Cytotoxicity was measured in a direct assay, immediately after the isolation of lymphocytes from human peripheral blood; mononuclear leukocytes, infected with measles virus in vitro, served as autologous target cells. Virus-specific cytotoxicity required the presence of both IgG antibodies against measles virus and of effector lymphocytes. The effector lymphocytes had Fc receptors and were mainly present in a fraction of non-T lymphocytes. Monocytes were not cytotoxic but rather inhibitory. These results indicate that lysis of virus-infected cells in this direct assay is due to antibody-dependent cellular cytotoxicity (ADCC), caused by K cells. Control experiments showed that the virus-infected target cells were sensitive to incubation with human serum or IgG, resulting in a nonspecific increase of 51Cr release; however, this did not affect the results of K-cell cytotoxicity. Maximal virus-specific lysis by ADCC did not reach the level obtained by complement-dependent cytotoxicity. Possible explanations for this difference are discussed.  相似文献   

16.
17.
Treatment of chronic lymphocytic leukemia patients with anti-CD20 mAb rituximab (RTX) leads to substantial CD20 loss on circulating malignant B cells soon after completion of the RTX infusion. This CD20 loss, which we term shaving, can compromise the therapeutic efficacy of RTX, and in vitro models reveal that shaving is mediated by effector cells which express Fc gammaRI. THP-1 monocytes and PBMC promote shaving, but PBMC also kill antibody-opsonized cells by antibody-dependent cellular cytotoxicity (ADCC), a reaction generally considered to be due to NK cells. We hypothesized that within PBMC, monocytes and NK cells would have substantially different and competing activities with respect ADCC or shaving, thereby either enhancing or inhibiting the therapeutic action of RTX. We measured ADCC and RTX removal from RTX-opsonized Daudi cells promoted by PBMC, or mediated by NK cells and monocytes. NK cells take up RTX and CD20 from RTX-opsonized B cells, and mediate ADCC. PBMC depleted of NK cells show little ADCC activity, whereas PBMC depleted of monocytes have greater ADCC than the PBMC. Pre-treatment of RTX-opsonized B cells with THP-1 cells or monocytes suppresses NK cell-mediated ADCC, and blockade of Fc gammaRI on monocytes or THP-1 cells abrogates their ability to suppress ADCC. Our results indicate NK cells are the principal cells in PBMC that kill RTX-opsonized B cells, and that monocytes can suppress ADCC by promoting shaving. These results suggest that RTX-based immunotherapy of cancer may be enhanced based on paradigms which include infusion of compatible NK cells and inhibition of monocyte shaving activity.  相似文献   

18.
The role of the low avidity 40,000 dalton receptor for IgG (Fc gamma R) present on K562 and U937 cells in sensitivity to natural killing (NK) was studied by using a murine monoclonal antibody (mAb) specific for the 40,000 dalton Fc gamma R (alpha Fc gamma R mAb). Pretreatment of K562 target cells with intact alpha Fc gamma R mAb or its Fab fragment or anti-transferrin receptor (alpha TFR) mAb partially blocked in a dose-dependent manner, NK activity to K562 cells. However, combined pretreatment with alpha Fc gamma R and alpha TFR mAb completely blocked NK activity against K562 targets. As compared with K562 cells, lower levels of NK were elicited against Molt-4, U937, HL-60, and Daudi targets. Although NK activity to Molt-4 targets was not affected by alpha Fc gamma R mAb, it was fully prevented by pretreatment with alpha TFR mAb. In contrast, NK to U937 cells was not influenced by alpha TFR mAb, but it was strongly inhibited by alpha Fc gamma R mAb. The resistance of 3H-TdR-prelabeled adherent HEp-2 cells to natural cell-mediated cytotoxicity was not affected by either mAb. Lectin-dependent cell-mediated cytotoxicity (LDCC) against HEp-2 cells due to the presence of concanavalin A, and was completely abrogated by pretreatment of the targets with alpha TFR mAb, but was unaffected by alpha Fc gamma R mAb. By use of the flow cytometer, a significant correlation was detected between the relative expression of 40,000 dalton Fc gamma R and the susceptibility to NK, whereas the expression of TFR was discordant from NK sensitivity. As determined in the single cell cytotoxicity assay alpha Fc gamma R mAb reduced the frequency of target binding effector cells without affecting the number of dead bound targets. This pattern of inhibition was found against both K562 and U937 targets. Alternatively, alpha TFR mAb inhibited both binding and killing of K562 and Molt-4 targets. Because pretreatment of HEp-2 cells with alpha TFR mAb did not influence conjugate formation, the blocking of LDCC to HEp-2 cells by alpha TFR mAb can be related to post-binding events. These data show that although both the 40,000 dalton Fc gamma R and the TFR can be target structures for NK cell recognition, the TFR may also play an important role in the post-binding events.  相似文献   

19.
《MABS-AUSTIN》2013,5(2):409-421
Antibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC. Here, non-fucosylated or protein-engineered anti-EGFR antibodies with optimized FcγRIIIa affinities demonstrated the expected benefit in NK cell-mediated ADCC, but did not mediate ADCC by PMN, which could be restored by FcγRIIIb blockade. Furthermore, eosinophils and PMN from paroxysmal nocturnal hemoglobinuria patients that expressed no or low levels of FcγRIIIb mediated effective ADCC with FcγRIII-optimized anti-EGFR antibody. Additional experiments with double FcγRIIa/FcγRIII-optimized constructs demonstrated enhanced PMN-mediated ADCC compared with single FcγRIII-optimized antibody. In conclusion, our data demonstrate that FcγRIIIb engagement impairs PMN-mediated ADCC activity of FcγRIII-optimized anti-EGFR antibodies, while further optimization of FcγRIIa binding significantly restores PMN recruitment.  相似文献   

20.
Killer cells (K cells) enriched from human blood mononuclear cells which mediate antibody-dependent cellular cytotoxicity (ADCC) were examined for surface markers. Sixty-seven percent of the E-rosette-negative, sIg-negative cells reacted with anti-T cell serum (AMT) previously shown to react with immunochemically defined T-cell antigens. Phytohemagglutinin induced 25% of K cells to express an E-rosette receptor. When these induced cells were isolated, greater than 98% reacted with AMT and 17% expressed the Fc receptor for IgG. Furthermore, they retained their functional capacity in ADCC. These findings demonstrate that an E-rosette receptor can be induced on human K cells. The data suggest the K-cell fraction included a population of thymus-dependent lymphocytes which can function as effector cells in ADCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号