首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
In contrast to the conventional notion regarding tumour development as a cell autonomous process in which the major participants were the cancer cells, increasing evidence attributes important role in the stromal components, namely fibroblasts, and view the tumour as a heterogenous mixture of different cell types. These different types of cells, being cancer cells, fibroblasts, endothelial cells, and others, interact reciprocally and play an almost equally important role in the manifestation of certain aspects of the malignant phenotype. The elucidation of the mechanistic base of such interactions, besides the contribution to understand fundamental aspects of tumour cell biology, promises important applications in diagnosis, prognosis and therapy of the disease. (Mol Cell Biochem 261: 117–122, 2004)  相似文献   

2.
Angiogenesis, the formation of new blood vessels, is an essential process for tumour progression and is an area of significant therapeutic interest. Different in vitro systems and more complex in vivo systems have been described for the study of tumour angiogenesis. However, there are few human 3D in vitro systems described to date which mimic the cellular heterogeneity and complexity of angiogenesis within the tumour microenvironment. In this study we describe the Minitumour model--a 3 dimensional human spheroid-based system consisting of endothelial cells and fibroblasts in co-culture with the breast cancer cell line MDA-MB-231, for the study of tumour angiogenesis in vitro. After implantation in collagen-I gels, Minitumour spheroids form quantifiable endothelial capillary-like structures. The endothelial cell pre-capillary sprouts are supported by the fibroblasts, which act as mural cells, and their growth is increased by the presence of cancer cells. Characterisation of the Minitumour model using small molecule inhibitors and inhibitory antibodies show that endothelial sprout formation is dependent on growth factors and cytokines known to be important for tumour angiogenesis. The model also shows a response to anti-angiogenic agents similar to previously described in vivo data. We demonstrate that independent manipulation of the different cell types is possible, using common molecular techniques, before incorporation into the model. This aspect of Minitumour spheroid analysis makes this model ideal for high content studies of gene function in individual cell types, allowing for the dissection of their roles in cell-cell interactions. Finally, using this technique, we were able to show the requirement of the metalloproteinase MT1-MMP in endothelial cells and fibroblasts, but not cancer cells, for sprouting angiogenesis.  相似文献   

3.
Breast cancer tissue consists of both carcinoma cells and stromal cells, and intratumoral stroma is composed of various cell types such as fibroblasts, adipocytes, inflammatory including lymphocytes and macrophage and lymphatic and blood capillaries including pericytes and endothelial cells. Recently, cell-cell communications or interactions among these cells have been considered to play an important role to cancer initiation, promotion, and progression. In particular, intratumoral fibroblasts are well known as cancer-associated fibroblast (CAF). CAF is considered to be different from normal fibroblasts in terms of promoting cancer progression through the cytokine signals. Carcinoma cell lines have contributed to the advancement of our understanding of cancer cell biology. Numerous researches have employed these carcinoma cell lines as a single- or mono-culture. However, it is also true that this mono-culture system cannot evaluate interactions between carcinoma and intratumoral stromal cells. Co-culture compositions of two different cell type of cancer tissues i.e., carcinoma cell lines and fibroblasts, were established in order to evaluate cell-cell interactions in these cancer microenvironment. This co-culture condition has the advantage of evaluating cell-cell interactions of cancer microenvironment. Therefore, in this review, we focused upon co-culture system and its application to understanding of various biological phenomenon as an ex vivo evaluation method of cancer microenvironment in breast cancer.  相似文献   

4.
Background information. Multipotent mesenchymal stem cells can participate in the formation of a microenvironment stimulating the aggressive behaviour of cancer cells. Moreover, cells exhibiting pluripotent ESC (embryonic stem cell) markers (Nanog and Oct4) have been observed in many tumours. Here, we investigate the role of cancer‐associated fibroblasts in the formation of stem cell supporting properties of tumour stroma. We test the influence of fibroblasts isolated from basal cell carcinoma on mouse 3T3 fibroblasts, focusing on the expression of stem cell markers and plasticity in vitro by means of microarrays, qRT‐PCR (quantitative real‐time PCR) and immunohistochemistry. Results. We demonstrate the biological activity of the cancer stromal fibroblasts by influencing the 3T3 fibroblasts to express markers such as Oct4, Nanog and Sox2 and to show differentiation potential similar to mesenchymal stem cells. The role of growth factors such as IGF2 (insulin‐like growth factor 2), FGF7 (fibroblast growth factor 7), LEP (leptin), NGF (nerve growth factor) and TGFβ (transforming growth factor β), produced by the stromal fibroblasts, is established to participate in their bioactivity. Uninduced 3T3 do not express the stem cell markers and show minimal differentiation potential. Conclusions. Our observations indicate the pro‐stem cell activity of cancer‐associated fibroblasts and underline the role of epithelial—mesenchymal interaction in tumour biology.  相似文献   

5.
Cholangiocarcinoma (CCA) is a relatively rare malignant and lethal tumour derived from bile duct epithelium and the morbidity is now increasing worldwide. This disease is difficult to diagnose at its inchoate stage and has poor prognosis. Therefore, a clear understanding of pathogenesis and major influencing factors is the key to develop effective therapeutic methods for CCA. In previous studies, canonical correlation analysis has demonstrated that tumour microenvironment plays an intricate role in the progression of various types of cancers including CCA. CCA tumour microenvironment is a dynamic environment consisting of authoritative tumour stromal cells and extracellular matrix where tumour stromal cells and cancer cells can thrive. CCA stromal cells include immune and non‐immune cells, such as inflammatory cells, endothelial cells, fibroblasts, and macrophages. Likewise, CCA tumour microenvironment contains abundant proliferative factors and can significantly impact the behaviour of cancer cells. Through abominably intricate interactions with CCA cells, CCA tumour microenvironment plays an important role in promoting tumour proliferation, accelerating neovascularization, facilitating tumour invasion, and preventing tumour cells from organismal immune reactions and apoptosis. This review summarizes the recent research progress regarding the connection between tumour behaviours and tumour stromal cells in CCA, as well as the mechanism underlying the effect of tumour stromal cells on the growth of CCA. A thorough understanding of the relationship between CCA and tumour stromal cells can shed some light on the development of new therapeutic methods for treating CCA.  相似文献   

6.
7.
Cancerous stroma coevolves alongside tumour progression, thereby promoting the malignant conversion of epithelial carcinoma cells. To date, an abundance of data have supported crucial roles of the tumour microenvironment (TME) in providing cancer cells with proliferative, migratory, survival and invasive propensities favouring the processes of tumourigenesis. The cancerous reactive stroma is frequently populated by a large number of myofibroblasts (MFs), which are activated, non‐transformed fibroblasts expressing α‐smooth muscle actin (α‐SMA). MFs together with non‐MF cells present in the tumour‐associated stroma are collectively referred to as carcinoma‐associated fibroblasts (CAFs), one of the major stromal cell types recognised in various human carcinomas. Recruitment of fibroblasts and/or their progenitors to a tumour mass and their subsequent transdifferentiation into MFs, as well as ongoing maintenance of their activated state, are believed to be essential processes facilitating tumour progression. However, the complex networks of signalling pathways mediating the phenotypic conversion into CAFs, as well as those underlying their tumour‐promoting interactions with other tumour‐constituting cells, have yet to be fully explored. Histopathological confirmation of the presence of large numbers of CAF MFs within TME and their altered gene expression profiles are known to be associated with disease progression and to serve as independent negative prognostic factors for a wide range of tumour types. In this review, we examine the current evidence shedding light on the emerging roles of tumour‐promoting CAFs, cells that are pivotal for epithelial cancer development and progression, and discuss the therapeutic potential of targeting these cells. J. Cell. Physiol. 228: 1651–1657, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Multiple studies have shown that cancer‐associated fibroblasts (CAFs) play an important role in tumour progression, including carcinogenesis, invasion, metastasis and the chemoresistance of cancer cells. Immune cells, including macrophages, natural killer cells, dendritic cells and T cells, play a dual role in the tumour microenvironment. Although increasing research has focused on studying interactions between distinct cells in the tumour microenvironment, the complex relationships between CAFs and immune cells remain unclear and need further study. Here, we summarize our current understanding of crosstalk between CAFs and immune cells, which may help clarify their diagnostic and therapeutic value in tumour progression.  相似文献   

9.
The oncostatin M signalling pathway: reversing the neoplastic phenotype?   总被引:3,自引:0,他引:3  
Oncostatin M (OSM) is a member of the interleukin 6 (IL-6) family of cytokines and was originally identified by its ability to inhibit proliferation of melanoma cells but augment the growth of normal fibroblasts. OSM has pleiotropic effects on many different cell types, but here we focus on its ability to inhibit the proliferation of cell lines derived from several tumour types, including breast carcinoma, ovarian cancer, melanoma, glioma and lung carcinoma. The inhibition of proliferation of several cancer cell lines by OSM is associated with alterations in cellular morphology and with phenotypic changes that are consistent with the induction of differentiation of these cells. These observations raise the possibility that OSM could have therapeutic potential.  相似文献   

10.
Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy.  相似文献   

11.
Tumor development and tumor progression is not only determined by the corresponding tumor cells but also by the tumor microenvironment. This includes an orchestrated network of interacting cell types (e.g. immune cells, endothelial cells, fibroblasts, and mesenchymal stroma/stem cells (MSC)) via the extracellular matrix and soluble factors such as cytokines, chemokines, growth factors and various metabolites. Cell populations of the tumor microenvironment can interact directly and indirectly with cancer cells by mutually altering properties and functions of the involved partners. Particularly, mesenchymal stroma/stem cells (MSC) play an important role during carcinogenesis exhibiting different types of intercellular communication. Accordingly, this work focusses on diverse mechanisms of interaction between MSC and cancer cells. Moreover, some functional changes and consequences for both cell types are summarized which can eventually result in the establishment of a carcinoma stem cell niche (CSCN) or the generation of new tumor cell populations by MSC-tumor cell fusion.  相似文献   

12.
13.
Increasing our knowledge of the mechanisms regulating cell proliferation, migration and invasion are central to understanding tumour progression and metastasis. The local tumour microenvironment contributes to the transformed phenotype in cancer by providing specific environmental cues that alter the cells behaviour and promotes metastasis. Fibroblasts have a strong association with cancer and in recent times there has been some emphasis in designing novel therapeutic strategies that alter fibroblast behaviour in the tumour microenvironment. Fibroblasts produce growth factors, chemokines and many of the proteins laid down in the ECM (extracellular matrix) that promote angiogenesis, inflammation and tumour progression. In this study, we use a label-free RTCA (real-time cell analysis) platform (xCELLigence) to investigate how media derived from human fibroblasts alters cancer cell behaviour. We used a series of complimentary and novel experimental approaches to show HCT116 cells adhere, proliferate and migrate significantly faster in the presence of media from human fibroblasts. As well as this, we used the xCELLigence CIM-plates system to show that HCT116 cells invade matrigel layers aggressively when migrating towards media derived from human fibroblasts. These data strongly suggest that fibroblasts have the ability to increase the migratory and invasive properties of HCT116 cells. This is the first study that provides real-time data on fibroblast-mediated migration and invasion kinetics of colon cancer cells.  相似文献   

14.
Cytokines such as interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF), have been identified as important regulators of aromatase activity in fibroblasts derived from normal and malignant breast tissues, and may play an important role in controlling aromatase activity in breast tumours. The major source of such cytokines within breast tumours remains to be established but macrophages and lymphocytes, which can infiltrate tumours, have been identified as a potential source of aromatase stimulatory cytokines. To obtain further insight into the possible role played by the immune system in cancer development, and in particular its ability to regulate aromatase activity via cytokine production, we have obtained peripheral blood monocytes and lymphocytes from an immunosuppressed kidney transplant recipient, receiving cyclosporin A therapy, and a woman with breast cancer. Monocytes and lymphocytes were stimulated with lipopolysaccharide (LPS), and the conditioned medium (CM) collected from these cells was tested for its ability to stimulate aromatase activity in fibroblasts derived from normal breast tissue from a woman undergoing lumpectomy for the removal of a breast tumour. The white blood cell count was lower for the immunosuppressed patient, mainly because of the reduction in the number of monocytes and lymphocytes. The ability of CM from the monocytes and lymphocytes of the immunosuppressed patient to stimulate aromatase activity was significantly reduced (68% and 82% for monocytes and lymphocytes, respectively) compared with that of CM from the cells of the woman with breast cancer. It is possible, therefore, that immunosuppression, which has been found to be associated with a reduction in the incidence of de novo breast cancer in kidney transplant recipients, may exert its effect by inhibiting cytokine production by the cells of the immune system and thus oestrogen synthesis. In contrast to the stimulatory effects that TNF has on aromatase activity in breast fibroblasts, in MCF-7 breast cancer cells, which possess low aromatase activity, it reduced activity. However, the extent of inhibition of aromatase activity in these epithelial cells was much lower than the marked stimulation which it can induce in breast fibroblasts.  相似文献   

15.
We investigated the effect of a triterpene saponoside from Lysimachia thyrsiflora L. upon the viability, proliferation, morphology and cell motility of human melanoma HTB-140 cells and human skin fibroblasts (HSFs). The compound, denoted LTS-4, decreased the viability and rate of cell growth of both cell types in a time-and dose-dependent manner, and proved cytotoxic against cancer cells at significantly lower concentrations than for fibroblasts. LTS-4 also affected the morphology of the examined cells, causing vacuolisation and actin cytoskeleton disintegration, and had an inhibitory effect on the tumour cell motility.  相似文献   

16.
《Cellular signalling》2014,26(6):1294-1302
The PI3K-Akt signalling pathway is a well-established driver of cancer progression. One key process promoted by Akt phosphorylation is tumour cell motility; however the mechanism of VEGF-induced Akt phosphorylation leading to motility remains poorly understood. Previously, we have shown that Akt phosphorylation induced by different factors causes both stimulation and inhibition of motility in different cell types. However, differential phosphorylation of Akt at T308 and S473 residues by VEGF and its role in head and neck cancer cell motility and progression is unknown. The cell lines investigated in this study exhibited a change in phosphorylation of Akt in response to VEGF. However, in terms of motility, VEGF stimulated oral cancer and its associated cell lines, but not normal keratinocytes or oral mucosal fibroblasts. The addition of a PI3 kinase and mTOR inhibitor, inhibited the phosphorylation of Akt and also effectively blocked VEGF-induced oral cancer cell motility, whereas only the PI3 kinase inhibitor blocked oral cancer associated fibroblast cell motility. This study therefore discloses that two different mechanisms of Akt phosphorylation control the motility potential of different cell lines. Akt phosphorylated at both residues controls oral cancer cell motility. Furthermore, immunohistochemical analysis of VEGF positive human head and neck tumour tissues showed a significant increase in Akt phosphorylation at the T308 residue, suggesting that pAkt T308 may be associated with tumour progression in vivo.  相似文献   

17.
ABSTRACT: Cancer-initiating cells display aberrant functional and phenotypic characteristics of normal stem cells from which they evolved by accumulation of multiple cytogenetic and/or epigenetic alterations. Signal transduction pathways which are essential for normal stem cell function are abnormally expressed by cancer cells, with a cancer cell phenotype playing an essential role in cancerization and metastasis.Local tumour progression, metastasis and metastatic tumour growth are mediated by direct cell-to-cell and paracrine reciprocal interactions between cancer cells and various stromal cells including fibroblasts, macrophages, bone marrow derived stem cells and progenitor cells. These interactions mediate breakdown of basement membrane barriers and angiogenesis both locally at the invasive front of the primary tumour and at the distant metastatic site; attract primary tumour cells to the candidate metastatic site; and promote proliferation, survival and growth of primary tumour cells and of metastatic cells at their distant site.It is the purpose of this article to highlight the analogies between some of the genetic programs of normal stem cells, and of cancer cells participating in the process of metastasis.  相似文献   

18.
In the early stages of breast cancer metastasis, epithelial cells penetrate the basement membrane and invade the surrounding stroma, where they encounter fibroblasts. Paracrine signaling between fibroblasts and epithelial tumor cells contributes to the metastatic cascade, but little is known about the role of adhesive contacts between these two cell types in metastasis. Here we show that MCF-7 breast cancer epithelial cells and normal breast fibroblasts form heterotypic adhesions when grown together in co-culture, as evidenced by adhesion assays. PCR and immunoblotting show that both cell types express multiple members of the cadherin superfamily, including the atypical cadherin, cadherin-23, when grown in isolation and in co-culture. Immunocytochemistry experiments show that cadherin-23 localizes to homotypic adhesions between MCF-7 cells and also to heterotypic adhesions between the epithelial cells and fibroblasts, and antibody inhibition and RNAi experiments show that cadherin-23 plays a role in mediating these adhesive interactions. Finally, we show that cadherin-23 is upregulated in breast cancer tissue samples, and we hypothesize that heterotypic adhesions mediated by this atypical cadherin may play a role in the early stages of metastasis.  相似文献   

19.
BACKGROUND INFORMATION: Directional cell migration is a fundamental feature of embryonic development, the inflammatory response and the metastatic spread of cancer. Migrating cells have a polarized morphology with an asymmetric distribution of signalling molecules and of the actin and microtubule cytoskeletons. The dynamic reorganization of the actin cytoskeleton provides the major driving force for migration in all mammalian cell types, but microtubules also play an important role in many cells, most notably neuronal precursors. RESULTS: We previously showed, using primary fibroblasts and astrocytes in in vitro scratch-induced migration assays, that the accumulation of APC (adenomatous polyposis coli; the APC tumour suppressor protein) at microtubule plus-ends promotes their association with the plasma membrane at the leading edge. This is required for polarization of the microtubule cytoskeleton during directional migration. Here, we have examined the organization of microtubules in the soma of migrating neurons and fibroblasts. CONCLUSIONS: We find that APC, through a direct interaction with the NPC (nuclear pore complex) protein Nup153 (nucleoporin 153), promotes the association of microtubules with the nuclear membrane.  相似文献   

20.
Activation of fibroblasts in cancer stroma   总被引:1,自引:0,他引:1  
Tumor microenvironment has emerged as an important target for cancer therapy. In particular, cancer-associated fibroblasts (CAF) seem to regulate many aspects of tumorigenesis. CAFs secrete a variety of soluble factors that act in a paracrine manner and thus affect not only cancer cells, but also other cell types present in the tumor stroma. Acting on cancer cells, CAFs promote tumor growth and invasion. They also enhance angiogenesis by secreting factors that activate endothelial cells and pericytes. Tumor immunity is mediated via cytokines secreted by immune cells and CAFs. Both immune cells and CAFs can exert tumor-suppressing and -promoting effects. CAFs, and the factors they produce, are attractive targets for cancer therapy, and they have proven to be useful as prognostic markers. In this review we focus mainly on carcinomas and discuss the recent findings regarding the role of activated fibroblasts in driving tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号