首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ethyleneglycol)-bound NAD (PEG-NAD) was covalently linked to Thermus thermophilus malate dehydrogenase with a bifunctional reagent, 3,3'-(1,6-dioxo-1,6-hexanediyl)bis-2-thiazolidinethione. The covalently linked malate-dehydrogenase--PEG--NAD complex (MDH-PEG-NAD) was purified by DEAE-Sephadex column chromatography to remove unbound PEG-NAD, and fractionated by blue-Sepharose column chromatography into four preparations: MDH-PEG-NAD I, MDH-PEG-NAD II, MDH-PEG-NAD III and MDH-PEG-NAD IV. The average numbers of NAD moieties covalently bound per subunit of MDH-PEG-NAD I, MDH-PEG-NAD II, MDH-PEG-NAD III and MDH-PEG-NAD IV were 1.2, 1.2, 0.8 and 0.5, respectively, and the values were confirmed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. 60-80% bound NAD moiety of these preparations of MDH-PEG-NAD was reduced by the enzyme moiety in the presence of L-malate, and the specific activity of the enzyme moiety of the preparations was more than 80% that of the native enzyme. MDH-PEG-NAD I has the following properties. The Km value for exogenous NAD is three times that of the native enzyme. The coenzyme activity of its NAD moiety is 20-40% that of native NAD for alcohol and lactate dehydrogenases. The complex catalyzes the oxidation of L-malate in the presence of the redox system of 5-ethylphenazinium ethyl sulfate and a tetrazolium salt with a rate constant of 0.11 s-1. The coenzyme moiety of the complex can also be recycled by coupled reactions of the active site of the same complex and alcohol dehydrogenase. These results indicate that MDH-PEG-NAD works as an NAD(H)-regeneration unit for coupled reactions.  相似文献   

2.
A pCW vector harboring rat liver serine dehydratase cDNA was expressed in Escherichia coli. The expressed level was about 5-fold higher in E. coli BL21 than in JM109 cell extract; the former lacked two kinds of proteases. Immunoblot analysis revealed the occurrence of a derivative other than serine dehydratase in the JM109 cell extract. The recombinant enzyme was purified to homogeneity. Staphylococcus aureus V8 protease and trypsin cleaved the enzyme at Glu-206 and Lys-220, respectively, with a concomitant loss of enzyme activity. Spectrophotometrically, the nicked enzyme showed a approximately 50% reduced capacity for binding of the coenzyme pyridoxal phosphate and no spectral change of circular dichroism in the region at 300-480 nm, whereas circular dichroism spectra of both enzymes in the far-UV region were similar, suggesting that proteolysis impairs the coenzyme binding without an accompanying gross change of the secondary structure. Whereas the nicked enzyme behaved like the intact enzyme on Sephadex G-75 column chromatography, it was dissociated into two fragments on the column containing 6 M urea. Upon the removal of urea, both fragments spontaneously refolded. These results suggest that serine dehydratase consists of two folding domains connected by a region that is very susceptible to proteases.  相似文献   

3.
An analysis of a proteolytic hydrolysate of pig liver transketolase by thin-layer chromatography revealed the presence of a coenzyme-containing material which differed from free thiamine pyrophosphate in chromatographic behaviour. This coenzyme-containing material is distinct from the free coenzyme in terms of other properties as well, e.g., stability, pH dependence of thiochrome fluorescence, etc. It was demonstrated that incubation of enzyme preparations possessing a high specific activity (on the average, 2 E/mg) in acidic acetate buffer caused no or little detachment of the coenzyme, mainly in the composition of the heterogeneous material which, at least partly, was not represented by thiamine pyrophosphate.  相似文献   

4.
Xanthine dehydrogenase (EC 1.2.1.37) was purified approximately 1000-fold from liver homogenates of adult male Sprague-Dawley rats. Enzyme recovery was good (greater than 20% of the starting activity was obtained), and the homogeneously pure enzyme had a molecular mass of approximately 300,000 Da. The purified protein exhibited a specific activity of 2470 units/mg protein and spectral properties identical to those of the best preparations of this enzyme reported by other investigators. Routine preparations of this enzyme also possess higher dehydrogenase:oxidase ratios (typically between 5 and 6) than do other xanthine dehydrogenase preparations so far reported in the literature. Maximum dehydrogenase:oxidase ratios, greater than 10, could be obtained from this procedure if only peak dehydrogenase fractions from the chromatography columns were saved. The present small-scale purification method, which can be completed in 48-60 h, utilizes ammonium sulfate fractionation, Sephadex G-200 column chromatography, Blue Dextran-Sepharose column chromatography, and preparative gel electrophoresis.  相似文献   

5.
酵母3-脱氧葡糖醛酮代谢酶的分离纯化及部分性质   总被引:1,自引:0,他引:1  
3-脱氧葡糖醛酮 ( 3- deoxyglucosone)是美拉德反应的主要中间产物 ,对生物体具有毒性作用 .用硫酸铵分部沉淀、DEAE- cellulose52、Hydroxyapatite、DEAE- Sepharose CL- 6B柱层析从酿酒酵母 YBr-M( S.cerevisiae YBr-M)抽提液中分离纯化了 3-脱氧葡糖醛酮代谢酶 (以 NADPH为辅酶 ) .该酶是单一的分子 ,分子量为 44k D,反应最适 p H为 7.0 ,p H6.0~ 8.0之间酶活性相对稳定 ,以 3-脱氧葡糖醛酮为底物的米氏常数 Km 为 2 .2 5mmol/ L.在 35℃以下保温 30 min酶活不变 ,50℃保温 30 min后酶活损失 50 % .该酶对二羰基化合物的活性较高 ,对单羰基化合物则较低 ,其催化作用受碘乙酸、N-乙基顺丁烯二酰亚胺的抑制 ,而被β-巯基乙醇、二硫苏糖醇激活 ,催化作用必须以 NADPH为专一辅酶 ,当用 NADH代替 NADPH时 ,活力只有 5.3% .  相似文献   

6.
Aspergillus niger and Rhizopus sp. glucoamylases were purified on an affinity chromatography column from commercially available, impure enzyme preparations. Up to 2 mg of glucoamylase protein was bound without leakage to a 1-ml affinity gel column (0.7 X 2.5 cm) possessing a covalently linked acarbose ligand (1 mg acarbose/g wet gel), and the bound enzyme was specifically released by irrigation of the column with a solution of maltose. A complete cycle of purification was accomplished in about 8 h. Glucoamylases were recovered, in more than 80% yield, free of alpha-amylase activity and possessing specific activities comparable to those of preparations obtained by time-consuming, multistep procedures involving several ion-exchange and hydrophobic column fractionations. Thus, acarbose affinity chromatography provides a general method for the rapid and efficient purification of the glucoamylases, and seems to be ideally suited for scale-up for the commercial purification of these enzymes.  相似文献   

7.
1. Dye-ligand chromatography using immobilized Cibacron blue F3GA (blue Sepharose CL-6B) and Procion red HE3B (Matrex gel red A) as matrices and general ligand chromatography employing immobilized 2',5'-ADP (2',5'-ADP-Sepharose 4B) and immobilized 3',5'-ADP (3',5'-ADP-Agarose) were employed for purification of NADPH-dependent 2-enoyl-CoA reductase and 2,4-dienoyl-CoA reductase from bovine liver (formerly called 4-enoyl-CoA reductase [Kunau, W. H. and Dommes, P. (1978) Eur. J. Biochem. 91, 533-544], as well as 2,4-dienoyl-CoA reductase from Escherichia coli. 2. The NADPH-dependent 2-enoyl-CoA reductase from bovine liver mitochondria was separated from 2,4-dienoyl-CoA reductase by dye-ligand chromatography (Matrex gel red A/KCl gradient) as well as by general ligand affinity chromatography (2',5'-ADP-Sepharose 4B/NADP gradient). The enzyme was obtained in a highly purified form. 3. The NADPH-dependent 2,4-dienoyl-CoA reductase from bovine liver mitochondria was purified to homogeneity using blue Sepharose CL-6B, Matrex gel red A, and 2',5'-ADP-Sepharose 4B chromatography. 4. The bacterial 2,4-dienoyl-CoA reductase was completely purified by ion-exchange chromatography on DEAE-cellulose followed by a single affinity chromatography step employing 2',5'-ADP-Sepharose 4B and biospecific elution from the column with a substrate, trans,trans-2,4-decadienoyl-CoA. 5. The application of dye-ligand and general ligand affinity chromatography for purification of NADPH-dependent 2,4-dienoyl-CoA reductases taking part in the beta-oxidation of unsaturated fatty acids is discussed. It is concluded that making use of coenzyme specificity for binding and substrate specificity for elution is essential for obtaining homogeneous enzyme preparations.  相似文献   

8.
N-Acetyl-beta-hexosaminidases A and B were purified to homogeneity from human placenta. In the initial step of purification, the enzymes were adsorbed on concanavalin A-Sepharose 4B and eluted from the column with alpha-methyl D-mannosides. Subsequent purification steps included DEAE-cellulose column chromatography, QAE-Sephadex [diethyl-(2-hydroxypropyl)aminoethyl-Sephadex] column chromatography, Sephadex G-200 gel filtration and preparative disc polyacrylamide-gel electrophoresis, followed by another QAE-Sephadex chromatography for the hexosaminidase A preparation, and DEAE-cellulose column chromatography, calcium phosphate gel chromatography, Sephadex G-200 gel filtration, QAE-Sephadex chromatography and CM-cellulose chromatography for the hexosaminidase B preparation. The purified preparations, particularly hexosaminidase A, had significantly higher specific enzyme activities than previously reported. The preparations moved on polyacrylamide-gel electrophoresis as single protein bands, which also stained for enzyme activity. Sedimentation-equilibrium centrifugation indicated homogenous dispersion of the enzymes, and the molecular weight was estimated as about 110000 for both enzymes. Complete amino acid and carbohydrate compositions of the two isoenzymes were determined, and, in contrast with previous suggestions, no sialic acid was found in the enzymes.  相似文献   

9.
Two procedures are reported for the purification of lysyl hydroxylase, both procedures involving (NH4)2SO4 fractionation, affinity chromatography on concanavalin A-agarose and elution of the column with ethylene glycol. The additional steps in procedure A consist of gel filtration and chromatography on a hydroxyapatite column, and in procedure B of affinity chromatography on collagen linked to agarose and gel filtration. The best preparations obtained with either of the two procedures were pure when examined by sodium dodecyl sulphate-polyacrylamide-disc-gel or slab-gel electrophoresis, but about half of the preparations obtained by procedure A had minor contaminants. The specific activity of a typical preparation purified by procedure B was 13 4000 times that of the 15 000 g supernatant of the chick-embryo homogenate, with a recovery of about 4%. The molecular weight of the pure enzyme was bout 200 000 by gel filtration, and that of the enzyme subunit about 85 000 by sodium dodecyl sulphate/polyacrylamide-disc-gel or slab-gel electrophoresis. It is suggested that the active enzyme is a dimer consisting of only one type of monomer, and that a previously described enzyme form with an apparent molecular weight of about 550 000 is a polymeric form of this dimer. The catalytic-centre activity of the pure enzyme, as determined with a saturating concentration of a synthetic peptide substrate and under conditions specified, was about 3-4 mol/s per mol.  相似文献   

10.
The properties of acetylcholinesterase solubilized from bovine erythrocyte membrane by phosphatidylinositol (PI)-specific phospholipase C of Bacillus thuringiensis or with a detergent, Lubrol-PX, were studied. The activity of Lubrol-PX-solubilized acetylcholinesterase was broadly distributed in the fractions having Ve/Vo = 1.0-2.0 in gel filtration on a Sepharose 6B column. The intermediary fractions (Ve/Vo = 1.3-1.7) were collected as "the middle active Sepharose 6B eluate" and characterized on the basis of enzymology and protein chemistry. When this eluate was treated with PI-specific phospholipase C, the major activity peak was obtained in the later fractions with Ve/Vo = 1.75-2.0 on the same column chromatography. Lubrol-solubilized and phospholipase C-treated acetylcholinesterase preparations were different in the thermostability, the elution profiles of chromatography on Mono Q, butyl-Toyopearl and phenyl-Sepharose columns, and the affinity to phospholipid micelles. On treatment with PI-specific phospholipase C, Lubrol-solubilized acetylcholinesterase became more thermostable. The phospholipase C-treated enzyme was eluted at lower NaCl concentration from the Mono Q column than the Lubrol-solubilized enzyme. The most important difference was observed in the hydrophobicity of these two enzyme preparations. The Lubrol-solubilized enzyme shows high affinity to phospholipid micelles and hydrophobic adsorbents such as butyl-Toyopearl and phenyl-Sepharose. However, this hydrophobicity was lost when acetylcholinesterase was solubilized from bovine erythrocyte membrane by PI-specific phospholipase C. The presence of myo-inositol was confirmed in the purified preparation of acetylcholinesterase by gas chromatography (GC)-mass spectrometry (MS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A wild-type strain and six methionine auxotrophs of Saccharomyces cerevisiae were cultured in a synthetic medium supplemented with 0.1 mM L-cysteine or L-methionine and analyzed for the synthesis of homoserine O-acetyltransferase (EC 2.3.1.31). Among them, four mutant strains exhibited enzyme activity in cell extracts. Methionine added to the synthetic medium at concentrations higher than 0.1 mM repressed enzyme synthesis in two of these strains. The enzyme was partially purified (3,500-fold) from an extract of a mutant strain through ammonium sulfate fractionation and chromatography on columns of DEAE-cellulose, Phenyl-Sepharose C1-4B, and Sephadex G-150. The enzyme exhibited optimal pH at 7.5 for activity and at 7.8 for stability. The reaction product was ascertained to be O-acetyl-L-homoserine by confirming that it produced L-homocysteine in an O-acetyl-L-homoserine sulfhydrylase reaction. The Km for L-homoserine was 1.0 mM, and for acetyl coenzyme A it was 0.027 mM. The molecular weight of the enzyme was estimated to be approximately 104,000 by Sephadex G-150 column chromatography and 101,000 by sucrose density gradient centrifugation. The isoelectric point was at pH 4.0. Of the hydroxy amino acids examined, the enzyme showed reactivity only to L-homoserine. Succinyl coenzyme A was not an acyl donor. In the absence of L-homoserine, acetyl coenzyme A was deacylated by the enzyme, with a Km of 0.012 mM. S-Adenosylmethionine and S-adenosylhomocysteine slightly inhibited the enzyme, but methionine had no effect.  相似文献   

12.
A rapid method is described for the analysis of mixtures of short-chain acyl coenzyme A thioesters by reversed-phase ion-pair chromatography on LiChrosorb RP-8 and μBondapak C18 columns. The technique is applicable to separation of CoASH, acetyl-CoA propionyl-CoA, and 3-hydroxy-3-methylglutaryl-CoA, as well as dicarboxylic acids and several nucleotides commonly used as cofactors for biosynthetic reactions. The method was utilized on a preparative scale for purification of 3-hydroxy-3-ethylglutaryl-CoA from CoASH and 3-hydroxy-3-ethylglutaric acid. The counterion employed was tetrabutylammonium (phosphate), pH 5.5, in various methanol:water mixtures. Elution profiles and retention values of compounds were influenced by the concentration of counterion and mass of injected sample. Tetrabutylammonium ions could be removed from effluent by ionexchange chromatography on Amberlite IR-120 resin.  相似文献   

13.
2-(4-Bromo-2,3-dioxobutylthio)-1,N(6)-ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A-2',5'-DP) is an affinity label for the coenzyme-binding site of pig heart NADP+-dependent isocitrate dehydrogenase. Specific reaction occurs at the coenzyme site with an incorporation of 0.5 mol of reagent/mol of enzyme subunit (i.e. modification of only one subunit of the dimeric enzyme) (Bailey, J.M., and Colman, R.F. (1985) Biochemistry 24, 5367-5377). Modified enzyme, prepared by incubating 1 mg/ml isocitrate dehydrogenase with 75 microM 2-BDB-T epsilon A-2',5'-DP in the absence and presence of substrate or coenzyme, was reduced with NaBH4, carboxymethylated, and digested with trypsin. Nucleotidyl peptides were isolated by chromatography on DEAE-cellulose, followed by treatment with acid phosphatase (to decrease the negative charge by removing the phosphate groups from covalently bound reagent) and rechromatography on the same DEAE-cellulose column. The isolated peptides were characterized by amino acid analysis, dansylation, and gas-phase sequencing. A single triskaidekapeptide corresponding to modification of the coenzyme site by 2-BDB-T epsilon A-2',5'-DP was identified as: Asp-Leu-Ala-Gly-X-Ile-His-Gly-Leu-Ser-Asn-Val-Lys. Additional evidence indicated that X is a glutamate residue derivatized by 2-BDB-T epsilon A-2',5'-DP.  相似文献   

14.
Commercial plant peroxidase preparations contained a uronic acid oxidase, separable from the peroxidase activity by ion exchange chromatography. The partially purified enzyme, devoid of peroxidase, oxidized hexuronic acids, with the greatest activity for D-glucuronic acid, whereas other aldoses were not substrates. The immediate products of reaction of D-glucuronic acid with oxygen were hydrogen peroxide and a D-glucarolactone, which was a very strong inhibitor of β-glucuronidase and believed to be the 1,5-lactone. The sensitivity to sulphite inhibition suggests that the enzyme is a flavoprotein.  相似文献   

15.
Methylmalonyl coenzyme A (CoA) mutase has been purified to apparent homogeneity from human liver by a procedure involving column chromatography on DEAE-cellulose, Matrex-Gel Blue A, hydroxylapatite, and Sephadex G-150. The overall purification achieved is 500- to 600-fold, yield 3–5%. Electrophoresis of the native purified protein on nondenaturing polyacrylamide gels shows a single diffuse band coincident with the enzyme activity; dodecyl sulfate/polyacrylamide gels show a single protein band with an apparent molecular weight of 77,500. The native protein has a molecular weight of approximately 150,000 by Sephadex G-150 chromatography, suggesting that it is composed of two identical subunits. The activity of the purified enzyme is stimulated only slightly (10–20%) by the addition of its cofactor, adenosylcobalamin, indicating that the purified enzyme is largely saturated with coenzyme. The spectrum of the enzyme is consistent with the presence of about 1 mole of adenosylcobalamin per mole of subunit. The enzyme displays complex kinetics with respect to dl-methylmalonyl CoA; substrate inhibition by l-methylmalonyl CoA appears to occur. The enzyme activity is stimulated by polyvalent anions (PO43? > SO42? > Cl?); monovalent cations are without effect, but high concentrations of divalent cations are inhibitory. The enzyme activity is insensitive to N-ethylmaleimide, is rapidly destroyed at temperatures > 50 °C, and shows a broad pH optimum around pH 7.5.  相似文献   

16.
H C Isom  R D DeMoss 《Biochemistry》1975,14(19):4291-4297
Trytophanase from Bacillus alvei was resolved from its coenzyme, pyridoxal phosphate, by treatment with cysteine followed by column chromatography. Spectrophotometric titration of apoenzyme with pyridoxal-P showed 1 mol of pyridoxal-P bound per 52,000 g of enzyme. Kinetic analysis of coenzyme binding showed hyperbolic activation curves with a Km of 1.6 muM. Pyridoxal-P was used as a natural active site probe in spectrophotometric studies to distinguish differences in the active center of holotryptophanase and reconstituted enzyme that were not apparent by other techniques. The pKa for holotryptophanase is 7.9 while the pKa for reconstituted apoenzyme is 8.4. Apotryptophanase binds 2-nor, 2'-methyl, 2'-hydroxy, 6-methyl, and N-oxide pyridoxal-P to form analog enzymes distinguishable on the basis of absorption spectra and relative activity in catalyzing both the alpha, beta-elimination and beta-replacement reactions of tryptophanase. Apoenzyme also binds pyridoxal but pyridoxal analog enzyme is not active.  相似文献   

17.
1. ATPase isolated from Rhodospirillum rubrum by chloroform extraction and purified by gel filtration or affinity chromatography shows three bands (alpha, beta and gamma) upon electrophoresis in sodium dodecyl sulphate. 2. Ca2+-ATPase activity of the preparation is inhibited by aurovertin and efrapeptin but not by oligomycin. Activity may be inhibited by treatment with 4-chloro-7-nitrobenzofurazan and subsequently restored by dithiothreitol. 3. The enzyme fails to reconstitute photophosphorylation in chromatophores depleted of ATPase by sonic irradiation. 4. Most of the active protein from the crude chloroform extract binds to an affinity chromatography column bearing an immobilised ADP analogue but not to a column bearing immobilised pyrophosphate. 5. In the absence of divalent cations, a component with a very high specific activity for Ca2+-ATPase is eluted from the column by 1.6 mM ATP. This protein migrates asa single band on 5% polyacrylamide gel electrophoresis and only possesses three subunits. At 12 mM ATP an inactive protein is eluted which does not run on acid or alkali polyacrylamide gels and shows a complex subunit structure. 6. ATPase preparations prepared by acetone extraction or by sonic irradiation of chromatophores may also be purified 10-fold by affinity chromatography. 7. The inclusion of 5 mM MgCl2 or CaCl2 during affinity chromatography of chloroform ATPase increases the capacity of the column for the enzyme and demands a higher eluting concentration of ATP. 8. When the enzyme is more than 90% inhibited by efrapeptin or 4-chloro-7-nitrobenzofurazan, the binding characteristics of the enzyme are not affected. 9. 10 mM Na2SO3, which greatly stimulates the Ca2+- and Mg2+-dependent ATPase activity of the enzyme and increases Ki (ADP) for Ca2+-ATPase from 50 to 850 micron, prevents binding to the affinity column. Binding may be restored by the addition of divalent cations. 10. Na2SO3 increases the rate of ATP hydrolysis, ATP-driven H+ translocation and ATP-driven transhydrogenase in chromatophores. 11. It is proposed that anions such as sulphite convert the chromatophore ATPase into a form which is a more efficient energy transducer.  相似文献   

18.
Malonyl coenzyme A synthetase (EC 6.2.1.14) was induced in Pseudomonas fluorescens grown on malonate as a sole carbon source. This enzyme was purified, for the first time, over 30-fold by the combination of ammonium sulfate precipitation, Sephadex G-150 gel filtration, DEAE-Sephacel ion exchange chromatography, and hydroxylapatite chromatography. The purified enzyme, which had a specific activity of about 0.512 mumol/min/mg, appeared to be electrophoretically homogeneous. The molecular size of the enzyme was determined to be 98,000 Da which is composed of two 49,000-Da subunits. The optimum pH for the enzyme was 7.5. Malonyl coenzyme A synthetase requires ATP, CoA, and Mg2+ for the full enzyme activity. With succinate or acetate, the synthetic rate of CoA derivative was 40% of that observed with malonate. The malonyl coenzyme A synthetase showed typical Michaelis-Menten kinetics for the substrate, malonate, ATP, and coenzyme A, from which the Km values were calculated to be 3.8 X 10(-4) M, 2 X 10(-3) M, and 10(-4) M and Vmax values to be 0.117 mumol/min/mg, 0.111 mumol/min/mg, and 0.142 mumol/min/mg, respectively. The purified malonyl coenzyme A synthetase was immunogenic in the rabbit and Ouchterlony double diffusion analysis revealed a single precipitant line with the enzyme. The antiserum inhibited the enzyme activity and the extent of inhibition was dependent on the amount of the serum added.  相似文献   

19.
We isolated four nitroreductases from Bacteroides fragilis GAI0624 and examined their physicochemical and functional properties. Two major enzyme activities were found in the adsorbed and unadsorbed fractions from DEAE-cellulose column chromatography. The adsorbed fraction was subjected to Sephadex G-200 column chromatography, and two further activities were separated. One has high nitroreductase activity (nitroreductase I), and the other has low activity and relatively high molecular weight (nitroreductase III). The nitroreductase I fraction was subjected to hydroxylapatite and chromatofocusing column chromatography, and nitroreductase I was purified about 416-fold with a yield of 6.77%. The unadsorbed fraction from DEAE-cellulose column chromatography was subjected to Sepharose 2B and Sepharose 6B column chromatography. Two enzyme activities were obtained by the Sepharose 6B column chromatography. One has high activity (nitroreductase II), and the other has low activity (nitroreductase IV). Nitroreductase II was rechromatographed by Sepharose 6B gel filtration and purified about 178-fold with a yield of 9.65%. The four enzymes (nitroreductases I, II, III, and IV) were shown to be different by several criteria. Their molecular weights, determined by gel filtration, were 52,000, 320,000, 180,000, and 680,000, respectively. The substrate specificity, the effect on mutagenicity of mutagenic nitro compounds, of nitroreductases I, III, and IV was relatively high for 1-nitropyrene, dinitropyrenes, and 4-nitroquinoline 1-oxide, respectively, but nitroreductase II had broad specificity. Nitroreductase activity required a coenzyme; nitroreductases II, III, and IV were NADPH linked, but nitroreductase I was NADH linked. All enzyme activity was enhanced by addition of flavin mononucleotide and inhibited significantly by dicumarol, p-chloromercuribenzoic acid, o-iodosobenzoic acid, sodium azide, and Cu2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A variety of Mycobacterium species contained the 5-deazaflavin coenzyme known as F420. Mycobacterium smegmatis was found to have a glucose-6-phosphate dehydrogenase that was dependent on F420 as an electron acceptor and which did not utilize NAD or NADP. The enzyme was purified by ammonium sulfate fractionation, phenyl-Sepharose column chromatography, F420-ether-linked aminohexyl-Sepharose 4B affinity chromatography, and quaternary aminoethyl-Sephadex column chromatography, and the sequence of the first 26 N-terminal amino acids has been determined. The response of enzyme activity to a range of pHs revealed a two-peak pattern, with maxima at pH 5.5 and 8.0. The apparent Km values for F420 and glucose-6-phosphate were, respectively, 0.004 and 1.6 mM. The apparent native and subunit molecular masses were 78,000 and approximately 40,000 Da, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号