首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative genomic analysis of 35 cyanobacterial strains has revealed that the gene complement of aminoacyl-tRNA synthetases (AARSs) and routes for aminoacyl-tRNA synthesis may differ among the species of this phylum. Several genes encoding AARS paralogues were identified in some genomes. In-depth phylogenetic analysis was done for each of these proteins to gain insight into their evolutionary history. GluRS, HisRS, ArgRS, ThrRS, CysRS, and Glu-Q-RS showed evidence of a complex evolutionary course as indicated by a number of inconsistencies with our reference tree for cyanobacterial phylogeny. In addition to sequence data, support for evolutionary hypotheses involving horizontal gene transfer or gene duplication events was obtained from other observations including biased sequence conservation, the presence of indels (insertions or deletions), or vestigial traces of ancestral redundant genes. We present evidences for a novel protein domain with two putative transmembrane helices recruited independently by distinct AARS in particular cyanobacteria.  相似文献   

2.
Since the birth of molecular evolutionary analysis,primates have been a central focus of study and mitochondrial DNA is well suited to these endeavors because of its unique features.Surprisingly,to date no comprehensive evaluation of the nucleotide substitution patterns has been conducted on the mitochondrial genome of primates.Here,we analyzed the evolutionary patterns and evaluated selection and recombination in the mitochondrial genomes of 44 Primates species downloaded from GenBank.The results revealed that a strong rate heterogeneity occurred among sites and genes in all comparisons.Likewise,an obvious decline in primate nucleotide diversity was noted in the subunit rRNAs and tRNAs as compared to the protein-coding genes.Within 13 protein-coding genes,the pattern of nonsynonymous divergence was similar to that of overall nucleotide divergence,while synonymous changes differed only for individual genes,indicating that the rate heterogeneity may result from the rate of change at nonsynonymous sites.Codon usage analysis revealed that there was intermediate codon usage bias in primate protein-coding genes,and supported the idea that GC mutation pressure might determine codon usage and that positive selection is not the driving force for the codon usage bias.Neutrality tests using site-specific positive selection from a Bayesian framework indicated no sites were under positive selection for any gene,consistent with near neutrality.Recombination tests based on the pairwise homoplasy test statistic supported complete linkage even for much older divergent primate species.Thus,with the exception of rate heterogeneity among mitochondrial genes,evaluating the validity assumed complete linkage and selective neutrality in primates prior to phylogenetic or phylogeographic analysis seems unnecessary.  相似文献   

3.
The three green algal mitochondrial genomes completely sequenced to date — those of Chlamydomonas reinhardtii Dangeard, Chlamydomonas eugametos Gerloff, and Prototheca wickerhamii Soneda & Tubaki — revealed very different mitochondrial genome organizations and sequence affiliations. The Chlamydomonas genomes resemble the ciliate / fungal / animal counterparts, and the Prototheca genome resembles land plant homologues. This review points out that all the green algal mitochondrial genomes examined to date resemble either the Chlamydomonas or the Prototheca mitochondrial genome; the Chlamydomonas- like mitochondrial genomes are small and have a reduced gene content (no ribosomal protein or 5S rRNA genes and only a few protein-coding and tRNA genes) and fragmented and scrambled rRNA coding regions, whereas the Prototheca- like mitochondrial genomes are larger and have a larger set of protein-coding genes (including ribosomal protein genes), more tRNA genes, and 5S rRNA and conventional continuous small-subunit (SSU) and large-subunit (LSU) rRNA coding regions. It appears, therefore, that the differences previously observed between the mitochondrial genomes of C. reinhardtii and P. wickerhamii extend to the two green algal mitochondrial lineages to which they belong and are significant enough to raise questions about the causes and mechanisms responsible for such contrasting evolutionary strategies among green algae. This review suggests an integrative approach in explaining the occurrence of distinct evolutionary strategies and apparent phylogenetic affiliations among the known green algal mitochondrial lineages. The observed differences could be the result of distinct genetic potentials differentiated during the previous evolutionary history of the flagellate ancestors and / or of subsequent changes in habitat and life history of the more advanced green algal lineages.  相似文献   

4.
Zhao L  Zhang XT  Tao XK  Wang WW  Li M 《动物学研究》2012,33(E3-4):E47-E56
Since the birth of molecular evolutionary analysis, primates have been a central focus of study and mitochondrial DNA is well suited to these endeavors because of its unique features. Surprisingly, to date no comprehensive evaluation of the nucleotide substitution patterns has been conducted on the mitochondrial genome of primates. Here, we analyzed the evolutionary patterns and evaluated selection and recombination in the mitochondrial genomes of 44 Primates species downloaded from GenBank. The results revealed that a strong rate heterogeneity occurred among sites and genes in all comparisons. Likewise, an obvious decline in primate nucleotide diversity was noted in the subunit rRNAs and tRNAs as compared to the protein-coding genes. Within 13 protein-coding genes, the pattern of nonsynonymous divergence was similar to that of overall nucleotide divergence, while synonymous changes differed only for individual genes, indicating that the rate heterogeneity may result from the rate of change at nonsynonymous sites. Codon usage analysis revealed that there was intermediate codon usage bias in primate protein-coding genes, and supported the idea that GC mutation pressure might determine codon usage and that positive selection is not the driving force for the codon usage bias. Neutrality tests using site-specific positive selection from a Bayesian framework indicated no sites were under positive selection for any gene, consistent with near neutrality. Recombination tests based on the pairwise homoplasy test statistic supported complete linkage even for much older divergent primate species. Thus, with the exception of rate heterogeneity among mitochondrial genes, evaluating the validity assumed complete linkage and selective neutrality in primates prior to phylogenetic or phylogeographic analysis seems unnecessary.  相似文献   

5.
Copepoda is the most diverse and abundant group of crustaceans, but its phylogenetic relationships are ambiguous. Mitochondrial (mt) genomes are useful for studying evolutionary history, but only six complete Copepoda mt genomes have been made available and these have extremely rearranged genome structures. This study determined the mt genome of Calanus hyperboreus, making it the first reported Arctic copepod mt genome and the first complete mt genome of a calanoid copepod. The mt genome of C. hyperboreus is 17,910 bp in length and it contains the entire set of 37 mt genes, including 13 protein-coding genes, 2 rRNAs, and 22 tRNAs. It has a very unusual gene structure, including the longest control region reported for a crustacean, a large tRNA gene cluster, and reversed GC skews in 11 out of 13 protein-coding genes (84.6%). Despite the unusual features, comparing this genome to published copepod genomes revealed retained pan-crustacean features, as well as a conserved calanoid-specific pattern. Our data provide a foundation for exploring the calanoid pattern and the mechanisms of mt gene rearrangement in the evolutionary history of the copepod mt genome.  相似文献   

6.
Phylogenies involving nonmodel species are based on a few genes, mostly chosen following historical or practical criteria. Because gene trees are sometimes incongruent with species trees, the resulting phylogenies may not accurately reflect the evolutionary relationships among species. The increase in availability of genome sequences now provides large numbers of genes that could be used for building phylogenies. However, for practical reasons only a few genes can be sequenced for a wide range of species. Here we asked whether we can identify a few genes, among the single-copy genes common to most fungal genomes, that are sufficient for recovering accurate and well-supported phylogenies. Fungi represent a model group for phylogenomics because many complete fungal genomes are available. An automated procedure was developed to extract single-copy orthologous genes from complete fungal genomes using a Markov Clustering Algorithm (Tribe-MCL). Using 21 complete, publicly available fungal genomes with reliable protein predictions, 246 single-copy orthologous gene clusters were identified. We inferred the maximum likelihood trees using the individual orthologous sequences and constructed a reference tree from concatenated protein alignments. The topologies of the individual gene trees were compared to that of the reference tree using three different methods. The performance of individual genes in recovering the reference tree was highly variable. Gene size and the number of variable sites were highly correlated and significantly affected the performance of the genes, but the average substitution rate did not. Two genes recovered exactly the same topology as the reference tree, and when concatenated provided high bootstrap values. The genes typically used for fungal phylogenies did not perform well, which suggests that current fungal phylogenies based on these genes may not accurately reflect the evolutionary relationships among species. Analyses on subsets of species showed that the phylogenetic performance did not seem to depend strongly on the sample. We expect that the best-performing genes identified here will be very useful for phylogenetic studies of fungi, at least at a large taxonomic scale. Furthermore, we compare the method developed here for finding genes for building robust phylogenies with previous ones and we advocate that our method could be applied to other groups of organisms when more complete genomes are available.  相似文献   

7.
Despite the considerable efforts to reconstruct the phylogeny of grasses, the relationships among the subfamilies Bambusoideae, Pooideae and Ehrhartoideae in the BEP clade remain unresolved. Here we completely sequenced three chloroplast genomes of representative species from Bambusoideae and Ehrhartoideae and obtained 19 additional chloroplast genome sequences of other grasses from GenBank. Using sequences of 76 chloroplast protein-coding genes from the 22 grass species, we fully resolved the phylogeny of the BEP clade. Our results strongly supported the (B,P)E hypothesis, i.e., Bambusoideae and Pooideae are more closely related than Ehrhartoideae. This result was not biased by systematic or sampling errors and was impervious to phylogenetic methods or model specification. The divergence time estimate suggests that the initial diversification of the BEP clade into three subfamilies happened within a short time period (≈ 4 MY). The presence of these short internal branches may explain the inability of previous studies to achieve a confident resolution of the BEP clade. The combination of the sequences of the entire chloroplast genomes provided sufficient phylogenetic information to resolve the BEP phylogeny fully. These results provide a valuable evolutionary framework for comparative and functional genomic studies using the grass family as a model system.  相似文献   

8.
The phylogenetic utility of mitochondrial genomes (mtgenomes) is examined using the framework of a preliminary phylogeny of Orthoptera. This study presents five newly sequenced genomes from four orthopteran families. While all ensiferan and polyneopteran taxa retain the ancestral gene order, all caeliferan lineages including the newly sequenced caeliferan species contain a tRNA rearrangement from the insect ground plan tRNA(Lys)(K)-tRNA(Asp)(D) swapping to tRNA(Asp) (D)-tRNA(Lys) (K) confirming that this rearrangement is a possible molecular synapomorphy for this suborder. The phylogenetic signal in mtgenomes is rigorously examined under the analytical regimens of parsimony, maximum likelihood and Bayesian inference, along with how gene inclusion/exclusion, data recoding, gap coding, and different partitioning schemes influence the phylogenetic reconstruction. When all available data are analyzed simultaneously, the monophyly of Orthoptera and its two suborders, Caelifera and Ensifera, are consistently recovered in the context of our taxon sampling, regardless of the optimality criteria. When protein-coding genes are analyzed as a single partition, nearly identical topology to the combined analyses is recovered, suggesting that much of the signals of the mtgenome come from the protein-coding genes. Transfer and ribosomal RNAs perform poorly when analyzed individually, but contribute signal when analyzed in combination with the protein-coding genes. Inclusion of third codon position of the protein-coding genes does not negatively affect the phylogenetic reconstruction when all genes are analyzed together, whereas recoding of the protein-coding genes into amino acid sequences introduces artificial resolution. Over-partitioning in a Bayesian framework appears to have a negative effect in achieving convergence. Our findings suggest that the best phylogenetic inferences are made when all available nucleotide data from the mtgenome are analyzed simultaneously, and that the mtgenome data can resolve over a wide time scale from the Permian (approximately 260 MYA) to the Tertiary (approximately 50 MYA).  相似文献   

9.
We examined the distribution of synonymous and non-synonymous changes in 12 protein-coding genes of natural populations of cyanobacteria to infer changes in gene functionality. By comparing mutation distributions within and across species using the McDonald-Kreitman test, we found data sets to contain evidence for purifying selection (hetR of Trichodesmium, nifH of Cylindrospermopsis raceborskii and rpoC1 of Anabaena lemmermannii) and positive selection (kaiC of Microcoleus chthonoplastes and rbcX of Anabaena and Aphanizomenon sp.). Other genes from the same set of clonal isolates (petB and rbcL in M. chthonoplastes and Anabaena/Aphanizomenon, respectively) did not harbour evidence for either form of selection. The results of branch models of codon evolution agreed fully with the results of the McDonald-Kreitman test in terms of significance and absolute value of the dN/dS estimates. The high frequency of gene-specific mutation patterns and their association with branches that separate closely related cyanobacterial genera suggest that evolutionary tests are suited to uncover gene-specific selective differentiation in cyanobacterial genomes. At the same time, given the lack of information about the history of cyanobacteria, analysis of larger numbers of protein-coding genes of clonal cyanobacterial isolates will produce more detailed pictures of the effects of natural selection.  相似文献   

10.
Resolving the evolutionary history of rapidly diversifying lineages like the Lake Malawi Cichlid Flock demands powerful phylogenetic tools. Although this clade of over 500 species of fish likely diversified in less than two million years, the availability of extensive sequence data sets, such as complete mitochondrial genomes, could help resolve evolutionary patterns in this group. Using a large number of newly developed primers, we generated whole mitochondrial genome sequences for 14 Lake Malawi cichlids. We compared sequence divergence across protein‐coding regions of the mitochondrial genome and also compared divergence in the mitochondrial loci to divergence at two nuclear protein‐coding loci, Mitfb and Dlx2. Despite the widespread sharing of haplotypes of identical sequences at individual loci, the combined use of all protein‐coding mitochondrial loci provided a bifurcating phylogenetic hypothesis for the exemplars of major lineages within the Lake Malawi cichlid radiation. The primers presented here could have substantial utility for evolutionary analyses of mitochondrial evolution and hybridization within this diverse clade.  相似文献   

11.
12.
13.
The jakobids are free-living mitochondriate protists that share ultrastructural features with certain amitochondriate groups and possess the most bacterial-like mitochondrial genomes described thus far. Jakobids belong to a diverse group of mitochondriate and amitochondriate eukaryotes, the excavate taxa. The relationships among the various excavate taxa and their relationships to other putative deep-branching protist groups are largely unknown. With the hope of clarifying these issues, we have isolated the cytosolic chaperonin CCTalpha gene from the jakobid Reclinomonas americana (strains 50394 and 50283), the jakobid-like malawimonad Malawimonas jakobiformis, two heteroloboseans (Acrasis rosea and Naegleria gruberi), a euglenozoan (Trypanosoma brucei), and a parabasalid (Monocercomonas sp.). We also amplified the CCTdelta gene from M. jakobiformis. The Reclinomonas and Malawimonas sequences presented here are among the first nuclear protein-coding genes to be described from these organisms. Unlike other putative early diverging protist lineages, a high density of spliceosomal introns was found in the jakobid and malawimonad CCTs-similar to that observed in vertebrate protein-coding genes. An analysis of intron positions in CCT genes from protists, plants, animals, and fungi suggests that many of the intron-sparse or intron-lacking protist lineages may not be primitively so but have lost spliceosomal introns during their evolutionary history. In phylogenetic trees constructed from CCTalpha protein sequences, R. americana (but not M. jakobiformis) shows a weak but consistent affinity for the Heterolobosea and Euglenozoa.  相似文献   

14.
For their apparent morphological simplicity, the Platyhelminthes or “flatworms” are a diverse clade found in a broad range of habitats. Their body plans have however made them difficult to robustly classify. Molecular evidence is only beginning to uncover the true evolutionary history of this clade. Here we present nine novel mitochondrial genomes from the still undersampled orders Polycladida and Rhabdocoela, assembled from short Illumina reads. In particular we present for the first time in the literature the mitochondrial sequence of a Rhabdocoel, Bothromesostoma personatum (Typhloplanidae, Mesostominae). The novel mitochondrial genomes examined generally contained the 36 genes expected in the Platyhelminthes, with all possessing 12 of the 13 protein-coding genes normally found in metazoan mitochondrial genomes (ATP8 being absent from all Platyhelminth mtDNA sequenced to date), along with two ribosomal RNA genes. The majority presented possess 22 transfer RNA genes, and a single tRNA gene was absent from two of the nine assembled genomes. By comparison of mitochondrial gene order and phylogenetic analysis of the protein coding and ribosomal RNA genes contained within these sequences with those of previously sequenced species we are able to gain a firm molecular phylogeny for the inter-relationships within this clade.Our phylogenetic reconstructions, using both nucleotide and amino acid sequences under several models and both Bayesian and Maximum Likelihood methods, strongly support the monophyly of Polycladida, and the monophyly of Acotylea and Cotylea within that clade. They also allow us to speculate on the early emergence of Macrostomida, the monophyly of a “Turbellarian-like” clade, the placement of Rhabditophora, and that of Platyhelminthes relative to the Lophotrochozoa (=Spiralia). The data presented here therefore represent a significant advance in our understanding of platyhelminth phylogeny, and will form the basis of a range of future research in the still-disputed classifications within this taxon.  相似文献   

15.
Reconstructing the evolutionary relationships of species is a major goal in biology. Despite the increasing number of completely sequenced genomes, a large number of phylogenetic projects rely on targeted sequencing and analysis of a relatively small sample of marker genes. The selection of these phylogenetic markers should ideally be based on accurate predictions of their combined, rather than individual, potential to accurately resolve the phylogeny of interest. Here we present and validate a new phylogenomics strategy to efficiently select a minimal set of stable markers able to reconstruct the underlying species phylogeny. In contrast to previous approaches, our methodology does not only rely on the ability of individual genes to reconstruct a known phylogeny, but it also explores the combined power of sets of concatenated genes to accurately infer phylogenetic relationships of species not previously analyzed. We applied our approach to two broad sets of cyanobacterial and ascomycetous fungal species, and provide two minimal sets of six and four genes, respectively, necessary to fully resolve the target phylogenies. This approach paves the way for the informed selection of phylogenetic markers in the effort of reconstructing the tree of life.  相似文献   

16.
The gene composition of present-day genomes has been shaped by a complicated evolutionary history, resulting in diverse distributions of genes across genomes. The pattern of presence and absence of a gene in different genomes is called its phylogenetic profile. It has been shown that proteins whose encoding genes have highly similar profiles tend to be functionally related: As these genes were gained and lost together, their encoded proteins can probably only perform their full function if both are present. However, a large proportion of genes encoding interacting proteins do not have matching profiles. In this study, we analysed one possible reason for this, namely that phylogenetic profiles can be affected by multi-functional proteins such as shared subunits of two or more protein complexes. We found that by considering triplets of proteins, of which one protein is multi-functional, a large fraction of disturbed co-occurrence patterns can be explained.  相似文献   

17.
The order Trichosporonales (Tremellomycotina, Basidiomycota) includes various species that have clinical, agricultural and biotechnological value. Thus, understanding why and how evolutionary diversification occurred within this order is extremely important. This study clarified the phylogenetic relationships among Tricosporonales species. To select genes suitable for phylogenetic analysis, we determined the draft genomes of 17 Trichosporonales species and extracted 30 protein-coding DNA sequences (CDSs) from genomic data. The CDS regions of Trichosporon asahii and T. faecale were identified by referring to mRNA sequence data since the intron positions of the respective genes differed from those of Cryptococcus neoformans (outgroup) and are not conserved within this order. A multiple alignment of the respective gene was first constructed using the CDSs of T. asahii, T. faecale and C. neoformans, and those of other species were added and aligned based on codons. The phylogenetic trees were constructed based on each gene and a concatenated alignment. Resolution of the maximum-likelihood trees estimated from the concatenated dataset based on both nucleotide (72,531) and amino acid (24,173) sequences were greater than in previous reports. In addition, we found that several genes, such as phosphatidylinositol 3-kinase TOR1 and glutamate synthase (NADH), had good resolution in this group (even when used alone). Our study proposes a set of genes suitable for constructing a phylogenetic tree with high resolution to examine evolutionary diversification in Trichosporonales. These can also be used for epidemiological and biogeographical studies, and may also serve as the basis for a comprehensive reclassification of pleomorphic fungi.  相似文献   

18.
The sinipercids are a group of 12 species of freshwater percoid fish endemic to East Asia and their phylogenetic placements have perplexed generations of taxonomists. We cloned and sequenced the complete mitochondrial DNA (mtDNA) of three sinipercid fishes (Siniperca chuatsi, S. kneri, and S. scherzeri) to characterize and compare their mitochondrial genomes. The mitochondrial genomes of S. chuatsi, S. kneri, and S. scherzeri were 16,496, 17,002, and 16,585?bp in length, respectively. The organization of the three mitochondrial genomes is similar to those reported from other fish mitochondrial genomes, which contains 37 genes (13 protein-coding genes, 2 ribosomal RNAs, and 22 transfer RNAs) and a major non-coding control region. Among the 13 protein-coding genes of all the three sinipercid fishes, three reading-frame overlaps were found on the same strand. There is an 81-bp tandem repeat cluster at the end of CSB-3 in the S. scherzeri control region. The complete mitochondrial genomes of the three sinipercids should be useful for the evolutionary studies of sinipercids and other vertebrate species.  相似文献   

19.
Kang S  Sultana T  Eom KS  Park YC  Soonthornpong N  Nadler SA  Park JK 《Gene》2009,429(1-2):87-97
The complete mitochondrial genome sequence was determined for the human pinworm Enterobius vermicularis (Oxyurida: Nematoda) and used to infer its phylogenetic relationship to other major groups of chromadorean nematodes. The E. vermicularis genome is a 14,010-bp circular DNA molecule that encodes 36 genes (12 proteins, 22 tRNAs, and 2 rRNAs). This mtDNA genome lacks atp8, as reported for almost all other nematode species investigated. Phylogenetic analyses (maximum parsimony, maximum likelihood, neighbor joining, and Bayesian inference) of nucleotide sequences for the 12 protein-coding genes of 25 nematode species placed E. vermicularis, a representative of the order Oxyurida, as sister to the main Ascaridida+Rhabditida group. Tree topology comparisons using statistical tests rejected an alternative hypothesis favoring a closer relationship among Ascaridida, Spirurida, and Oxyurida, which has been supported from most studies based on nuclear ribosomal DNA sequences. Unlike the relatively conserved gene arrangement found for most chromadorean taxa, E. vermicularis mtDNA gene order is very unique, not sharing similarity to any other nematode species reported to date. This lack of gene order similarity may represent idiosyncratic gene rearrangements unique to this specific lineage of the oxyurids. To more fully understand the extent of gene rearrangement and its evolutionary significance within the nematode phylogenetic framework, additional mitochondrial genomes representing a greater evolutionary diversity of species must be characterized.  相似文献   

20.
The Ponto-Caspian (Black and Caspian seas) brackish-water fauna represents a special case of the endemic diversification in world's ancient lakes; it also involves a hotspot of continental diversity in the predominantly marine mysid crustaceans. We explored the origins and history of the mysid diversification in a phylogenetic analysis of some 20 endemic Ponto-Caspian species mainly of the genus Paramysis and their marine congeners, using sequences of two nuclear protein-coding genes, two nuclear rRNA genes, the mitochondrial COI gene and morphological data. A nearly completely resolved phylogeny was recovered, with no indication of rapid diversification bursts. Deep divergences were found among the main endemic clades, attesting to a long independent faunal history in the continental Paratethys waters. The current marine Paramysis species make a monophyletic cluster secondarily derived from the continental Paratethyan (Ponto-Caspian) Paramysis ancestors. The good phylogenetic resolution was mainly due to the two nuclear protein-coding genes, opsin and EPRS, here for the first time applied to peracarid systematics. In contrast, 'conventional' mtDNA and nuclear rRNA genes provided poor topological resolution and weak congruence of divergence rates. The two nuclear protein-coding genes had more congruent rates of evolution, and were about 10-15 times slower than the mitochondrial COI gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号