首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular Na+, K+, and Mg2+ concentrations have been measured during the HeLa cell cycle and compared with changes in oxygen utilization and macromolecular synthesis. Cell water content remains relatively constant at 79 +/- 1% during the cell cycle. A biphasic change in intracellular Na+ occurs with low values as cells reach peak S phase and again in early G1. The decrease in S coincides with an increase in cell volume during increased macromolecular synthesis. The fall in intracellular Na+ during mitosis/early G1 coincides with decreased energy utilization as macromolecular synthesis decreases with a continued decrease in [Na+]i in G1 corresponding to a period of increasing cell volume and an increase in protein synthesis. Intracellular Na+ is relatively high during late S/G2 when phosphate incorporation into protein and phospholipid is maximal. Intracellular K+ concentrations largely parallel intracellular Na+ levels although the intracellular K+:Na+ ratio is significantly lower as the cell volume increases during late G2/mitosis. Additions of a Na+-pump inhibitor (strophanthidin) not only caused a rise in [Na+]i and fall in [K+]i but also inhibited protein synthesis. Conversely, addition of a protein synthesis inhibitor (cycloheximide) blocked amino acid incorporation and produces a fall in intracellular Na+ levels. These findings indicate that intracellular Na+ and K+ play an important role in regulating cell hydration during the cell cycle and that changes in Na+, K+-ATPase activity, synthesis and/or utilization of high energy phosphate compounds, fluid phase turnover (endocytosis), Na+:H+ exchange (pHi), Donnan forces, and ionic adsorption may all be involved.  相似文献   

2.
Exposure of ARL 15 cells to medium containing reduced concentrations of K+ (0.65 mM) elicited a 50-100% increase in Na,K-ATPase activity. The inhibition by ouabain of both the basal and the induced enzyme conformed to a single-site model (KI = 1 x 10(-4) M). The low K+-induced increment in Na,K-ATPase activity was accompanied by an equivalent increase in the abundance of Na,K-pump sites estimated by ouabain-stabilized ("back-door") phosphorylation, such that the calculated catalytic turnover number of approximately 8000/min was minimally changed. Comparison of the dependence of ouabain-inhibitable K+ uptake on intracellular Na+ and on extracellular K+ concentrations in control and low K+-treated cells revealed no change in the respective half-maximal stimulatory concentrations for these cations, whereas the maximal rate of active K+ uptake in cells exposed to low external K+ increased by nearly 100%. The derived Hill coefficients for active K+ transport rate were also unchanged by the low K+ treatment (i.e. approximately 1.4 for extracellular K+ and 2.6 for intracellular Na+). Na,K-ATPase activity of basal and low K+-induced cells calculated from the measured maximal Na,K transport rate closely approximated the Na,K-ATPase activity measured enzymatically in unfractionated cell lysates under Vmax conditions, suggesting that all or most of the Na,K-ATPase enzymatic units present in both basal and stimulated states are functionally active. Northern blot analysis of RNA isolated from control cells indicated the presence of the Na,K-ATPase alpha-I isoform of the enzyme which increased by nearly 200% following incubation of the cells in low-K+ medium. By contrast, the alpha-II and alpha-III mRNAs were undetectable in either the basal or low K+-stimulated state. These results indicate that the Na,K-ATPase induced by incubation of ARL 15 cells in low-K+ medium is kinetically and functionally indistinguishable from the basal enzyme, and that only the alpha-I isoform is expressed under control and low-K+ conditions.  相似文献   

3.
The influence of the transmembrane Na+ gradient on the intracellular free calcium concentration, [Ca2+]i, was studied in Sepharose gel-filtered platelets from healthy human subjects, using the Ca-sensitive fluorescent dye, fura-2. Raising the internal Na+ concentration, [Na+]i, by Na+ pump inhibition with 0.05 mM ouabain, without changing external Na+ did not cause a significant increase in [Ca2+]i. Substitution of extracellular Na+ by iso-osmolar sucrose induced a rapid (half-time about 2 min) and significant rise in [Ca2+]i; this effect was amplified in Na-loaded platelets. Partial restitution of external Na+ in these cells with increased [Ca2+]i promoted a significant and rapid Na+ concentration-dependent fall in [Ca2+]i; little decline in [Ca2+]i was observed if K+ was used instead of Na+. These observations represent in vitro evidence for the existence of a Na/Ca exchange mechanism in human platelets that may, in vivo, participate in the control of [Ca2+]i.  相似文献   

4.
Changes in the intracellular concentrations of Na+ and K+ of fetal human fibroblasts have been followed after replacement of serum-containing growth media with unsupplemented and serum-supplemented saline solution (Earle's balanced salt solution). Incubation in unsupplemented salt solution was followed by a progressive increase of the internal Na+ counterbalanced by a decrease of internal K+, without major alterations of the internal osmolarity. After 3 h incubation the intracellular Na+ and K+ concentrations were 120 mM and 50 mM, respectively. These intracellular ion derangements were not associated with a failure of the (Na+ + K+)-ATPase pump, whose activity actually increased with enhanced intracellular Na+ concentration. Ion changes did not take place when serum (in excess of 0.5%, final concentration) was present in the saline solution and a complete restoration to normal of the Na+ and K+ gradients occurred upon addition of serum to cells previously incubated in plain saline solution. The effects of serum were mimicked by furosemide, thus suggesting that channels sensitive to this diuretic are involved in the movement of Na+ and K+ following fibroblast incubation in unsupplemented saline solution.  相似文献   

5.
Steroids, intracellular sodium levels, and Na+/K+-ATPase regulation   总被引:4,自引:0,他引:4  
In outer medullary kidney tubules, both specific mineralocorticoid, and specific glucocorticoid Na+/K+-ATPase activation in vitro were inhibitable by amiloride, an inhibitor of a number of Na+-transporting mechanisms (Bentley, P.J. (1968) J. Physiol. (Lond.) 195, 317-330; Kinsella, J. L., and Aronson, P. S. (1980) Am. J. Physiol. 238, F461-F469). In addition, dexamethasone raised, whereas amiloride reduced, intracellular Na+ levels. These observations are consistent with the possibility that the steroidal responses are mediated by changes in intracellular Na+ ion activity. However, when intracellular Na+ levels were increased by the incubation of tubule segments in medium containing ouabain (10(-4) M), no Na+/K+-ATPase activation was observed, over incubation periods of up to 6 h. As mineralocorticoid and glucocorticoid effects are maximal within 2 h (Rayson, B.M., and Lowther, S.O. (1984) Am. J. Physiol. 246, F656-F662), these results suggest that the Na+ ion per se does not mediate the steroidal effects observed, directly. Incubation of tubule segments in medium containing 10(-4) M ouabain, at 37 degrees C, for longer periods (18 h), however, did indeed increase Na+/K+-ATPase activity, markedly. Thus, a potential homeostatic mechanism was demonstrable, where a chronic increase in intracellular Na+ level, measured after 2-4 h of treatment, resulted in an increase in Na+/K+-ATPase activity, such that the intracellular Na+ level was restored after 18-20 h of incubation to one not significantly different from the control value. This mechanism, however, appears to be clearly distinguishable from that which mediates steroidal Na+/K+-ATPase activation.  相似文献   

6.
A new method based on the toxicity of low intracellular pH (pHi) was developed to isolate fibroblast variants overexpressing Na+/H+ antiport activity. Chinese hamster lung fibroblasts (CCL39) were incubated for 60 min in medium containing 50 mM NH4Cl. Removal of external NH+4 induced a rapid and lethal intracellular acidification when the Na+/H+ antiporter was inhibited during the 60 min of the pHi recovery phase. The inhibition was provoked either by adding 5-(N-methyl,N-propyl)amiloride (MPA, LD50 = 0.3 microM) or by reducing external [Na+] (LD50 = 25 mM). Progressively increasing the MPA concentration during the acid-load selection led to the isolation of two stable variants: AR40 and AR300, resistant, respectively, to 40 and 300 microM MPA. In response to an acid-load, these variants display a much higher rate of pHi recovery due to an overexpression of Na+/H+ antiport activity. In addition, AR40 and AR300 have an altered Na+/H+ antiporter: in AR300 cells K0.5 of MPA for inhibiting Na+/H+ exchange is shifted from 5 X 10(-8) to 1.5 X 10(-6) M, Km (Na+) is decreased 2-fold, and Vmax is increased 4.5-fold. Alternatively reducing Na+ concentration of the pHi recovery saline medium in a stepwise manner led to the selection of another class of variants (DD8 and DD12) also characterized by an altered Na+/H+ antiporter and an increased expression level. The 10-fold increased rate of amiloride-sensitive Na+ influx of DD12 is accounted for by a 4-fold increase in Vmax and a 2.5-fold increase in affinity for Na+ or Li+ at the external site. Interestingly, the affinity for the amiloride analog MPA and for external H+ is unchanged in DD12. In conclusion, the genetic approach presented here: provides a general and specific method for selecting variants of the Na+/H+ antiporter with increased expression levels and/or with structural alterations and demonstrates that the external Na+- and amiloride-binding sites are not identical, since they can be genetically altered independently of each other.  相似文献   

7.
1. Purified pig kidney ATPase was incubated in 30--160 mM Tris-HCl with various monovalent cations. 130 mM LiCl stimulated a ouabain-sensitive ATP hydrolysis (about 5% of the maximal (Na+ + K) activity), whereas 160 mM Tris-HCl did not stimulate hydrolysis. Similar results were obtained with human red blood cell broken membranes. 2. In the absence of Na+ and with 130 mM LiCl, the ATPase activity as a function of KCl concentration showed an initial slight inhibition (50 micrometer KCl) followed by an activation (maximal at 0.2 mM KCl) and a further inhibition, which was total at mM KCl. In the absence of LiCl, the rate of hydrolysis was not affected by any of the KCl concentrations investigated. 3. The lithium-activation curve for ATPase activity in the absence of both Na+ and K+ had sigmoid characteristics. It also showed a marked dependence on the total LiCl + Tris-HCl concentration, being inhibited at high concentrations. This inhibition was more noticeable at low LiCl concentrations. 4. In the absence of Na+, 130 mM Li+ showed promoted phosphorylation of ATPase from 1 to 3 mM ATP in the presence of Mg2+. In enzyme treated with N-ethylmaleimide, the levels of phosphorylation in Li+-containing solutions, amounted to 40% of those in Na+- and up to 7 times of those in K+-containing solutions. 5. The total (Na+ + K+)-ATPase activity was markedly inhibited at high buffer concentrations (Tris-HCl, Imidazole-HCl and tetramethylammonium-HEPES gave similar results) in cases when either the concentration of Na+ or K+ (or both) was below saturation. On the other hand, the maximal (Na+ + K+)-ATPase activity was not affected (or very slightly) by the buffer concentration. 6. Under standard conditions (Tris-HCl + NaCl = 160 mM) the Na+-activation curve of Na+-ATPase had a steep rise between 0 and 2.5 mM, a fall between 2.5 and 20 mM and a further increase between 20 and 130 mM. With 30 mM Tris-HCl, the curve rose more steeply, inhibition was noticeable at 2.5 mM Na+ and was completed at 5 mM Na+. With Tris-HCl + NaCl = 280 mM, the amount of activation decreased and inhibition at intermediate Na+ concentrations was not detected.  相似文献   

8.
A decrease in Na+/K+-pump activity is an early event of Friend murine erythroleukemic (MEL) cell differentiation along the erythroid pathway. This decreased Na+/K+-pump activity has been proposed to be an essential step in differentiation which would cause a rise in intracellular Na+ concentration and then, by means of Na+/Ca2+ exchange, an increase in intracellular Ca2+. An increase in intracellular Ca2+ has been proposed to be essential for induction of differentiation. A critical prediction of this Na+-Ca2+ hypothesis is the rise in intracellular Na+. To test this prediction we have measured intracellular Na+ using a novel triple isotope method involving 3H2O, [14C]sucrose, and 22Na to measure total water, extracellular fluid, and Na+, respectively. 22Na equilibration occurred in less than 10 min. In uninduced cells, intracellular Na+ was 15.2 +/- 2.2 mM (S.D., n = 22); after induction for 14-16 h with dimethyl sulfoxide, intracellular Na+ decreased significantly (p less than 0.0001) to 8.4 +/- 1.4 mM (n = 21). The time course of the decline in intracellular Na+ paralleled that of the decrease in the Na+/K+-pump activity. These results are in direct contradiction to the Na+-Ca2+ hypothesis and suggest that observed changes in Na+/K+-pump activity can be explained solely on the basis of changes in intracellular Na+. The drop in intracellular Na+ is due to a decrease in Na+ influx. We suggest, however, that the decrease in the Na+ influx is not itself an essential event of differentiation, but may be induced by a change in the flux of another ion coupled to Na+.  相似文献   

9.
Methods have been developed to study the intracellular Na and K concentrations in E. coli, strain K-12. These intracellular cation concentrations have been shown to be functions of the extracellular cation concentrations and the age of the bacterial culture. During the early logarithmic phase of growth, the intracellular K concentration greatly exceeds that of the external medium, whereas the intracellular Na concentration is lower than that of the growth medium. As the age of the culture increases, the intracellular K concentration falls and the intracellular Na concentration rises, changes which are related to the fall in the pH of the medium and to the accumulation of the products of bacterial metabolism. When stationary phase cells, which are rich in Na and poor in K, are resuspended in fresh growth medium, there is a rapid reaccumulation of K and extrusion of Na. These processes represent oppositely directed net ion movements against concentration gradients, and have been shown to be dependent upon the presence of an intact metabolic energy supply.  相似文献   

10.
为探讨电磁脉冲对下丘脑神经细胞损伤的机制,测定了电磁脉冲辐照培养下丘脑神经细胞前后细胞内LDH和培养上清中LDH、AST、CHE、K+、Na+浓度及与时间的关系。对新生的Wistar乳鼠下丘脑神经细胞在6孔板中进行原代培养,在培养14天时,用高场强EMP模拟源(场强为6×104V/m,脉冲上升时间为20ns,脉宽为30滋s,主要频率成分为0—100MHz),以脉冲重复频率为2.5次/min,辐照2min。并于辐照后0h(即刻)、1h、6h、12h和24h应用生化检测试剂盒测定细胞内和培养上清中LDH及培养上清中AST、CHE、K+、Na+浓度。结果表明,电磁脉冲辐照后即刻就可引起培养上清LDH、AST明显升高;辐照后1h细胞内LDH明显降低,而培养上清中LDH、AST、CHE、和K+明显升高;辐照后6h细胞内LDH明显降低,而培养上清中LDH、AST、CHE、K+和Na+明显升高;辐照后12h细胞内LDH明显降低,培养上清中CHE、K+和Na+明显升高;辐照后24h上述所有指标基本恢复。由此可以认为,电磁脉冲辐照后可引起下丘脑神经元细胞膜的损伤。  相似文献   

11.
The monovalent cationic ionophores monensin and nigericin stimulated rapid guinea pig sperm acrosome reactions in the presence of extracellular Na+, Ca2+ and bicarbonate (HCO3-/CO2). Extracellular K+ (mM concentrations), in contrast, was not required for the stimulatory effect of the ionophores. The effect of HCO3-/CO2 is concentration, pH and temperature dependent, with maximal responses obtained with 50 microM monensin or 25 microM nigericin at a concentration of 30 mM HCO3-, 2.5% CO2 and pH 7.8 at 25 degrees C. At a constant HCO3- concentration (30 mM), monensin stimulated acrosome reactions within the pH range 7.5-7.8, whereas a higher or lower pH did not support acrosome reactions at 25 degrees C. At constant extracellular pH (7.8), monensin stimulated acrosome reactions in the presence of 30 mM HCO3-, whereas higher and lower concentrations did not support acrosome reactions at 25 degrees C. The permeant anions pyruvate and lactate were essential to maintain sperm motility when treated with monensin under these conditions. NH4Cl, sodium acetate and 4,41-diisothiocyano-2, 21-disulfonic acid stibene (DIDS; 25 microM), an anion transport inhibitor, blocked the ability of monensin to stimulate acrosome reactions. Verapamil (100 microM), a putative Ca2+ transport antagonist, in contrast, did not prevent the monensin-induced acrosome reactions. Physiological concentrations of Na+ were needed for monensin to stimulate acrosome reactions, but high concentrations of Mg2+ prevented the monensin stimulation. The Ca2+ ionophore A23187 (75 nM) also required physiological concentrations of Na+ for the rapid induction of maximal acrosome reactions at an elevated pH (8.3) but did not require the presence of extracellular HCO3-. These studies suggest that a monovalent ionophore-induced rise in sperm intracellular Na+ concentrations is a pre-Ca2+ entry event, that stimulates an endogenous Ca2+/Na+ exchange that allows a Ca2+ influx which in turn induces the acrosome reaction. The possible regulatory role of the sperm intracellular pH and Na+, K+-ATPase during the capacitation process under physiological conditions is discussed.  相似文献   

12.
Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system.  相似文献   

13.
Experiments were performed on sheep cardiac Purkinje fibres using pH- and sodium-selective microelectrodes, while simultaneously measuring tension, to determine if the fall in intracellular pH (pHi) following a rise in intracellular Na+ activity (aiNa) is caused by inhibition or reversal of acid extrusion on Na+-H+ exchange. A rise in aiNa was induced either by using the cardioactive steroid strophanthidin to inhibit the sarcolemmal Na+-K+ pump or by increasing the frequency of stimulation (0-4 Hz). Both of these manoeuvres led to an increase in aiNa and a decrease in pHi. Following exposure to strophanthidin, amiloride (an inhibitor of sarcolemmal Na+-H+ exchange) produced a decrease in both pHi and aiNa. These effects of amiloride increased with decreasing pHi, indicating that acid extrusion on Na+-H+ exchange is stimulated by the fall in pHi. The changes in intracellular Na+ and H+ caused by amiloride were quantitatively consistent with an electroneutral stoichiometry. The fall in pHi during strophanthidin exposure is therefore not caused by inhibition or reversal of acid extrusion Na+-H+ exchange. It is likely that the fall in pHi during a rate increase is also independent of Na+-H+ exchange. This is because (i) it has been shown previously to occur in the presence of amiloride and (ii) the calcium antagonist D600 completely abolished the stimulation-dependent fall in pHi. It is concluded that the intracellular acidosis following inhibition of the sarcolemmal Na+-K+ pump or following an increase in the rate of stimulation is secondary to a rise in intracellular calcium.  相似文献   

14.
Mechanisms regulating intracellular pH in sea urchin eggs   总被引:8,自引:0,他引:8  
Intracellular pH (pHi) of sea urchin eggs (Paracentrotus lividus) was determined using DMO (dimethyloxazolidinedione) and a rapid filtration technique (P. Payan, J.P. Girard, R. Christen and C. Sardet (1981). Exp. Cell Res. 134, 339-344). Transfer of unfertilized or fertilized eggs from normal sea water into Na+-free artificial sea water leads to a progressive acidification and fall of intracellular Na+ content. A step rise in external Na+ to 10 meq causes a rapid but transient Na+ entry coupled to an excretion of H+, giving rise to a pHi increase. It is shown that the plasma membrane of unfertilized eggs contains a permanent and reversible Na+/H+ exchanger which contributes to the regulation of pHi. This exchange occurs with a 1:1 stoichiometry and is independent of metabolic energy. Proton excretion and sodium entry follow saturable kinetics with respect to external Na+ and are completely inhibited by amiloride. At fertilization, pHi increases from 7.38 to 7.64 and is maintained at this level by two separate mechanisms: (1) a Na+/H+ exchange with the same characteristics as in unfertilized eggs; (2) a H+-excreting system that is dependent on external Na+, amiloride sensitive, and requiring metabolic energy. The relationship between the permanent Na+/H+ exchange involved in pHi regulation and the transient Na+/H+ exchange occurring at fertilization is discussed.  相似文献   

15.
Rat cortical synaptosomes responded to a reduction of external Ca2+ from pCa 3.5 to pCa 4.8 in the absence of MgCl2 with a slight decrease of internal K+ and an increase of Na+. The effects were prevented by tetrodotoxin or millimolar concentrations of MgCl2. Further lowering of external pCa to 7.7 with N-hydroxyethylethylenediaminetriacetate evoked a rapid fall of internal K+, which was specifically blocked by Ruthenium Red; tetrodotoxin and nifedipine were ineffective. A linear relationship was established between K+ and methyltriphenylphosphonium cation distribution ratios by varying external pCa between 4.8 and 7.7, indicating that K+ efflux resulted from a depolarization of the plasma membrane. An increase of Na+ permeability was suggested by the synaptosomes' gain of Na+ and the disappearance of the depolarization in an Na+-free sucrose medium. According to the constant field equation, the permeability ratio PNa/PK increased from 0.029 at pCa4.8 to 0.090 at pCa 7.7 with plasma membrane potentials of -74mV and -47mV, respectively. Since the plasma membrane responded to variation of external Ca2+ activities in the micromolar range with a graded and sustained depolarization, the use of Ca2+ buffers to control membrane potentials is suggested.  相似文献   

16.
Using pH-sensitive microelectrodes to measure intracellular pH (pHi) in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum, we have found that when cells are acid-loaded by pretreatment with NH+4 in a nominally HCO3--free Ringer, pHi spontaneously recovers with an exponential time course. This pHi recovery, which is indicative of active (i.e., uphill) transport, is blocked by removal of Na+ from both the luminal and basolateral (i.e., bath) solutions. Re-addition of Na+ to either the lumen or the bath results in a full pHi recovery, but at a lower-than-normal rate; the maximal rate is achieved only with Na+ in both solutions. The diuretic amiloride reversibly inhibits the pHi recovery when present on either the luminal or basolateral sides, and has its maximal effect when present in both solutions. The pHi recovery is insensitive to stilbene derivatives and to Cl- removal. A transient rise of intracellular Na+ activity accompanies the pHi recovery; there is no change of intracellular Cl- activity. These data suggest that these proximal tubule cells have Na-H exchangers in both the luminal and basolateral membranes.  相似文献   

17.
The intracellular free Ca concentration was measured in invertebrate neurones using single-barrelled and double-barrelled neutral-carrier microelectrodes. The electrodes were calibrated in solutions containing different Ca concentrations between 1 mM and 0.01 microM. The electrode responses were also tested at different ionic strengths and at varying Na concentrations. The electrodes responded with 25-30 mV per 10-fold change in Ca concentration between 1 mM and 1 microM and with 10-25 mV between 1 and 0.1 microM Ca. The intracellular free Ca concentration was measured to be between 0.1 and 0.7 microM in the neurones. The changes of intracellular Ca in identified voltage-clamped neurones of Aplysia californica were recorded during iontophoretic injections of Ca2+ or EGTA. The decrease of intracellular Ca following EGTA injection was correlated with the suppression of the Ca-dependent K current and with the reduction of Ca-induced inactivation of voltage-dependent Ca current. In identified neurones of the leech Hirudo medicinalis a reversible increase of intracellular Ca2+ was recorded after inhibition of the Na-K pump, either by addition of ouabain (0.5 mM) or by lowering the external K concentration (0.2 mM). This rise in intracellular Ca2+ did not occur, and was even reversed, in the absence of external Na, suggesting the existence of Na-Ca exchange across the leech neuronal membrane.  相似文献   

18.
Salt loads (0.17 or 0.34 mmol Na+; 6 M NaCl solution labelled with 24Na) were administered into the amnion of 7-day-old chick embryos. The 24Na distribution in embryonic blood, amniotic and allantoic fluids was measured in 1, 2, 4, 8, 12 and 24 h intervals to assess the kinetics of salt load movements in particular egg compartments. The aim was to estimate the efficiency of the embryonic homeostatic apparatus to maintain ionic balance in the internal environment of the embryonic body. The Na+ concentration in amniotic fluid was expected to rise after salt loading by about 275 and 400 mM, respectively. More than 10% of the salt dose per ml appeared in the embryonic blood 2 h after salt load administration while only 0.2% were found in the urine (collected as allantonic fluid). The maximal rise of 24Na activity in the blood of salt-loaded embryos reached 11%-12% of the dose which corresponded to an increase of Na+ concentration by 19 and 41 mM, respectively. The maximum of 24Na activity appeared in the allantoic fluid with a delay of several hours and indicated an increment of Na+ concentration by 6% and 9% of the dose per ml in the case of salt-loaded embryos. The Na+ concentration in the allantoic fluid (urine) never exceeded that in the blood. The final Na+ activity (estimated in the blood 24 h after salt loading) was equal to 5% of the dose per ml in both cases, indicating a persistent elevation of Na+ concentration by 8.6 and 17.2 mM, respectively.  相似文献   

19.
Fertilization of the sea urchin egg is accompanied by changes in intracellular ion activities and transmembrane fluxes, which regulate the sequence of biochemical events of metabolic derepression. Changes in intracellular K+ activity during fertilization have been controversial and here we report our measurements using intracellular K+-sensitive microelectrodes. A small, but statistically significant, transient rise in internal K+ activity was detected during the first 10 min of fertilization. Since this change in K+ activity was ouabain sensitive, intracellular K+ activity in the fertilized egg appears to be regulated by the increased Na+, K+ ATPase activity, rather than the previously suggested K+ decompartmentalization. Increasing external K+ concentration was found to stimulate ouabain-sensitive alkalinization in the fertilized egg. The data are consistent with the possibility that Na+, K+ ATPase may regulate cytoplasmic pH by recycling Na+ that enters the cell through Na+-H+ antiport.  相似文献   

20.
Abnormalities of intracellular ion concentrations and transmembrane fluxes were reported in uremia. In RBC from 12 chronically hemodialyzed patients (age 41 + 12, 7 men, 5 women; mean dialysis duration 31 + 24 months), we evaluated the acute effects of hemodialysis on intracellular Na and K concentrations, ouabain sensitive Na/K pump, furosemide sensitive Na/K cotransport, Na/Li countertransport, and passive permeability to Na. Six patients were normotensive and 6 were taking antihypertensive drugs which were withdrawn before the study. When compared to our normal reference group, uremic patients showed a significant increase in intracellular K concentration and a significant decrease in ouabain-sensitive Na/K pump. Intracellular sodium was not increased. No correlation was found between the activity of sodium-potassium pump and the duration of hemodialysis. The other transport systems were comparable to normal. No significant change was observed between the values measured before and after dialysis. Ouabain sensitive Na/K pump was lower in hypertensive as compared to normotensive patients, but this difference was not significant. Our data support the existence of ion transport derangements in uremia, which are not acutely affected by hemodialysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号