首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic core of Escherichia coli DNA polymerase III contains three tightly associated subunits, the alpha, epsilon, and theta subunits. The theta subunit is the smallest and least understood subunit. The three-dimensional structure of theta in a complex with the unlabeled N-terminal domain of the epsilon subunit, epsilon186, was determined by multidimensional nuclear magnetic resonance spectroscopy. The structure was refined using pseudocontact shifts that resulted from inserting a lanthanide ion (Dy3+, Er3+, or Ho3+) at the active site of epsilon186. The structure determination revealed a three-helix bundle fold that is similar to the solution structures of theta in a methanol-water buffer and of the bacteriophage P1 homolog, HOT, in aqueous buffer. Conserved nuclear Overhauser enhancement (NOE) patterns obtained for free and complexed theta show that most of the structure changes little upon complex formation. Discrepancies with respect to a previously published structure of free theta (Keniry et al., Protein Sci. 9:721-733, 2000) were attributed to errors in the latter structure. The present structure satisfies the pseudocontact shifts better than either the structure of theta in methanol-water buffer or the structure of HOT. satisfies these shifts. The epitope of epsilon186 on theta was mapped by NOE difference spectroscopy and was found to involve helix 1 and the C-terminal part of helix 3. The pseudocontact shifts indicated that the helices of theta are located about 15 A or farther from the lanthanide ion in the active site of epsilon186, in agreement with the extensive biochemical data for the theta-epsilon system.  相似文献   

2.
3.
The function of the theta subunit of Escherichia coli DNA polymerase III holoenzyme is not well established. theta is a tightly bound component of the DNA polymerase III core, which contains the alpha subunit (polymerase), the epsilon subunit (3'-->5' exonuclease), and the theta subunit, in the linear order alpha-epsilon-theta. Previous studies have shown that the theta subunit is not essential, as strains carrying a deletion of the holE gene (which encodes theta) proved fully viable. No significant phenotypic effects of the holE deletion could be detected, as the strain displayed normal cell health, morphology, and mutation rates. On the other hand, in vitro experiments have indicated the efficiency of the 3'-exonuclease activity of epsilon to be modestly enhanced by the presence of theta. Here, we report a series of genetic experiments that suggest that theta has a stabilizing role for the epsilon proofreading subunit. The observations include (i) defined DeltaholE mutator effects in mismatch-repair-defective mutL backgrounds, (ii) strong DeltaholE mutator effects in certain proofreading-impaired dnaQ strains, and (iii) yeast two- and three-hybrid experiments demonstrating enhancement of alpha-epsilon interactions by the presence of theta. theta appears conserved among gram-negative organisms which have an exonuclease subunit that exists as a separate protein (i.e., not part of the polymerase polypeptide), and the presence of theta might be uniquely beneficial in those instances where the proofreading 3'-exonuclease is not part of the polymerase polypeptide.  相似文献   

4.
Escherichia coli DNA polymerase III holoenzyme is composed of 10 different subunits linked by noncovalent interactions. The polymerase activity resides in the α-subunit. The ε-subunit, which contains the proofreading exonuclease site within its N-terminal 185 residues, binds to α via a segment of 57 additional C-terminal residues, and also to θ, whose function is less well defined. The present study shows that θ greatly enhances the solubility of ε during cell-free synthesis. In addition, synthesis of ε in the presence of θ and α resulted in a soluble ternary complex that could readily be purified and analyzed by NMR spectroscopy. Cell-free synthesis of ε from PCR-amplified DNA coupled with site-directed mutagenesis and selective 15N-labeling provided site-specific assignments of NMR resonances of ε that were confirmed by lanthanide-induced pseudocontact shifts. The data show that the proofreading domain of ε is connected to α via a flexible linker peptide comprising over 20 residues. This distinguishes the α : ε complex from other proofreading polymerases, which have a more rigid multidomain structure.  相似文献   

5.
Quinolone antibacterial drugs such as nalidixic acid target DNA gyrase in Escherichia coli. These inhibitors bind to and stabilize a normally transient covalent protein-DNA intermediate in the gyrase reaction cycle, referred to as the cleavage complex. Stabilization of the cleavage complex is necessary but not sufficient for cell killing--cytotoxicity apparently results from the conversion of cleavage complexes into overt DNA breaks by an as-yet-unknown mechanism(s). Quinolone treatment induces the bacterial SOS response in a RecBC-dependent manner, arguing that cleavage complexes are somehow converted into double-stranded breaks. However, the only proteins known to be required for SOS induction by nalidixic acid are RecA and RecBC. In hopes of identifying additional proteins involved in the cytotoxic response to nalidixic acid, we screened for E. coli mutants specifically deficient in SOS induction upon nalidixic acid treatment by using a dinD::lacZ reporter construct. From a collection of SOS partially constitutive mutants with disruptions of 47 different genes, we found that dnaQ insertion mutants are specifically deficient in the SOS response to nalidixic acid. dnaQ encodes DNA polymerase III epsilon subunit, the proofreading subunit of the replicative polymerase. The deficient response to nalidixic acid was rescued by the presence of the wild-type dnaQ gene, confirming involvement of the epsilon subunit. To further characterize the SOS deficiency of dnaQ mutants, we analyzed the expression of several additional SOS genes in response to nalidixic acid using real-time PCR. A subset of SOS genes lost their response to nalidixic acid in the dnaQ mutant strain, while two tested SOS genes (recA and recN) continued to exhibit induction. These results argue that the replication complex plays a role in modulating the SOS response to nalidixic acid and that the response is more complex than a simple on/off switch.  相似文献   

6.
7.
The structured core of the N-terminal 3'-5' exonuclease domain of epsilon, the proofreading subunit of Escherichia coli DNA polymerase III, was defined by multidimensional NMR experiments with uniformly (15)N-labeled protein: it comprises residues between Ile-4 and Gln-181. A 185-residue fragment, termed epsilon(1-185), was crystallized by the hanging drop vapor diffusion method in the presence of thymidine-5'-monophosphate, a product inhibitor, and Mn(2+) at pH 5.8. The crystals are tetragonal, with typical dimensions 0.2 mm x 0.2 mm x 1.0 mm, grow over about 2 weeks at 4 degrees C, and diffract X-rays to 2.0 A. The space group was determined to be P4(n)2(1)2 (n = 0, 1, 2, 3), with unit cell dimensions a = 60.8 A, c = 111.4 A.  相似文献   

8.
The DNA polymerase III holoenzyme (HE) is the primary replicative polymerase of Escherichia coli. The epsilon subunit of the HE complex provides the 3'-exonucleolytic proofreading activity for this enzyme complex. epsilon consists of two domains: an N-terminal domain containing the proofreading exonuclease activity (residues 1-186) and a C-terminal domain required for binding to the polymerase (alpha) subunit (residues 187-243). Multidimensional NMR studies of (2)H-, (13)C-, and (15)N-labeled N-terminal domains (epsilon186) were performed to assign the backbone resonances and measure H(N)-H(N) nuclear Overhauser effects (NOEs). NMR studies were also performed on triple-lableled [U-(2)H,(13)C,(15)N]epsilon186 containing Val, Leu, and Ile residues with protonated methyl groups, which allowed for the assignment of H(N)-CH(3) and CH(3)-CH(3) NOEs. Analysis of the (13)C(alpha), (13)C(beta), and (13)CO shifts, using chemical shift indexing and the TALOS program, allowed for the identification of regions of the secondary structure. H(N)-H(N) NOEs provided information on the assembly of the extended strands into a beta-sheet structure and confirmed the assignment of the alpha helices. Measurement of H(N)-CH(3) and CH(3)-CH(3) NOEs confirmed the beta-sheet structure and assisted in the positioning of the alpha helices. The resulting preliminary characterization of the three-dimensional structure of the protein indicated that significant structural homology exists with the active site of the Klenow proofreading exonuclease domain, despite the extremely limited sequence homology. On the basis of this analogy, molecular modeling studies of epsilon186 were performed using as templates the crystal structures of the exonuclease domains of the Klenow fragment and the T4 DNA polymerase and the recently determined structure of the E. coli Exonuclease I. A multiple sequence alignment was constructed, with the initial alignment taken from the previously published hidden Markov model and NMR constraints. Because several of the published structures included complexed ssDNA, we were also able to incorporate an A-C-G trinucleotide into the epsilon186 structure. Nearly all of the residues which have been identified as mutators are located in the portion of the molecule which binds the DNA, with most of these playing either a catalytic or structural role.  相似文献   

9.
Perrino FW  Harvey S  McNeill SM 《Biochemistry》1999,38(48):16001-16009
The epsilon subunit is the 3'-->5' proofreading exonuclease that associates with the alpha and theta subunits in the E. coli DNA polymerase III. Two fragments of the epsilon protein were prepared, and binding of these epsilon fragments with alpha and theta was investigated using gel filtration chromatography and exonuclease stimulation assays. The N-terminal fragment of epsilon, containing amino acids 2-186 (epsilon186), is a relatively protease-resistant core domain of the exonuclease. The purified recombinant epsilon186 protein catalyzes the cleavage of 3' terminal nucleotides, demonstrating that the exonuclease domain of epsilon is present in the N-terminal region of the protein. The absence of the C-terminal 57 amino acids of epsilon in the epsilon186 protein reduces the binding affinity of epsilon186 for alpha by at least 400-fold relative to the binding affinity of epsilon for alpha. In addition, stimulation of the epsilon186 exonuclease by alpha using a partial duplex DNA is about 50-fold lower than stimulation of the epsilon exonuclease by alpha. These results indicate that the C-terminal region of epsilon is required in the epsilonalpha association. To directly demonstrate that the C-terminal region of epsilon contains the alpha-association domain fusion protein, constructs containing the maltose-binding protein (MBP) and fragments of the C-terminal region of epsilon were prepared. Gel filtration analysis demonstrates that the alpha-association domain of epsilon is contained within the C-terminal 40 amino acids of epsilon. Also, the epsilon186 protein forms a tight complex with theta, demonstrating that the association of theta with epsilon is localized to the N-terminal region of epsilon. Association of epsilon186 and theta is further supported by the stimulation of the epsilon186 exonuclease in the presence of theta. These data support the concept that epsilon contains a catalytic domain located within the N-terminal region and an alpha-association domain located within the C-terminal region of the protein.  相似文献   

10.
Purified DNA polymerase III holoenzyme (holoenzyme) was separated by glycerol gradient sedimentation into the beta subunit and the subassembly that lacks it (pol III). In the presence of ATP, beta subunit dimer dissociated from holoenzyme with a KD of 1 nM; in the absence of ATP, the KD was greater than 5 nM. The beta subunit was known to remain tightly associated in the holoenzyme upon formation of an initiation complex with a primed template and during the course of replication. With separation from the template, holoenzyme dissociated into beta and pol III. Cycling to a new template depended on the reformation of holoenzyme. Holoenzyme was in equilibrium with pol III and the beta subunit in crude enzyme fractions as well as in pure preparations.  相似文献   

11.
12.
The Escherichia coli dnaE gene, which encodes the alpha subunit of DNA polymerase III (pol III) holoenzyme, has been cloned in a plasmid containing the PL promoter of phage lambda and thermally induced to overproduce the alpha subunit. In cells carrying this plasmid (pKH167), the alpha subunit was amplified, after heat induction, to a level of about 0.2% of the total cellular protein. Polymerase activity was assayed in three ways: (i) gap-filling by pol III holoenzyme and subassemblies of it, (ii) the extensive replication of a primed, single-stranded DNA circle only by pol III holoenzyme, and (iii) complementation of a crude, inactive pol III holoenzyme (temperature-sensitive dnaE mutant fraction) in replication of a primed, single-stranded DNA circle. Amplification of the alpha subunit raised the polymerase level 10-fold in assay (i), indicative of the dependence of pol III gap-filling activity on this polypeptide; pol III holoenzyme activity remained unaffected (assay (ii)), but the complementation activity was raised 5-fold (assay (iii)). Thus, the elevated alpha subunit (free or in a subassembly form) can substitute in vitro for a defective alpha subunit in pol III holoenzyme, but cannot increase the in vivo level of about eight pol III holoenzyme molecules per cell. This low level of pol III holoenzyme is fixed in wild type cells (bearing no plasmid) despite the presence of a 5-fold excess of the alpha subunit, as inferred from the various assays. These results suggest that the low level of pol III holoenzyme is determined by a factor or factors other than the level of the alpha subunit.  相似文献   

13.
The core of DNA polymerase III, the replicative polymerase in Escherichia coli, consists of three subunits (alpha, epsilon, and theta). The epsilon subunit is the 3'-5' proofreading exonuclease that associates with the polymerase (alpha) through its C-terminal region and theta through a 185-residue N-terminal domain (epsilon 186). A spectrophotometric assay for measurement of epsilon activity is described. Proteins epsilon and epsilon 186 and the epsilon 186.theta complex catalyzed the hydrolysis of the 5'-p-nitrophenyl ester of TMP (pNP-TMP) with similar values of k(cat) and K(M), confirming that the N-terminal domain of epsilon bears the exonuclease active site, and showing that association with theta has little direct effect on the chemistry occurring at the active site of epsilon. On the other hand, formation of the complex with theta stabilized epsilon 186 by approximately 14 degrees C against thermal inactivation. For epsilon 186, k(cat) = 293 min(-)(1) and K(M) = 1.08 mM at pH 8.00 and 25 degrees C, with a Mn(2+) concentration of 1 mM. Hydrolysis of pNP-TMP by epsilon 186 depended absolutely on divalent metal ions, and was inhibited by the product TMP. Dependencies on Mn(2+) and Mg(2+) concentrations were examined, giving a K(Mn) of 0.31 mM and a k(cat) of 334 min(-1) for Mn(2+) and a K(Mg) of 6.9 mM and a k(cat) of 19.9 min(-1) for Mg(2+). Inhibition by TMP was formally competitive [K(i) = 4.3 microM (with a Mn(2+) concentration of 1 mM)]. The pH dependence of pNP-TMP hydrolysis by epsilon 186, in the pH range of 6.5-9.0, was found to be simple. K(M) was essentially invariant between pH 6.5 and 8.5, while k(cat) depended on titration of a single group with a pK(a) of 7.7, approaching limiting values of 50 min(-1) at pH <6.5 and 400 min(-1) at pH >9.0. These data are used in conjunction with crystal structures of the complex of epsilon 186 with TMP and two Mn(II) ions bound at the active site to develop insights into the mechanisms of pNP-TMP hydrolysis by epsilon at high and low pH values.  相似文献   

14.
15.
The catalytic core of Escherichia coli DNA polymerase III contains three tightly associated subunits (alpha, epsilon, and theta). The theta subunit is the smallest, but the least understood of the three. As a first step in a program aimed at understanding its function, the structure of the theta subunit has been determined by triple-resonance multidimensional NMR spectroscopy. Although only a small protein, theta was difficult to assign fully because approximately one-third of the protein is unstructured, and some sections of the remaining structured parts undergo intermediate intramolecular exchange. The secondary structure was deduced from the characteristic nuclear Overhauser effect patterns, the 3J(HN alpha) coupling constants and the consensus chemical shift index. The C-terminal third of the protein, which has many charged and hydrophilic amino acid residues, has no well-defined secondary structure and exists in a highly dynamic state. The N-terminal two-thirds has three helical segments (Gln10-Asp19, Glu38-Glu43, and His47-Glu54), one short extended segment (Pro34-Ala37), and a long loop (Ala20-Glu29), of which part may undergo intermediate conformational exchange. Solution of the three-dimensional structure by NMR techniques revealed that the helices fold in such a way that the surface of theta is bipolar, with one face of the protein containing most of the acidic residues and the other face containing most of the long chain basic residues. Preliminary chemical shift mapping experiments with a domain of the epsilon subunit have identified a loop region (Ala20-Glu29) in theta as the site of association with epsilon.  相似文献   

16.
The catalytic core of Escherichia coli DNA polymerase III holoenzyme contains three subunits: alpha, epsilon, and theta. The alpha subunit contains the polymerase, and the epsilon subunit contains the exonucleolytic proofreading function. The small (8-kDa) theta subunit binds only to epsilon. Its function is not well understood, although it was shown to exert a small stabilizing effect on the epsilon proofreading function. In order to help elucidate its function, we undertook a determination of its solution structure. In aqueous solution, theta yielded poor-quality nuclear magnetic resonance spectra, presumably due to conformational exchange and/or protein aggregation. Based on our recently determined structure of the theta homolog from bacteriophage P1, named HOT, we constructed a homology model of theta. This model suggested that the unfavorable behavior of theta might arise from exposed hydrophobic residues, particularly toward the end of alpha-helix 3. In gel filtration studies, theta elutes later than expected, indicating that aggregation is potentially responsible for these problems. To address this issue, we recorded 1H-15N heteronuclear single quantum correlation (HSQC) spectra in water-alcohol mixed solvents and observed substantially improved dispersion and uniformity of peak intensities, facilitating a structural determination under these conditions. The structure of theta in 60/40 (vol/vol) water-methanol is similar to that of HOT but differs significantly from a previously reported theta structure. The new theta structure is expected to provide additional insight into its physiological role and its effect on the epsilon proofreading subunit.  相似文献   

17.
The theta subunit (holE gene product) of Escherichia coli DNA polymerase (Pol) III holoenzyme is a tightly bound component of the polymerase core. Within the core (alpha-epsilon-theta), the alpha and epsilon subunits carry the DNA polymerase and 3' proofreading functions, respectively, while the precise function of theta is unclear. holE homologs are present in genomes of other enterobacteriae, suggestive of a conserved function. Putative homologs have also been found in the genomes of bacteriophage P1 and of certain conjugative plasmids. The presence of these homologs is of interest, because these genomes are fully dependent on the host replication machinery and contribute few, if any, replication factors themselves. To study the role of these theta homologs, we have constructed an E. coli strain in which holE is replaced by the P1 homolog, hot. We show that hot is capable of substituting for holE when it is assayed for its antimutagenic action on the proofreading-impaired dnaQ49 mutator, which carries a temperature-sensitive epsilon subunit. The ability of hot to substitute for holE was also observed with other, although not all, dnaQ mutator alleles tested. The data suggest that the P1 hot gene product can substitute for the theta subunit and is likely incorporated in the Pol III complex. We also show that overexpression of either theta or Hot further suppresses the dnaQ49 mutator phenotype. This suggests that the complexing of dnaQ49-epsilon with theta is rate limiting for its ability to proofread DNA replication errors. The possible role of hot for bacteriophage P1 is discussed.  相似文献   

18.
19.
The DNA polymerase III holoenzyme (HE) is the primary replicative polymerase of Escherichia coli. The epsilon (epsilon) subunit of HE provides the 3'-->5' exonucleolytic proofreading activity for this complex. Epsilon consists of two domains: an N-terminal domain containing the proofreading exonuclease activity (residues 1-186) and a C-terminal domain required for binding to the polymerase (alpha) subunit (residues 187-243). In addition to alpha, epsilon also binds the small (8 kDa) theta (theta) subunit. The function of theta is unknown, although it has been hypothesized to enhance the 3'-->5' exonucleolytic proofreading activity of epsilon. Using NMR analysis and molecular modeling, we have previously reported a structural model of epsilon186, the N-terminal catalytic domain of epsilon [DeRose et al. (2002) Biochemistry 41, 94]. Here, we have performed 3D triple resonance NMR experiments to assign the backbone and C(beta) resonances of [U-(2)H,(13)C,(15)N] methyl protonated epsilon186 in complex with unlabeled theta. A structural comparison of the epsilon186-theta complex with free epsilon186 revealed no major changes in secondary structure, implying that the overall structure is not significantly perturbed in the complex. Amide chemical shift comparisons between bound and unbound epsilon186 revealed a potential binding surface on epsilon for interaction with theta involving structural elements near the epsilon catalytic site. The most significant shifts observed for the epsilon186 amide resonances are localized to helix alpha1 and beta-strands 2 and 3 and to the region near the beginning of alpha-helix 7. Additionally, a small stretch of residues (K158-L161), which previously had not been assigned in uncomplexed epsilon186, is predicted to adopt beta-strand secondary structure in the epsilon186-theta complex and may be significant for interaction with theta. The amide shift pattern was confirmed by the shifts of aliphatic methyl protons, for which the larger shifts generally were concentrated in the same regions of the protein. These chemical shift mapping results also suggest an explanation for how the unstable dnaQ49 mutator phenotype of epsilon may be stabilized by binding theta.  相似文献   

20.
The dnaZ protein has been purified to near-homogeneity using an in vitro complementation assay that measures the restoration of activity in a crude enzyme fraction from the dnaZ mutant deficient in the replication of phi X174 DNA. Over 70-fold overproduction of the protein was obtained with a bacteriophage lambda lysogen carrying the dnaZ gene. The purified protein, under reducing and denaturing conditions, has a molecular weight of 52,000 and appears to be a dimer in its native form. The dnaZ protein is judged to be th 52,000-dalton gamma subunit of DNA polymerase III holoenzyme (McHenry, C., and Kornberg, A. (1977) J. Biol. Chem. 252, 6478-6484) for the following reasons: (i) highly purified DNA polymerase III holoenzyme contains a 52,000-dalton polypeptide and has dnaZ-complementing activity; (ii) the 52,000-dalton polypeptide is associated tightly with the DNA polymerase III holoenzyme and can be separated from the DNA polymerase III core only with severe measures; (iii) no other purified replication protein, among 14 tested, contains dnaZ protein activity; and (iv) the abundance of dnaZ protein, estimated at about 10 dimer molecules per Escherichia coli cell, is similar to that of the DNA polymerase III core. Among several circular templates tested in vitro (i.e. single stranded phi X174, G4 and M13 DNAs, and duplex phi X174 DNA), all rely on dnaZ protein for elongation by DNA polymerase III holoenzyme. The protein acts catalytically at a stoichiometry of one dimer per template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号