首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Short stop (Shot/Kakapo) spectraplakin is a giant cytoskeletal protein, which exists in multiple isoforms with characteristics of both spectrin and plakin superfamilies. Previously characterized Shot isoforms are similar to spectrin and dystrophin, with an actin-binding domain followed by spectrin repeats. We describe a new large exon within the shot locus, which encodes a series of plakin repeats similar to the COOH terminus of plakins such as plectin and BPAG1e. We find that the plakin repeats are inserted between the actin-binding domain and spectrin repeats, generating isoforms as large as 8,846 residues, which could span 400 nm. These novel isoforms localized to adherens junctions of embryonic and follicular epithelia. Loss of Shot within the follicle epithelium leads to double layering and accumulation of actin and ZO-1 in between, and a reduction of Armadillo and Discs lost within, mutant cells, indicative of a disruption of adherens junction integrity. Thus, we identify a new role for spectraplakins in mediating cell-cell adhesion.  相似文献   

2.
The spectrin superfamily (spectrin, alpha-actinin, utrophin and dystrophin) has in common a triple helical repeating unit of ~106 amino acid residues. In spectrin, alpha and beta chains contain multiple copies of this repeat. beta-spectrin chains contain the majority of binding activities in spectrin and are essential for animal life. Canonical beta-spectrins have 17 repeats; beta-heavy spectrins have 30. Here, the repeats of five human beta-spectrins, plus beta-spectrins from several other vertebrates and invertebrates, have been analysed. Repeats 1, 2, 14 and 17 in canonical beta are highly conserved between invertebrates and vertebrates, and repeat 8 in some isoforms. This is consistent with conservation of critical functions, since repeats 1, 2 and 17 bind alpha-spectrin. Repeats 1 of beta-spectrins are not always detected by SMART or Pfam tools. A profile hidden Markov model of beta-spectrin repeat 1 detects alpha-actinins, but not utrophin or dystrophin. Novel examples of repeat 1 were detected in the spectraplakins MACF1, BPAG1 and plectin close to the actin-binding domain. Ankyrin binds to the C-terminal portion of repeat 14; the high conservation of this entire repeat may point to additional, undiscovered ligand-binding activities. This analysis indicates that the basic triple helical repeat pattern was adapted early in the evolution of the spectrin superfamily to encompass essential binding activities, which characterise individual repeats in proteins extant today.  相似文献   

3.
Mutations in kakapo were recovered in genetic screens designed to isolate genes required for integrin-mediated adhesion in Drosophila. We cloned the gene and found that it encodes a large protein (>5,000 amino acids) that is highly similar to plectin and BPAG1 over the first 1,000–amino acid region, and contains within this region an α-actinin type actin-binding domain. A central region containing dystrophin-like repeats is followed by a carboxy domain that is distinct from plectin and dystrophin, having neither the intermediate filament-binding domain of plectin nor the dystroglycan/syntrophin-binding domain of dystrophin. Instead, Kakapo has a carboxy terminus similar to the growth arrest–specific protein Gas2. Kakapo is strongly expressed late during embryogenesis at the most prominent site of position-specific integrin adhesion, the muscle attachment sites. It is concentrated at apical and basal surfaces of epidermal muscle attachment cells, at the termini of the prominent microtubule bundles, and is required in these cells for strong attachment to muscles. Kakapo is also expressed more widely at a lower level where it is essential for epidermal cell layer stability. These results suggest that the Kakapo protein forms essential links among integrins, actin, and microtubules.  相似文献   

4.
Dystrophin and utrophin link the F-actin cytoskeleton to the cell membrane via an associated glycoprotein complex. This functionality results from their domain organization having an N-terminal actin-binding domain followed by multiple spectrin-repeat domains and then C-terminal protein-binding motifs. Therapeutic strategies to replace defective dystrophin with utrophin in patients with Duchenne muscular dystrophy require full-characterization of both these proteins to assess their degree of structural and functional equivalence. Here the high resolution structures of the first spectrin repeats (N-terminal repeat 1) from both dystrophin and utrophin have been determined by x-ray crystallography. The repeat structures both display a three-helix bundle fold very similar to one another and to homologous domains from spectrin, α-actinin and plectin. The utrophin and dystrophin repeat structures reveal the relationship between the structural domain and the canonical spectrin repeat domain sequence motif, showing the compact structural domain of spectrin repeat one to be extended at the C-terminus relative to its previously defined sequence repeat. These structures explain previous in vitro biochemical studies in which extending dystrophin spectrin repeat domain length leads to increased protein stability. Furthermore we show that the first dystrophin and utrophin spectrin repeats have no affinity for F-actin in the absence of other domains.  相似文献   

5.
Co-ordination of cytoskeletal networks and their dynamics is an essential feature of cell migration and cancer cell invasion. Plectin is a large cytolinker protein that influences tissue integrity, organisation of actin and intermediate filaments, and cell migration. Alternatively spliced plectin isoforms are targeted to different subcellular locations. Here, we show that plectin ablation by siRNA impaired migration, invasion and adhesion of SW480 colon carcinoma cells. A previously less well characterised plectin isoform, plectin-1k, co-localised with epithelial integrins, N-WASP, cortactin, and dynamin in podosome-like adhesions in invasive SW480 colon carcinoma cells. Transfection of alternative plectin N-terminal constructs demonstrated that the first exons of isoforms 1k, 1 and 1d can target the actin-binding domain of plectin to podosome-like adhesions. Finally, Plectin-1k N-terminus rescued adhesion site formation in plectin knock-down cells. Thus, plectin participates in actin assembly and invasiveness in carcinoma cells in an isoform-specific manner.  相似文献   

6.
Plectin is a large and versatile cytoskeletal linker and member of the plakin protein family. Plakins share a conserved region called the plakin domain located near their N terminus. We have determined the crystal structure of an N-terminal fragment of the plakin domain of plectin to 2.05 A resolution. This region is adjacent to the actin-binding domain and is required for efficient binding to the integrin alpha6beta4 in hemidesmosomes. The structure is formed by two spectrin repeats connected by an alpha-helix that spans these two repeats. While the first repeat is very similar to other known structures, the second repeat is structurally different with a hydrophobic core, narrower than that in canonical spectrin repeats. Sequence analysis of the plakin domain revealed the presence of up to nine consecutive spectrin repeats organized in an array of tandem modules, and a Src-homology 3 domain inserted in the central spectrin repeat. The structure of the plakin domain is reminiscent of the modular organization of members of the spectrin family. The architecture of the plakin domain suggests that it forms an elongated and flexible structure, and provides a novel molecular explanation for the contribution of plectin and other plakins to the elasticity and stability of tissues subjected to mechanical stress, such as the skin and striated muscle.  相似文献   

7.
8.
BPAG1 (bullous pemphigoid antigen 1) was originally identified as a 230-kDa hemidesmosomal protein and belongs to the plakin family, because it consists of a plakin domain, a coiled-coil rod domain and a COOH-terminal intermediate filament binding domain. To date, alternatively spliced products of BPAG1, BPAG1e, and BPAG1n are known. BPAG1e is expressed in epithelial tissues and localized to hemidesmosomes, on the other hand, BPAG1n is expressed in neural tissues and muscles and has an actin binding domain at the NH(2)-terminal of BPAG1e. BPAG1 is also known as a gene responsible for Dystonia musculorum (dt) neurodegeneration syndrome of the mouse. Another plakin family protein MACF (microtubule actin cross-linking factor) has also an actin binding domain and the plakin domain at the NH(2)-terminal. However, in contrast to its high homology with BPAG1 at the NH(2)-terminal, the COOH-terminal structure of MACF, including a microtubule binding domain, resembles dystrophin rather than plakins. Here, we investigated RNAs and proteins expressed from the BPAG1 locus and suggest novel alternative splicing variants, which include one consisting of the COOH-terminal domain structure homologous to MACF. The results indicate that BPAG1 has three kinds of cytoskeletal binding domains and seems to play an important role in linking the different types of cytoskeletons.  相似文献   

9.
Plakins in development and disease   总被引:3,自引:0,他引:3  
Plakins are large multi-domain molecules that have various functions to link cytoskeletal elements together and to connect them to junctional complexes. Plakins were first identified in epithelial cells where they were found to connect the intermediate filaments to desmosomes and hemidesmosomes [Ruhrberg, C., and Watt, F.M. (1997). The plakin family: versatile organizers of cytoskeletal architecture. Curr Opin Genet Dev 7, 392-397.]. They were subsequently found to be important for the integrity of muscle cells. Most recently, they have been found in the nervous system, where their functions appear to be more complex, including cross-linking of microtubules (MTs) and actin filaments [Leung, C.L., Zheng, M., Prater, S.M., and Liem, R.K. (2001). The BPAG1 locus: Alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. J Cell Biol 154, 691-697., Leung, C.L., Sun, D., Zheng, M., Knowles, D.R., and Liem, R.K. (1999). Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J Cell Biol 147, 1275-1286.]. These plakins have also indicated their relationship to the spectrin superfamily of proteins and the plakins appear to be evolutionarily related to the spectrins, but have diverged to perform different specialized functions. In invertebrates, a single plakin is present in both Drosophila melanogaster and Caenorhabditis elegans, which resemble the more complex plakins found in mammals [Roper, K., Gregory, S.L., and Brown, N.H. (2002). The 'spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families. J Cell Sci 115, 4215-4225.]. In contrast, there are seven plakins found in mammals and most of them have alternatively spliced forms leading to a very complex group of proteins with potential tissue specific functions [Jefferson, J.J., Leung, C.L., and Liem, R.K. (2004). Plakins: goliaths that link cell junctions and the cytoskeleton. Nat Rev Mol Cell Biol 5, 542-553.]. In this review, we will first describe the plakins, desmoplakin, plectin, envoplakin and periplakin and then describe two other mammalian plakins, Bullous pemphigoid antigen 1 (BPAG1) and microtubule actin cross-linking factor 1 (MACF1), that are expressed in multiple isoforms in different tissues. We will also describe the relationship of these two proteins to the invertebrate plakins, shortstop (shot) in Drosophila and VAB-10 in C. elegans. Finally, we will describe an unusual mammalian plakin, called epiplakin.  相似文献   

10.
Hemidesmosomes are stable adhesion complexes in basal epithelial cells that provide a link between the intermediate filament network and the extracellular matrix. We have investigated the recruitment of plectin into hemidesmosomes by the alpha6beta4 integrin and have shown that the cytoplasmic domain of the beta4 subunit associates with an NH(2)-terminal fragment of plectin that contains the actin-binding domain (ABD). When expressed in immortalized plectin-deficient keratinocytes from human patients with epidermol- ysis bullosa (EB) simplex with muscular dystrophy (MD-EBS), this fragment is colocalized with alpha6beta4 in basal hemidesmosome-like clusters or associated with F-actin in stress fibers or focal contacts. We used a yeast two-hybrid binding assay in combination with an in vitro dot blot overlay assay to demonstrate that beta4 interacts directly with plectin, and identified a major plectin-binding site on the second fibronectin type III repeat of the beta4 cytoplasmic domain. Mapping of the beta4 and actin-binding sites on plectin showed that the binding sites overlap and are both located in the plectin ABD. Using an in vitro competition assay, we could show that beta4 can compete out the plectin ABD fragment from its association with F-actin. The ability of beta4 to prevent binding of F-actin to plectin explains why F-actin has never been found in association with hemidesmosomes, and provides a molecular mechanism for a switch in plectin localization from actin filaments to basal intermediate filament-anchoring hemidesmosomes when beta4 is expressed. Finally, by mapping of the COOH-terminally located binding site for several different intermediate filament proteins on plectin using yeast two-hybrid assays and cell transfection experiments with MD-EBS keratinocytes, we confirm that plectin interacts with different cytoskeletal networks.  相似文献   

11.
BPAG1-b is the major muscle-specific isoform encoded by the dystonin gene, which expresses various protein isoforms belonging to the plakin protein family with complex, tissue-specific expression profiles. Recent observations in mice with either engineered or spontaneous mutations in the dystonin gene indicate that BPAG1-b serves as a cytolinker important for the establishment and maintenance of the cytoarchitecture and integrity of striated muscle. Here, we studied in detail its distribution in skeletal and cardiac muscles and assessed potential binding partners. BPAG1-b was detectable in vitro and in vivo as a high molecular mass protein in striated and heart muscle cells, co-localizing with the sarcomeric Z-disc protein α-actinin-2 and partially with the cytolinker plectin as well as with the intermediate filament protein desmin. Ultrastructurally, like α-actinin-2, BPAG1-b was predominantly localized at the Z-discs, adjacent to desmin-containing structures. BPAG1-b was able to form complexes with both plectin and α-actinin-2, and its NH2-terminus, which contains an actin-binding domain, directly interacted with that of plectin and α-actinin. Moreover, the protein level of BPAG1-b was reduced in muscle tissues from plectin-null mutant mice versus wild-type mice. These studies provide new insights into the role of BPAG1-b in the cytoskeletal organization of striated muscle.  相似文献   

12.
We have determined the complete cDNA sequence of rat plectin from a number of well-characterized overlapping lambda gt11 clones. The 4,140-residue predicted amino acid sequence (466,481 D) is consistent with a three-domain structural model in which a long central rod domain, having mainly an alpha-helical coiled coil conformation, is flanked by globular NH2- and COOH-terminal domains. The plectin sequence has a number of repeating motifs. The rod domain has five subregions approximately 200-residues long in which there is a strong repeat in the charged amino acids at 10.4 residues that may be involved in association between plectin molecules. The globular COOH-terminal domain has a prominent six-fold tandem repeat, with each repeat having a strongly conserved central region based on nine tandem repeats of a 19-residue motif. The plectin sequence has several marked similarities to that of desmoplakin (Green, K. J., D. A. D. Parry, P. M. Steinert, M. L. A. Virata, R. M. Wagner, B. D. Angst, and L.A. Nilles. 1990. J. Biol. Chem. 265:2,603-2,612), which has a shorter coiled-coil rod domain with a similar 10.4 residue charge periodicity and a COOH-terminal globular domain with three tandem repeats homologous to the six found in plectin. The plectin sequence also has homologies to that of the bullous pemphigoid antigen. Northern blot analysis indicated that there is a significant degree of conservation of plectin genes between rat, human, and chicken and that, as shown previously at the protein level, plectin has a wide tissue distribution. There appeared to be a single rat plectin gene that gave rise to a 15-kb message. Expression of polypeptides encoded by defined fragments of plectin cDNA in E. coli has also been used to localize the epitopes of a range of monoclonal and serum antibodies. This enabled us to tentatively map a sequence involved in plectin-vimentin and plectin-lamin B interactions to a restricted region of the rod domain.  相似文献   

13.
Utrophin is a large ubiquitously expressed cytoskeletal protein that is important for maturation of vertebrate neuromuscular junctions. It is highly homologous to dystrophin, the protein defective in Duchenne and Becker muscular dystrophies. Utrophin binds to the actin cytoskeleton via an N-terminal actin-binding domain, which is related to the actin-binding domains of members of the spectrin superfamily of proteins. We have determined the actin-binding properties of this utrophin domain and investigated its binding site on F-actin. An F-actin cosedimentation assay confirmed that the domain binds more tightly to beta-F-actin than to alpha-F-actin and that the full-length utrophin domain binds more tightly to both actin isoforms than a truncated construct, lacking a characteristic utrophin N-terminal extension. Both domain constructs exist in solution as compact monomers and bind to actin as 1:1 complexes. Analysis of the products of partial proteolysis of the domain in the presence of F-actin showed that the N-terminal extension was protected by binding to actin. The actin isoform dependence of utrophin binding could reflect differences at the N-termini of the actin isoforms, thus localising the utrophin-binding site on actin. The involvement of the actin N-terminus in utrophin binding was also supported by competition binding assays using myosin subfragment S1, which also binds F-actin near its N-terminus. Cross-linking studies suggested that utrophin contacts two actin monomers in the actin filament as does myosin S1. These biochemical approaches complement our structural studies and facilitate characterisation of the actin-binding properties of the utrophin actin-binding domain.  相似文献   

14.
Plectin, a large and widely expressed cytolinker protein, is composed of several subdomains that harbor binding sites for a variety of different interaction partners. A canonical actin-binding domain (ABD) comprising two calponin homology domains (CH1 and CH2) is located in proximity to its amino terminus. However, the ABD of plectin is unique among actin-binding proteins as it is expressed in the form of distinct, plectin isoform-specific versions. We have determined the three-dimensional structure of two distinct crystalline forms of one of its ABD versions (pleABD/2alpha) from mouse, to a resolution of 1.95 and 2.0 A. Comparison of pleABD/2alpha with the ABDs of fimbrin and utrophin revealed structural similarity between plectin and fimbrin, although the proteins share only low sequence identity. In fact, pleABD/2alpha has been found to have the same compact fold as the human plectin ABD and the fimbrin ABD, differing from the open conformation described for the ABDs of utrophin and dystrophin. Plectin harbors a specific binding site for intermediate filaments of various types within its carboxy-terminal R5 repeat domain. Our experiments revealed an additional vimentin-binding site of plectin, residing within the CH1 subdomain of its ABD. We show that vimentin binds to this site via the amino-terminal part of its rod domain. This additional amino-terminal intermediate filament protein binding site of plectin may have a function in intermediate filament dynamics and assembly, rather than in linking and stabilizing intermediate filament networks.  相似文献   

15.
We report the cloning and characterization of a full-length cDNA encoding the human cytoskeletal isoform of alpha-actinin (alpha A), a ubiquitous actin-binding protein that shares structural homology with spectrin and dystrophin. The gene encodes 891 amino acids with 96%-98% sequence identity at the amino acid level to chicken nonskeletal muscle alpha A. Transient expression in COS cells produces a protein of approximately 104 kD that comigrates on SDS-PAGE with native alpha A. This alpha A gene is localized to chromosome 14q22-q24 by somatic cell hybrid and in situ hybridization analyses. Pulsed-field gel analysis of human genomic DNA revealed identically sized fragments when cDNA probes for alpha A and erythroid beta-spectrin were used; the latter gene has been previously localized to chromosome 14, band q22. These observations indicate that the genes for cytoskeletal alpha A and beta-spectrin are, in all likelihood, closely physically linked and that, in accordance with their similar structural features, they arose by partial duplication of an ancestral gene.  相似文献   

16.
We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends-PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH(2) terminus. However, unlike dystonin, mACF7 does not contain a coiled-coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest-specific protein, Gas2. In this paper, we demonstrate that the NH(2)-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.  相似文献   

17.
Plectin is a versatile cytoskeletal linker protein that preferentially localizes at interfaces between intermediate filaments and the plasma membrane in muscle, epithelial cells, and other tissues. Its deficiency causes muscular dystrophy with epidermolysis bullosa simplex. To better understand the functional roles of plectin beneath the sarcolemma of skeletal muscles and to gain some insights into the underlying mechanism of plectin-deficient muscular dystrophy, we studied in vivo structural and molecular relationships of plectin to subsarcolemmal cytoskeletal components, such as desmin, dystrophin, and vinculin, in rat skeletal muscles. Immunogold electron microscopy revealed that plectin fine threads tethered desmin intermediate filaments onto subsarcolemmal dense plaques overlying Z-lines and I-bands. These dense plaques were found to contain dystrophin and vinculin, and thus may be the structural basis of costameres. The in vivo association of plectin with desmin, (meta-)vinculin, dystrophin, and actin was demonstrated by immunoprecipitation experiments. Treatment of plectin immunoprecipitates with gelsolin reduced actin, dystrophin, and (meta-)vinculin but not desmin, implicating that subsarcolemmal actin could partly mediate the interaction between plectin and dystrophin or (meta-)vinculin. Altogether, our data suggest that plectin, along with desmin intermediate filaments, might serve a vital structural role in the stabilization of the subsarcolemmal cytoskeleton.  相似文献   

18.
Plectin belongs to the plakin family of cytoskeletal crosslinkers, which is part of the spectrin superfamily. Plakins contain an N-terminal conserved region, the plakin domain, which is formed by an array of spectrin repeats (SR) and a Src-homology 3 (SH3), and harbors binding sites for junctional proteins. We have combined x-ray crystallography and small angle x-ray scattering (SAXS) to elucidate the structure of the central region of the plakin domain of plectin, which corresponds to the SR3, SR4, SR5, and SH3 domains. The crystal structures of the SR3-SR4 and SR4-SR5-SH3 fragments were determined to 2.2 and 2.95 Å resolution, respectively. The SH3 of plectin presents major alterations as compared with canonical Pro-rich binding SH3 domains, suggesting that plectin does not recognize Pro-rich motifs. In addition, the SH3 binding site is partially occluded by an intramolecular contact with the SR4. Residues of this pseudo-binding site and the SR4/SH3 interface are conserved within the plakin family, suggesting that the structure of this part of the plectin molecule is similar to that of other plakins. We have created a model for the SR3-SR4-SR5-SH3 region, which agrees well with SAXS data in solution. The three SRs form a semi-flexible rod that is not altered by the presence of the SH3 domain, and it is similar to those found in spectrins. The flexibility of the plakin domain, in analogy with spectrins, might contribute to the role of plakins in maintaining the stability of tissues subject to mechanical stress.  相似文献   

19.
We have previously shown that plectin is recruited into hemidesmosomes through association of its actin-binding domain (ABD) with the first pair of fibronectin type III (FNIII) repeats and a small part of the connecting segment (residues 1328-1355) of the integrin beta4 subunit. Here, we show that two proline residues (P1330 and P1333) in this region of the connecting segment are critical for supporting beta4-mediated recruitment of plectin. Additional binding sites for the plakin domain of plectin on beta4 were identified in biochemical and yeast two-hybrid assays. These sites are located at the end of the connecting segment (residues 1383-1436) and in the region containing the fourth FNIII repeat and the C-tail (residues 1570-1752). However, in cells, these additional binding sites cannot induce the assembly of hemidesmosomes without the interaction of the plectin-ABD with beta4. Because the additional plectin binding sites overlap with sequences that mediate an intramolecular association of the beta4 cytoplasmic domain, we propose that they are not accessible for binding and need to become exposed as the result of the binding of the plectin-ABD to beta4. Furthermore, these additional binding sites might be necessary to position the beta4 cytoplasmic domain for an optimal interaction with other hemidesmosomal components, thereby increasing the efficiency of hemidesmosome assembly.  相似文献   

20.
Despite their importance in cell biology, the mechanisms that maintain the nucleus in its proper position in the cell are not well understood. This is primarily the result of an incomplete knowledge of the proteins in the outer nuclear membrane (ONM) that are able to associate with the different cytoskeletal systems. Two related ONM proteins, nuclear envelope spectrin repeat (nesprin)-1 and -2, are known to make direct connections with the actin cytoskeleton through their NH2-terminal actin-binding domain (ABD). We have now isolated a third member of the nesprin family that lacks an ABD and instead binds to the plakin family member plectin, which can associate with the intermediate filament (IF) system. Overexpression of nesprin-3 results in a dramatic recruitment of plectin to the nuclear perimeter, which is where these two molecules are colocalized with both keratin-6 and -14. Importantly, plectin binds to the integrin alpha6beta4 at the cell surface and to nesprin-3 at the ONM in keratinocytes, suggesting that there is a continuous connection between the nucleus and the extracellular matrix through the IF cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号