首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ablation of nonmuscle myosin (NM) II-A or NM II-B results in mouse embryonic lethality. Here, we report the results of ablating NM II-C as well as NM II-C/II-B together in mice. NM II-C ablated mice survive to adulthood and show no obvious defects compared with wild-type littermates. However, ablation of NM II-C in mice expressing only 12% of wild-type amounts of NM II-B results in a marked increase in cardiac myocyte hypertrophy compared with the NM II-B hypomorphic mice alone. In addition, these hearts develop interstitial fibrosis associated with diffuse N-cadherin and β-catenin localization at the intercalated discs, where both NM II-B and II-C are normally concentrated. When both NM II-C and II-B are ablated the BC/BC cardiac myocytes show major defects in karyokinesis. More than 90% of BC/BC myocytes demonstrate defects in chromatid segregation and mitotic spindle formation accompanied by increased stability of microtubules and abnormal formation of multiple centrosomes. This requirement for NM II in karyokinesis is further demonstrated in the HL-1 cell line derived from mouse atrial myocytes, by using small interfering RNA knockdown of NM II or treatment with the myosin inhibitor blebbistatin. Our study shows that NM II is involved in regulating cardiac myocyte karyokinesis by affecting microtubule dynamics.  相似文献   

2.
Cultured confluent endothelial cells exhibit stable basal isometric tone associated with constitutive myosin II regulatory light chain (RLC) phosphorylation. Thrombin treatment causes a rapid increase in isometric tension concomitant with myosin II RLC phosphorylation, actin polymerization, and stress fiber reorganization while inhibitors of myosin light chain kinase (MLCK) and Rho-kinase prevent these responses. These findings suggest a central role for myosin II in the regulation of endothelial cell tension. The present studies examine the effects of blebbistatin, a specific inhibitor of myosin II activity, on basal tone and thrombin-induced tension development. Although blebbistatin treatment abolished basal tension, this was accompanied by an increase in myosin II RLC phosphorylation. The increase in RLC phosphorylation was Ca2+ dependent and mediated by MLCK. Similarly, blebbistatin inhibited thrombin-induced tension without interfering with the increase in RLC phosphorylation or in F-actin polymerization. Blebbistatin did prevent myosin II filament incorporation and association with polymerizing or reorganized actin filaments leading to the disappearance of stress fibers. Thus the inhibitory effects of blebbistatin on basal tone and induced tension are consistent with a requirement for myosin II activity to maintain stress fiber integrity. actin; blebbistatin; isometric tension; myosin light chain kinase; regulatory light chain phosphorylation; focal adhesions  相似文献   

3.
Pacemaker cells residing in the sinoatrial node generate the regular heartbeat. Ca2+ signaling controls the heartbeat rate—directly, through the effect on membrane molecules (NCX exchange, K+ channel), and indirectly, through activation of calmodulin-AC-cAMP-PKA signaling. Thus, the physiological role of signaling in pacemaker cells can only be assessed if the Ca2+ dynamics are in the physiological range. Cultured cells that can be genetically manipulated and/or virally infected with probes are required for this purpose. Because rabbit pacemaker cells in culture experience a decrease in their spontaneous action potential (AP) firing rate below the physiological range, Ca2+ dynamics are expected to be affected. However, Ca2+ dynamics in cultured pacemaker cells have not been reported before. We aim to a develop a modified culture method that sustains the global and local Ca2+ kinetics along with the AP firing rate of rabbit pacemaker cells.We used experimental and computational tools to test the viability of rabbit pacemaker cells in culture under various conditions. We tested the effect of culture dish coating, pH, phosphorylation, and energy balance on cultured rabbit pacemaker cells function. The cells were maintained in culture for 48 h in two types of culture media: one without the addition of a contraction uncoupler and one enriched with either 10 mM BDM (2,3-Butanedione 2-monoxime) or 25 μM blebbistatin. The uncoupler was washed out from the medium prior to the experiments. Cells were successfully infected with a GFP adenovirus cultured with either BDM or blebbistatin. Using either uncoupler during culture led to the cell surface area being maintained at the same level as fresh cells. Moreover, the phospholamban and ryanodine receptor densities and their phosphorylation level remained intact in culture when either blebbistatin or BDM were present. Spontaneous AP firing rate, spontaneous Ca2+ kinetics, and spontaneous local Ca2+ release parameters were similar in the cultured cells with blebbistatin as in fresh cells. However, BDM affects these parameters. Using experimental and a computational model, we showed that by eliminating contraction, phosphorylation activity is preserved and energy is reduced. However, the side-effects of BDM render it less effective than blebbistatin.  相似文献   

4.
For studying heart pathologies on the cellular level, cultured adult cardiac myocytes represent an important approach. We aimed to explore a novel adult rat ventricular myocyte culture system with minimised dedifferentiation allowing extended experimental manipulation of the cells such as expression of exogenous proteins. Various culture conditions were investigated including medium supplement, substrate coating and electrical pacing for one week. Adult myocytes were probed for (i) viability, (ii) morphology, (iii) frequency dependence of contractions, (iv) Ca(2+) transients, and (v) their tolerance towards adenovirus-mediated expression of the Ca(2+) sensor "inverse pericam". Conventionally, in either serum supplemented or serum-free medium, myocytes dedifferentiated into flat cells within 3 days or cell physiology and morphology were impaired, respectively. In contrast, myocytes cultured in medium supplemented with an insulin-transferrin-selenite mixture on substrates coated with extracellular matrix proteins showed an increased cell attachment and a conserved cross-striation. Moreover, these myocytes displayed optimised preservation of their contractile behaviour and Ca(2+) signalling even under conditions of continuous electrical pacing. Sustained expression of inverse pericam did not alter myocyte function and allowed long lasting high speed Ca(2+) imaging of electrically driven adult myocytes. Our single-cell model thus provides a new advance for high-content screening of these highly specialised cells.  相似文献   

5.
The distribution of isomyosin in cardiac muscle cells in culture has been investigated with monoclonal antibodies and Ca2+-activated myosin ATPase cytochemical staining. With immunofluorescent studies using monoclonal antibodies to isomyosins V1 and V3, the cardiac myocytes grown in a serum-free and thyroxine (T4)-free medium for 7 days contained a predominant population of cells which were strongly reactive to anti-V3 antibody. A small population of myocytes in this culture exhibited weak or no reaction to anti-V3 antibody. When cultures were exposed to anti-V1 antibody, the predominant cardiac myocyte population showed little or no reactivity to this antibody, whereas a small population of the myocytes were strongly reactive. The myosin ATPase staining reaction of the positive myocyte population was significantly less pronounced than that of the V3-negative population which showed a strong reaction. The staining pattern changed dramatically after exposure of cultured myocytes to thyroid hormone for 7 days. Most of the cells were found to react strongly with anti-V1 antibody, while some cells showed little reactivity and some were not stained at all. A small number of cardiac myocytes in this culture showed little or no reactivity to anti-V1 antibody but were strongly reactive to anti-V3 antibody. The predominant anti-V1-positive myocyte population exhibited strong myosin ATPase staining as compared to a smaller V3-positive myocyte population which showed very weak staining. The cytochemical results of ATPase staining in cardiac myocytes agreed well with ATPase activity as determined on pyrophosphate gels containing isomyosin derived from cultured cardiac myocytes with or without T4. This study has demonstrated that cultured myocytes contain a small population of muscle cells which is not responsive to thyroid hormone or to the lack of it.  相似文献   

6.
A major stimulus affecting myofibrillogenesis in both embryonic and mature striated muscle is contractile activity. There are two major signals associated with contractile activity: a physiological signal, the transient increase in intracellular calcium, and a physical signal, the transient increase in tension production. However, dissociating these two signals to examine their relative contributions to myofibrillogenesis has proven difficult. In this study, we have used two different myosin inhibitors to determine the importance of myosin cross-bridge cycling in sarcomere assembly. We find that the small-molecule inhibitor 2,3-butanedione monoxime (BDM), which inhibits myosin ATPase, disrupts myofibrillogenesis in amphibian myocytes, consistent with results from avian studies. However, BDM is a weak myosin inhibitor and it is non-specific; concentrations that inhibit contraction and disrupt myofibrillogenesis also disrupt calcium signaling. Therefore, we also used the recently identified skeletal muscle myosin II inhibitor, N-benzyl-p-toluenesulphonamide (BTS), which has high affinity and specificity for skeletal muscle fast myosin. BTS inhibits contraction and results in myofibrillar disruption that phenocopies our results with BDM. However, BTS does not affect either spontaneous or induced calcium transients. Furthermore, BTS is reversible and does not significantly affect the expression levels of myosin or actin. Thus, our convergent results with BDM and BTS suggest that sarcomere assembly depends on active regulation of tension in the forming myofibril.  相似文献   

7.
Blebbistatin is a powerful inhibitor of actin-myosin interaction in isolated contractile proteins. To examine whether blebbistatin acts in a similar manner in the organized contractile system of striated muscle, the effects of blebbistatin on contraction of cardiac tissue from mouse were studied. The contraction of paced intact papillary muscle preparations and shortening of isolated cardiomyocytes were inhibited by blebbistatin with inhibitory constants in the micromolar range (1.3–2.8 µM). The inhibition constants are similar to those previously reported for isolated cardiac myosin subfragments showing that blebbistatin action is similar in filamentous myosin of the cardiac contractile apparatus and isolated proteins. The inhibition was not associated with alterations in action potential duration or decreased influx through L-type Ca2+ channels. Experiments on permeabilized cardiac muscle preparations showed that the inhibition was not due to alterations in Ca2+ sensitivity of the contractile filaments. The maximal shortening velocity was not affected by 1 µM blebbistatin. In conclusion, we show that blebbistatin is an inhibitor of the actin-myosin interaction in the organized contractile system of cardiac muscle and that its action is not due to effects on the Ca2+ influx and activation systems. heart; electrophysiology; permeabilized muscle  相似文献   

8.
The effect of a tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA), on the expression of myosin heavy chain isoforms in cultured rat cardiac ventricular muscle cells was studied. The previous preliminary report [Claycomb WC (1988): "Biology of Isolated Adult Cardiac Myocytes." In Clark WA, Decker RS, Borg TK (eds): New York: Elsevier, pp 284-287] indicated that TPA turns off the expression of myosin heavy chain genes in cultured adult cardiac myocytes. Electrophoretic and immunocytochemical analyses were carried out in the present studies. The myosin heavy chain isoform profiles of cardiac myocytes exposed to TPA at concentrations of 50-250 ng/ml culture medium for varying periods were similar to those of controls that were grown in the absence of TPA, showing predominant isoform V1. Immunofluorescence microscopy with monoclonal antibodies to cardiac ventricular isomyosin revealed the structural organization of myosin in TPA-treated cells. The organization of myosin was variable among different myocytes and within a single myocyte. Immunofluorescence microscopy was extended to the examination of the organization of alpha-actinin which did not differ from that of myosin in some myocytes. In contrast to the previous report [Claycomb, 1988], this study has demonstrated that TPA has no influence on the expression of myosin heavy chain isoforms in cultured adult ventricular cardiac muscle cells.  相似文献   

9.
Nonmuscle myosin II has been shown to participate in organizing the actin cytoskeleton in polarized epithelial cells. Vectorial acid secretion in cultured parietal cells involves translocation of proton pumps from cytoplasmic vesicular membranes to the apical plasma membrane vacuole with coordinated lamellipodial dynamics at the basolateral membrane. Here we identify nonmuscle myosin II in rabbit gastric parietal cells. Western blots with isoform-specific antibodies indicate that myosin IIA is present in both cytosolic and particulate membrane fractions whereas the IIB isoform is associated only with particulate fractions. Immunofluorescent staining demonstrates that myosin IIA is diffusely located throughout the cytoplasm of resting parietal cells. However, after stimulation, myosin IIA is rapidly redistributed to lamellipodial extensions at the cell periphery; virtually all the cytoplasmic myosin IIA joins the newly formed basolateral membrane extensions. 2,3-Butanedione monoximine (BDM), a myosin-ATPase inhibitor, greatly diminishes the lamellipodial dynamics elicited by stimulation and retains the pattern of myosin IIA cytoplasmic staining. However, BDM had no apparent effect on the stimulation associated redistribution of H,K-ATPase from a cytoplasmic membrane compartment to apical membrane vacuoles. The myosin light chain kinase inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-7) also did not alter the stimulation-associated recruitment of H,K-ATPase to apical membrane vacuoles, but unlike BDM it had relatively minor inhibitory effects on lamellipodial dynamics. We conclude that specific disruption of the basolateral actomyosin cytoskeleton has no demonstrable effect on recruitment of H,K-ATPase-rich vesicles into the apical secretory membrane. However, myosin II plays an important role in regulating lamellipodial dynamics and cortical actomyosin associated with parietal cell activation. acid secretion; cytoskeleton; ion channels and pumps  相似文献   

10.
11.
2,3-Butanedione monoxime (BDM) is a chemical phosphatase and has been known to dissociate mechanical contraction in the excitation–contraction coupling via inhibition of myofibrillar ATPase. BDM has also been found to decrease sarcolemmal L-type Ca2+ channel activity and intracellular Ca2+ in cardiac myocytes. It has been shown that Ca2+ entry via L-type Ca2+ channels decreased atrial myocyte atrial natriuretic peptide (ANP) release. The purpose of the present study was to address the effects of BDM in the regulation of ANP release. Experiments were performed in perfused beating rabbit atria. BDM accentuated atrial myocyte ANP release concomitantly with a decrease in atrial stroke volume and pulse pressure in a concentration-dependent manner. The BDM-induced activation of ANP release was attenuated by the treatment with nifedipine, an inhibitor of L-type Ca2+ channels. BDM further decreased atrial stroke volume and pulse pressure in the presence of nifedipine. Blockade of function of the sarcoplasmic reticulum with thapsigargin plus ryanodine slightly but not significantly attenuated the BDM-induced activation of ANP release. These data show that BDM is a potent stimulator for the ANP release and also suggest that the mechanism by which BDM activates atrial myocyte ANP release is related to inhibition of the L-type Ca2+ channel activity. The present finding also suggests that the effects of ANP released may be considered in an occasion of uncoupling by BDM of the excitation–contraction coupling of cardiomyocytes.  相似文献   

12.
Adenovirus-mediated gene transfer into adult cardiac myocytes in primary culture is a potentially useful method to study the structure and function of the contractile apparatus. However, the consequences of adenovirus infection on the highly differentiated state of the cultured myocyte have not been determined. We report here a detailed analysis of myofilament structure and function over time in primary culture and after adenovirus infection. Adult rat ventricular myocytes in primary culture were infected with a recombinant adenovirus vector expressing either the LacZ or alkaline phosphatase reporter gene. Control and infected myocytes were collected at days 0-7 post-isolation/infection, and myofilament isoform expression was determined by SDS-PAGE and Western blot. Laser scanning densitometry showed that the - to -myosin heavy chain ratio, the stoichiometry of the myosin light chains and the expression of the adult troponin T isoform did not change over time in culture or with adenovinus treatment. Importantly, examination of Ca2+-activated tension in single myocytes showed no change in the shape or position of the tension-pCa relationship in the control and adenovirus infected myocytes during primary culture. These results indicate that the structure and function of adult cardiac myocytes are stable in short term primary culture and are not affected by adenovirus infection per se, and therefore provide the foundation for the use of adenovirus-mediated myofilament gene transfer to study contractile apparatus structure and function in adult cardiac myocytes.ain.  相似文献   

13.
14.
Dystrophin is an integral membrane protein involved in the stabilization of the sarcolemmal membrane in cardiac muscle. We hypothesized that the loss of membrane dystrophin during ischemia and reperfusion is responsible for contractile force-induced myocardial injury and that cardioprotection afforded by ischemic preconditioning (IPC) is related to the preservation of membrane dystrophin. Isolated and perfused rat hearts were subjected to 30 min of global ischemia, followed by reperfusion with or without the contractile blocker 2,3-butanedione monoxime (BDM). IPC was introduced by three cycles of 5-min ischemia and 5-min reperfusion before the global ischemia. Dystrophin was distributed exclusively in the membrane of myocytes in the normally perfused heart but was redistributed to the myofibril fraction after 30 min of ischemia and was lost from both of these compartments during reperfusion in the presence or absence of BDM. The loss of dystrophin preceded uptake of the membrane-impermeable Evans blue dye by myocytes that occurred after the withdrawal of BDM and was associated with creatine kinase release and the development of contracture. Although IPC did not alter the redistribution of membrane dystrophin induced by 30 min of ischemia, it facilitated the restoration of membrane dystrophin during reperfusion. Also, myocyte necrosis was not observed when BDM was withdrawn after complete restoration of membrane dystrophin. These results demonstrate that IPC-mediated restoration of membrane dystrophin during reperfusion correlates with protection against contractile force-induced myocardial injury and suggest that the cardioprotection conferred by IPC can be enhanced by the temporary blockade of contractile activity until restoration of membrane dystrophin during reperfusion.  相似文献   

15.
Isolated myocytes were purified from adult rat heart. Identification and localization of microtubules and quantitation of tubulin in these cells were performed by immunochemical procedures. Antibodies were raised against brain tubulin and purified by affinity chromatography. An enzyme-linked immunosorbent assay, ELISA, was developed for quantitation of tubulin. It allowed the measurement of 10 to 500 ng of tubulin. Tubulin content in adult rat cardiac myocytes was found to be approximately 10 micrograms per 100 mg of the total protein content. By means of a double immunofluorescence technique, the microtubule network, identified with antitubulin, was studied in reference to the sarcomeric A band labeled with antibodies specific to myosin heavy chains. The basis for identifying the microtubule network have included the use of specific antitubulin immunoglobulins and the sensitivity of the specific labeling of the network to antimitotic drugs and low temperature. It was found that microtubules were organized mainly around the nuclei, with important concentrations at the poles, showing extensions in the cone and in the cytoplasm as loosely organized loops. The shape of adult cardiac myocyte was not dependent upon the integrity of the microtubule network.  相似文献   

16.
Cardiac fibrosis accompanies a variety of myocardial disorders, and is induced by myofibroblasts. These cells may be composed of a heterogeneous population of parent cells, including interstitial fibroblasts and circulating progenitor cells. Direct comparison of human bone marrow-derived mesenchymal stem cells (BM-MSCs) and cardiac myofibroblasts (CMyfbs) has not been previously reported. We hypothesized that BM-MSCs readily adopt a myofibroblastic phenotype in culture. Human primary BM-MSCs and human CMyfbs were isolated from patients undergoing open heart surgery and expanded under standard culture conditions. We assessed and compared their phenotypic and functional characteristics by examining their gene expression profile, their ability to contract collagen gels and synthesize collagen type I. In addition, we examined the role of non-muscle myosin II (NMMII) in modulating MSC myogenic function using NMMII siRNA knockdown and blebbistatin, a specific small molecule inhibitor of NMMII. We report that, while human BM-MSCs retain pluripotency, they adopt a myofibroblastic phenotype in culture and stain positive for the myofibroblast markers α-SMA, vimentin, NMMIIB, ED-A fibronectin, and collagen type 1 at each passage. In addition, they contract collagen gels in response to TGF-β1 and synthesize collagen similar to human CMyfbs. Moreover, inhibition of NMMII activity with blebbistatin completely attenuates gel contractility without affecting cell viability. Thus, human BM-MSCs share and exhibit similar physiological and functional characteristics as human CMyfbs in vitro, and their propensity to adopt a myofibroblast phenotype in culture may contribute to cardiac fibrosis.  相似文献   

17.
Myosin isozyme pattern in adult rat cardiac ventricular muscle cells in long-term culture was investigated. The myosin isozymes profile of cultured cardiac myocytes underwent a change in a serum-containing medium from two weeks onward, showing an embryonic rat ventricular myosin isozymes pattern that contained predominant isozyme V3. When adult cardiac myocytes were grown in a serum-containing medium supplemented with T4, these cells contained a predominant V1 band whose electrophoretic mobility and Ca2+-ATPase activity were comparable to those of the adult rat ventricle in vivo. This study has demonstrated that the adult cardiac ventricular muscle cells in long-term culture contain a predominant myosin isozyme V3 unlike their counterparts in vivo. Supplemented T4 modulated the embryonic type isozyme V3 to the adult type V1.  相似文献   

18.
Expression of myosin isoenzymes in cardiac-muscle cells in culture.   总被引:3,自引:0,他引:3  
Myosin isoenzyme profiles of rat and chicken embryonic cardiac myocytes were studied during differentiation and growth in vitro by native-gel electrophoresis and assay of Ca2+-activated ATPase. The electrophoretic pattern of myosin extracted from 18-day-embryonic-rat myocytes after 7 days in culture exhibits three isoenzyme bands, V1, V2 and V3, of which the slow-migrating V3 is predominant. This resembles the isoenzyme profiles from 18-20-day-embryonic ventricles in vivo. However, the isoenzyme profile of the 7-day-old culture differs from that of its counterpart in vivo, as well as from that of the young and adult rat ventricles, the last two containing the predominant fast-migrating component, V1. When embryonic cardiac myocytes were grown in vitro for 7 days in a medium containing a physiological concentration of L-thyroxine (T4), myosin isoenzyme profiles of these cells shifted to the adult form, with isoenzyme V1 predominating after day 4 of culture. The 7-day-old intact embryonic-chicken ventricles and isolated myocytes showed a single myosin isoenzyme band after 7 days of culture that resembles the pattern seen for the adult chicken. T4 had no effect on the electrophoretic mobility of this isoenzyme pattern. ATPase activity of isoenzyme V1 in cultured rat myocytes treated with T4 was comparable with that of V1 in the untreated adult heart. This study demonstrates that ATPase activity of the chicken myosin isoenzyme is significantly lower than that of isoenzyme V1, but is comparable with that of rat V3. This study shows that the expression of myosin isoenzyme profiles in cultured rat cardiac myocytes does not fully represent the situation in vivo. Physiological concentrations of T4 can modulate the predominant foetal-type isoenzyme V3 to the adult type V1 in cultured embryonic-rat cardiac myocytes within a brief period.  相似文献   

19.
20.
An essential feature of dendritic cell immune surveillance is endocytic sampling of the environment for non-self antigens primarily via macropinocytosis and phagocytosis. The role of several members of the myosin family of actin based molecular motors in dendritic cell endocytosis and endocytic vesicle movement was assessed through analysis of dendritic cells derived from mice with functionally null myosin mutations. These include the dilute (myosin Va), Snell's waltzer (myosin VI) and shaker-1 (myosin VIIa) mouse lines. Non muscle myosin II function was assessed by treatment with the inhibitor, blebbistatin. Flow cytometric analysis of dextran uptake by dendritic cells revealed that macropinocytosis was enhanced in Snell's waltzer dendritic cells while shaker-1 and blebbistatin-treated cells were comparable to controls. Comparison of fluid phase uptake using pH insensitive versus pH sensitive fluorescent dextrans revealed that in dilute cells rates of uptake were normal but endosomal acidification was accelerated. Phagocytosis, as quantified by uptake of E. coli, was normal in dilute while dendritic cells from Snell's waltzer, shaker-1 and blebbistatin treated cells exhibited decreased uptake. Microtubule mediated movements of dextran-or transferrin-tagged endocytic vesicles were significantly faster in dendritic cells lacking myosin Va. Loss of myosin II, VI or VIIa function had no significant effects on rates of endocytic vesicle movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号